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The high dimensionality of global transcription profiles, the ex-
pression level of 20,000 genes in a much small number of samples,
presents challenges that affect the sensitivity and general appli-
cability of analysis results. In principle, it would be better to
describe the data in terms of a small number of metagenes, positive
linear combinations of genes, which could reduce noise while still
capturing the invariant biological features of the data. Here, we
describe how to accomplish such a reduction in dimension by a
metagene projection methodology, which can greatly reduce the
number of features used to characterize microarray data. We show,
in applications to the analysis of leukemia and lung cancer data
sets, how this approach can help assess and interpret similarities
and differences between independent data sets, enable cross-
platform and cross-species analysis, improve clustering and class
prediction, and provide a computational means to detect and
remove sample contamination.

cancer � dimension reduction � expression analysis � noise reduction �
sample contamination

A major challenge in the analysis of global transcription
profiles is the high level of noise and the lack of reproduc-

ibility across data sets, which results from fitting models to small
numbers of samples in a high-dimensional space (i.e., thousands
of genes). Ideally we would prefer to reduce the data to a small
number of metagenes that better capture the essential behavior
of the samples.

There are many advantages to such a metagene approach. By
capturing the major, invariant biological features and reducing
noise, metagenes provide descriptions of data sets that allow
them to be more easily combined and compared. This is espe-
cially important when we are considering cross-platform or
cross-species data. Ultimately, this can result in more sensitive
clustering and classification. In addition, interpretation of the
metagenes, which characterize a subtype or subset of samples,
can give us insight into underlying mechanisms and processes of
a disease.

Here, we describe a general methodology, metagene projec-
tion, that creates a low-dimensional representation of a training
(model) data set using nonnegative metagene factors into which
an independently obtained new (test) set of samples or data can
be projected and analyzed. The metagene factors are a small
number of gene combinations that distinguish expression pat-
terns of subclasses in a data set. We obtain the factors by the
application of nonnegative matrix factorization (NMF) (1, 2)
used to extract facial features from images. We showed (3) how
NMF can extract metagenes that provide stable, robust cluster-
ing of expression data. Moreover, by using gene set enrichment
analysis (GSEA) to annotate the metagene factors themselves,
we can gain insight into the underlying biology of both the
training and test data sets.

Importantly, we illustrate the utility of metagene projection by
its application to leukemia and lung cancer data sets. We show
how the projection of new data sets into the space of metagene
factors reduces noise and emphasizes relevant biological corre-

lations and thus (i) enables cross-platform analysis by removing
technological noise from data, (ii) enables cross-species analysis
and the assessment of disease models, (iii) improves the accuracy
of classification and prediction methods in the mapping of
diseases types, and (iv) detects contamination in tumor samples.

Results
Overview of Method. We consider a gene expression data set
consisting of a collection of NM model samples, which we use to
characterize a domain of biological (transcriptional) states of
interest. The model data are represented as an nM � NM matrix,
M, whose rows contain the expression levels of the nM genes in
the NM samples.

Using NMF, we find a small number, k, of metagenes, positive
linear combinations of the NM genes, which can be used to
distinguish the transcription profiles of the subtypes contained in
the model data set. Mathematically, this corresponds to finding
an approximate factoring, M � WM � HM, where both factors
have only positive entries. WM is an nM � k matrix that defines
the metagene decomposition model and whose columns specify
how much each of the nM genes contributes to each of the k
metagenes. HM is a k � NM matrix whose entries represent the
expression levels of the k metagenes for each of the NM samples.
This model selection is done in an unsupervised fashion by using
either a knowledge-based or data-driven model selection ap-
proach. One can set k equal to the number of known phenotypes
in the model set. Alternatively, optimal values of k can be
determined based on projection stability by using consensus
clustering techniques as described (3).

From the factoring of M, we are able to construct a mapping that
allows us to project a data set into the space of the metagenes
derived above. Mathematically, this can be accomplished by using
the Moore–Penrose generalized pseudoinverse (4) of WM, so that,
ĤM � (WM)�1 � M, where ĤM � HM. For simplicity in notation we
refer to the projected matrix as HM. After elimination of outlier
samples and model refinement, we can apply the final resulting
pseudoinverse to a new individual sample or entire data set and
analyze that data in the context of the metagenes, which charac-
terized the model data.

We summarize the three major steps in the metagene
projection method below (Fig. 1). More detail can be found in
Methods. The software is freely available from The Broad
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Institute web site as both R-code and a module in the
GenePattern software package.

Step 1. Metagene Factor Extraction and Refinement of the Model Data
Set. We start with standard data preprocessing: thresholding and
eliminating genes that do not vary sufficiently across the model
set and rank normalizing to minimize platform idiosyncrasies.
We apply NMF to factor the resulting expression matrix and
derive the Moore–Penrose pseudoinverse of WM. Next, we
project the model data set into metagene space and, by using a
support vector machine (SVM) (5) classification step, trim
outliers from the model set (model data set refinement). Finally,
we refactor the expression matrix M of the refined model set,
M � WM� HM, and define a refined pseudoinverse or projection
map. We use this refinement of the projection map in the analysis
of new test data sets.

Step 2. Metagene Factor Projection of the Test Data Set. We thresh-
old the expression values as in step 1 and then match the genes
in each test set to the corresponding genes in the model set. We
then rank normalize the test samples to yield the corresponding
columns in the test data expression matrix, T. Finally, we apply
the pseudoinverse (WM)�1 to both M and T to obtain HM and HT,
their projections into metagene space.

Step 3. Analysis of Model and Test Data Set Projection Results. In our
experience, the use of metagenes, instead of genes, as features
for analysis, increases the signal-to-noise ratio and yields more
robust, accurate results. Now that both the model and test data
are represented in the lower dimensional metagene space, there
are a variety of analyses we can apply. These include the
following:
Visualization. Model and test samples can be characterized and
compared by using heat maps of the H matrices.
Clustering model and test projections. The projection can provide a
sample’s class assignment by identifying the metagene with
maximum expression. Alternatively, we can cluster the columns
of HM and HT.
Classification of test samples. We can use the projected data to build
a multiclass predictor and assess any data set of test samples.
Below, we use a one-versus-all SVM classifier (6, 7) to predict
phenotypes by using the k metagenes as the input features. This
method provides a predicted class and a predictive confidence by
using a modified Brier score (see Methods for details).
GSEA-based metagene interpretation. To gain biological insight into
the different metagene factors, we use a variation of our GSEA
methodology (8). Using the expression profile of a metagene,

i.e., the corresponding row of the HM matrix, as a template, we
sort the genes according to the correlation of their expression
profile from the M matrix with the metagene template. We can
then evaluate the ‘‘enrichment’’ of gene sets representing a
pathway or other biological process at the top of that ranked list
by using GSEA. For each metagene, one obtains a list of
‘‘enriched’’ gene sets and their statistical significance [see sup-
porting information (SI) Text].

Examples. Here, we describe three applications of the metagene
projection method to highlight its utility in three cross-platform
analyses, to validate disease models, to improve classification of
cross-platform data sets, to assess the similarities and differences
of subtypes across data sets, and to detect contamination. We
start with a simple example. We then describe two more
innovative results.

Cross-Platform Clustering of Leukemia Data. We analyzed two
leukemia data sets from different microarray platforms to test
the method and demonstrate its power to enable cross-platform
classification and to improve sensitivity in clustering. Often
clustering of cross-platform data reveals the platform or origi-
nating lab as the strongest differentiating signal in the data.
Importantly, we establish that the method was able to cluster the
cross-platform data correctly and that these results are because
of the metagene representation rather than the rank normal-
ization step.

We considered two data sets containing samples representing
three leukemia subclasses: B and T cell acute lymphoblastic
leukemia (ALL-B, ALL-T) and acute myeloid leukemia (AML).
The model data set consisted of 30 samples (10 ALL-B, 10
ALL-T, 10 AML) (from refs. 9 and 10). The test data set
contained the 38 samples (19 ALL-B, 8 ALL-T, 11 AML) from
ref. 11. The two data sets came from different laboratories and
were acquired on different microarray technologies, Affymetrix
U-133 for the model set and Affymetrix HU6800 for the test set
(Affymetrix, Santa Clara, CA).

We applied the metagene projection methodology as de-
scribed above. In particular, we noted that the model data set is
very consistent, and no model refinement was necessary. Be-
cause the number of subtypes was known, we used k � 3
metagene factors. Fig. 2 shows the resulting heat maps for the
projected model and test sets. Clearly, the metagenes are
associated with the biological phenotypes (F1 � ALL-B, F2 �
ALL-T, F3 � AML) in both.
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Fig. 1. Schematic of the metagene projection methodology.
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Fig. 2. Heat maps of metagene projection of leukemia samples. These heat
maps of the HM and HT matrices show the metagene expression levels for each
sample. Each factor clearly corresponds to same leukemia subtype in both
model (Left) and test (Right) sets.
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Postprojection clustering of the model samples demonstrates
reduction of noise and greater emphasis of the biologically
invariant signal in the data. The clusters corresponding to each
phenotype have higher intracluster correlation and greater
intercluster distance than obtained with the original data (SI Fig.
6). More importantly, clustering of the merged set of projected
model and test samples produces very clear results with the
major three clusters consisting of each leukemia subtype inde-
pendent of the data set of origin (Fig. 3A and SI Fig. 7A).

We next sought to confirm that this consistency of subtype
clusters across the data sets was due to the metagene projection
and not just the result of preprocessing and rank normalization.
To this end, we performed two additional clusterings: one
merging the model and test samples after rank normalization and
clustering in the space of all filtered genes without using
metagene projection (Fig. 3B and SI Fig. 7B) and another
clustering the merged and rank normalized data in the space of
the top-500 marker genes of each of the three subtypes in the
model set, 1,500 genes in total (SI Fig. 8). This last procedure is
often used for cross-platform analysis. In both alternative clus-
terings, not using metagene projection, the samples first split
according to their data set of origin before the biological
subclassification appears.

Leukemias: Improving Cross-Platform Classification and Interpreta-
tion of Subtypes. We sought to ascertain whether metagene
projection would be an effective procedure for unsupervised
feature extraction (12) and dimension reduction to enable more
robust and accurate classifiers. To this end, we considered 10
subclasses of leukemia (5 subtypes of ALL and 5 subtypes of
AML) as represented in a model set of 170 samples from refs.
9 and 10. The test set consisted of 297 samples (13–20), obtained
from eight independent published data sets. The model set
samples were all acquired on the same platform in the same
laboratory, whereas the test set came from multiple labs and
three different microarray platforms (see SI Table 1).

We set the number of metagene factors to the number of
known phenotypes in the model set, k � 10. Metagene projec-
tion, followed by model refinement, resulted in elimination of
eight outlier samples from the model set [2 of 21 AML t (8, 21);
4 of 23 AML MLL; 2 of 14 AML inv (16)] (for more detail see

Methods). Fig. 4 shows the metagene expression matrices for
both the model and test data sets after projection. Strikingly, we
found that each leukemia subtype was characterized by essen-
tially one metagene.

Next, we sought to determine whether we could build a
classifier using the metagene projections that would accurately
predict the subtype of the cross-platform samples in the test set.
We noted that the data-driven model selection technique de-
scribed in our previous work (3) indicated that k � 13 was the
best choice (SI Fig 9). Thus, we evaluated SVM classifiers using
both the 10- and 13-metagene models and compared them with
SVM and K-nearest neighbor (K-NN) classifiers using all genes
in common between the model and test data sets. SI Fig. 10
shows the comparative performance of the 10- and 13-metagene
SVMs with the all-gene classifiers.

Our metagene-based classifier outperformed the classifiers
based on all-genes or markers selected in all-gene space. The
13-metagene classifier attained the ‘‘best’’ performance, with a
correct call accuracy of 88% and fewer errors than the 10-
metagene model. The 10-metagene, all-gene SVM, and K-NN
classifiers’ correct call accuracies were 86%, 82%, and 72%
respectively. We note that the SVM classifier using all common
genes made fewer ‘‘confident’’ calls but made correspondingly
fewer errors. We used 0.3 as the confidence threshold for all of
the SVM multiclass predictors. Increasing this threshold will
reduce both the number of correct calls and the number of
errors. (SI Tables 2 and 3 contain details).

Closer examination of the confusion matrices for the 10- and
13-metagene classifiers revealed that two thirds of the errors
resulted from placing ALL-BCR, AML-t (8, 21), AML-M7, and
AML-MLL samples into the AML-inv16 class. We believe this
results from shared metagene signals, which can be seen in the
heat map in Fig. 4B. A GSEA analysis of the metagene factors,
described below, uncovered a biological interpretation for some
of the errors. This also led us to explore the extent to which cross
talk between the AML and ALL data in the model might be
affecting our ability to predict the classes in the test set.
Interestingly, we found that building 10-metagene, five-class
classifiers for just the ALL [respectively AML] subtypes im-
proved accuracy substantially to 97% (130 samples) with 1.5%
no calls (2 samples) and 1.5% errors (2 samples) [92% (150
samples) with 3% no calls (4 samples) and 5% errors (9
samples)]. The all-gene SVM and 9-NN predictors also improved
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Fig. 3. Hierarchical clustering of the leukemia model and test samples. (A)
Clustering of the merged test and model data sets after metagene projection,
i.e., columns of the merged HM and HT matrices. (B) Clustering of merged
model and test sets normalized but without projection. For clarity, some
dendrogram vertical lines have been truncated in A; for full dendrograms see
SI Fig. 7.
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Fig. 4. Leukemia subclasses metagene projection. Heat maps of the model (A)
and test (B) sets after metagene projection show consistent representation of
subtype structure across technology platform and laboratory group. SI Text
contains a detailed description of the different leukemia subtypes shown here.
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accuracy, but the metagene-based classifier continues to make
more correct calls and fewer no-calls (SI Fig. 10).

These are remarkably good multiclass, cross-platform classi-
fication results. It was difficult to make direct comparisons with
other approaches in the literature, because the specific data sets
or data preparation were not always available. However, the
metagene-based approach appears to outperform other leuke-
mia cross-platform classification approaches: 93–96% accuracy
on ALL subtypes and 68–78% on AML subtypes (21); �40%
accuracy on AML subtypes (22).

Finally, we applied GSEA analysis to help interpret the
metagenes characterizing the leukemia subtypes. Interestingly,
many of the results agreed with the current understanding of
these subclasses, and others posed new hypotheses. We present
them as an illustration of the power of the metagene projection
method to provide biological insights. The top two gene sets
enriched in F4 (i.e., high in ALL T Cell) are (i) a set of E2F1
targets known to be activated in T Cell ALL (23) and (ii) a set
of genes down-regulated by ET-743 treatment, which is known
to induce apoptosis in acute T cell leukemia Jurkat cells (24).
Metagene F9, high in AML-MLL, shows enrichment for chro-
mosome band 11q13, which is known to be frequently coampli-
fied with MLL in AML patients (25).

F6 is highly expressed in t (8, 21) and also up-regulated in inv
(16) subclasses of AML. The mechanism of leukemogenesis in
AML in both these subtypes is disruption of the core binding
factor (CBF) transcriptional complex, comprised of the RUNX1
and CBFB proteins. In t (8, 21), RUNX1 is fused to the CBFA2T1
gene, and inv (16) causes a CBFB-MYH11 fusion gene. Both
fusion genes disrupt the CBF complex, which is required for
normal hematopoietic differentiation. Patients with t (8, 21) and
inv (16) also have similar clinical features: both subclasses are
associated with a relatively good prognosis and particular benefit
from consolidation chemotherapy with high-dose cytarabine. F6
therefore identifies patients harboring distinct cytogenetic ab-
normalities with a common molecular mechanism and clinical
phenotype. Intriguingly, F9 also shows strong correlation with
both AML.MLL and AML-inv (16). This leads us to speculate
some common program of these two AML subtypes.

In this example, we have shown that metagene projection is an
effective approach to building multiclass classification models
across different platforms and sources of data that are accurate,
robust, and interpretable.

Lung Cancer: Cross-Platform Comparison, Contamination Detection,
and Interpretation of Cell Line Models. We next investigated
whether metagene projection would enable us to evaluate con-
sistency in a collection of cross-platform data sets, validate cell
lines as good models for different tumor types, and, importantly,
provide a method to computationally extract some of the
expression signal of normal tissue contamination from tumor
samples.

For our model set, we used a subset of data set A from ref. 26,
BOS, consisting of 30 lung adenocarcinomas, 20 squamous
tumors, and 17 normal lung samples. Our test set derived from
seven independent data sets (refs. 27–32 and one unpublished
set, see SI Table 4). Note that these data sets were acquired on
four different microarray platforms by six different laboratories.

We first built a four-metagene model from the BOS model set as
described above. Although the model set included three major
subtypes, the data-driven NMF model selection procedure indi-
cated that four factors was the smallest optimal solution greater
than the number of known phenotypes (SI Fig. 11). After SVM
model refinement, one outlier adenocarcinoma sample was re-
moved from the model set, and the metagene factors recalculated.
Fig. 5A contains the HM matrix of metagene expression levels. From
the HM matrix, we can see that metagenes F2, F3, and F4 charac-
terize the adenocarcinoma, squamous, and normal samples respec-

tively, whereas the F1 metagene picks up an additional signature in
a subset of the adenocarcinoma and squamous samples. Next, we
projected all of the test data sets into metagene space (HT in Fig.
5A) and found an unexpected result. The normal test samples
NL-STA continued to be characterized by F4. However, although
the adenocarcinoma and squamous samples still showed F2 and F3
metagene signatures, respectively, they also showed significant
expression in the F4 ‘‘normal’’ metagene. This led us to speculate
that these samples might have varying degrees of contamination by
stroma or normal tissue, which we might be able to extract
computationally.

To remove the normal signature, we set the F4 metagene
factor coefficient in the HM matrix to zero and multiplied it by
the original WM to yield a matrix M̃ that reproduces the original
data but without the contribution of F4. We then excluded the
normal tissue samples from the model data set because they only
had residual values, factored the resulting data matrix to extract
the three remaining metagene factors, and projected all of the
samples as was done before. The resulting expression profiles of
the metagenes in the model and test sets are seen in Fig. 5B.
Eliminating the contribution of the F4 metagene, we find the
dominant signatures in the adenocarcinoma and squamous
samples are F2 and F3, respectively, as in the model set, and F1
retains its role as the signature of the cell lines. Thus, we were
able to numerically ‘‘modulate’’ a specific metagene to compu-
tationally reduce contamination in the tumor samples.

The most striking feature of the metagene projection of the
test samples is that the adenocarcinoma and squamous cell lines
do not project with the corresponding tumor classes. This has
been reported in the literature (27). Using the GSEA approach
we described above, we can gain some biological insight into the
metagene, F1, which characterizes the cell lines. SI Table 5 shows
the top-20 gene sets enriched in F1.

Metagene F1 is enriched in gene sets associated with rapa-
mycin response (mTOR activation), protein production (genes
down-regulated by amino acid starvation), lack of differentia-
tion, the mitochondria, oxidative phosphorylation, and BRCA1
signaling. We have observed some of these gene sets before as
part of a group of gene sets enriched in poor-outcome lung
adenocarcinoma patients in three different data sets (8). This
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Fig. 5. Metagene projection of the lung cancer data set. Heat maps showing
projection of model and test data sets into four-metagene space F1-F4 (A) and
three-metagene space F1-F3 after numerical removal of normal component F4
and reconstruction of model (B). AD, adenocarcinoma; SQ, squamous; C, cell
lines; NL, normal lung.
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leads us to speculate that F1 represents transcriptional programs
associated with hyperactivation of AKT/mTOR, an associated
mTOR-mediated increase of protein production and high pro-
liferation, and a lack of differentiation.

In this example, we have shown the power of the metagene
projection to define a common space of transcriptional variation
in which we can analyze and assess multiple data sets across
different technology platforms and laboratories. Despite the
diversity of platforms, sample sources, and different experimen-
tal conditions, most test samples project with their biological
counterparts. Moreover, we have shown that metagene projec-
tion provides a method for computationally reducing sample
contamination, which enables more coherent projection of tu-
mor samples. Finally, the combination of metagene projection
and GSEA analysis allows us to gain insights into more robust,
invariant biological features of different phenotypes and tumor
subtypes.

Discussion
Traditional approaches to microarray analysis focus on identi-
fying marker genes, which are correlated with a phenotype of
interest, and on using them to build classifiers for samples whose
phenotype may be unknown or to gain some insight into the
underlying biology of a cellular state. These strategies often fail
when classifiers are applied to data from other laboratories or
derived on different technology platforms or when used to try to
assess the validity of a disease model.

Lower-dimensional projections and decompositions of DNA
microarray data, such as principal component analysis, singular
value decomposition, and NMF, have been used to analyze
transcriptional states (3, 33–37). Primarily, these approaches
were applied in the context of a single data set for clustering or
visualization.

We introduced a metagene projection method to assess the
validity of a Snf5 knockout mouse as a murine model for
Snf5-deficient human rhabdoid tumors (38), and found that the
murine Snf5 model samples were closely related to the human
rhabdoid samples (from both model and test sets) and distinct
from the controls. The model and test sets were obtained on
different microarray platforms in addition to being cross-species.
This approach combined our previous work, using NMF to
identify a small number of gene combinations (metagenes)
whose profiles best represent the most distinguishing features of
the expression patterns of the subclasses in a data set, with our
previously published gene expression data set derived from a
collection of human pediatric brain tumors (rhabdoid, medul-
loblastoma, glioma, and normal cerebellum) (33). A correspond-
ing projection map, the Moore-Penrose generalized pseudo-
inverse of one of the factor matrices, allowed us to analyze new
data in the context of the space of metagenes arising from the
original data set.

This article presents a refinement of that method, which is more
sensitive, robust, and broadly applicable to cross-platform and
cross-species analysis and classification (see SI Text). In addition, we
have shown how the projection can be used to highlight the
biologically invariant aspects and commonalities of the subclasses,
assess the similarities and differences between suitable chosen sets
of model and test samples, and, surprisingly, to computationally
remove contaminating signals from tumor data.

The method, as presented here, has a number of advantages
over other approaches. Metagene projection, together with
NMF, reduces dimensionality and summarizes the salient fea-
tures of a data set with coherent patterns shared by multiple
genes and samples. In contrast to approaches using principal
component analysis or singular value decomposition, it yields a
sparser representation of the original model data set optimized
for the number of factors specified. NMF factors are nonnegative
and more localized and therefore easier to interpret and analyze.

We note here that Alter and Golub (39) applied the pseudoin-
verse to genomic data by using the singular value decomposition.

There is complementary work of Huang (40) and Bild (41),
which is conceptually similar to ours in the sense of combining
dimensionality reduction and classification models, but has
distinct objectives. Their main goal is to provide an exquisitely
specific predictor of pathway activation, which has been exper-
imentally characterized by the overexpression of a single gene.
In contrast, our goal is to model global transcriptional states,
rather than specific pathways, and to use them to describe an
entire range of biological behavior, e.g., different morphologies,
lineages, etc. Thus, the specific methodologies and techniques we
use are also quite different.

Classifiers built in metagene, rather than all-gene, space are more
robust, reproducible, and generalizable across platforms and lab-
oratories because the projection can reduce noise and technology-
based variation more than simple normalization. In particular, we
found this approach to be very sensitive in the complex, cross-
platform, multiclass setting of the leukemia data sets. Others have
studied cross-platform classification in lung cancer (42, 43). How-
ever, they use the test data explicitly to choose similarly correlated
genes as features, rather than relying solely on the model set.

Most importantly, metagene models built on previously ac-
quired or published data sets enable the use of prior knowledge
to help characterize and analyze new data. This is seen in our
work validating a mouse model for human rhabdoid tumors (38).
We also used this approach to analyze samples from malaria-
infected patients using signatures derived from publicly available
yeast data (P.T., D.S., J.P.M., unpublished work). Thus, we see
that this metagene projection method not only decreases noise
by reducing the dimensionality of microarray data, but can also
provide a powerful knowledge-based approach to the cross-
platform, cross-species analysis of microarray data.

Methods
Data Set Preprocessing and Normalization. For Affy Hu6800 and
U133 microarrays, we threshold at 20 and 100,000 units. Gene
filtering excludes genes with �5-fold and 500 units of maximum
difference for the first leukemia example, 8-fold/800 for the
second leukemia example, and 3-fold/300 for the lung. We rank
the genes according to their expression levels and replace the
value by 10,000 � (rank(gene) � 1)/(number of genes � 1).

Metagene Factor Extraction. We use NMF with 2,000 iterations
and stopping criterion as described (3).

Metagene Model Selection. We select k based either on the known
number of phenotypes or by using the values determined by
projection stability described (3). Optimal solutions are peaks in
the cophenetic coefficient as a function of k.

Data Set Refinement. We train a SVM on HM to predict each class,
and we remove samples that are errors (known phenotypes) or
no calls (discovered classes). In our experience, the number of
outliers is quite small compared with the size of the classes if the
number of metagenes is chosen as described above.

Calculating the Pseudoinverse of WM. We use ‘‘ginv’’ from R’s
MASS package.

Metagene Projection of Model and Test Set Samples. To project the
model set, we use the pseudoinverse of WM. For each data set in the
test set, we match the genes to the corresponding rows of WM (i.e.,
genes in the model set). We calculate the pseudoinverse for that set
of rows and apply it to obtain the corresponding columns of HT for
that specific data set. This procedure adapts the projection to the
particular test data set and, by tolerating unmatched genes between
model and test set, supports the projection of data sets from
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different platforms. If too many unmatched genes result in weak
amplitudes in HT, we rescale the columns of HT so the sum of the
squares of their row-entries is equal to one. This postnormalization
is optional.

Clustering. We use ‘‘hclust’’ (complete linkage) from R’s STATS
package.

Classification and Prediction Confidence. We use the ‘‘svm’’ function
from R’s e1071 package (one vs. all, radial function kernel). The
predicted class is the one with the highest probability, and a
predictive confidence 1 � Cp � 0 is computed by using a
modification of the Brier skill score (44):

CP � 1 �

��1 � P1�
2 � �i�2

k Pi
2�

�1 � 1�k�2 � �k � 1��1�k�2 , [1]

where P1 � P2 � . . . � Pk. is the sorted list of k output
probabilities for a given sample. Cp � 0.3 is a no call. The K-NN
classifier in the leukemia example used 50 marker genes and nine
nearest neighbors. For the SVM using all genes we use a ‘‘linear’’
kernel.

We thank J. P. Brunet, T. Golub, E. Lander, and M. Meyerson for helpful
conversations and for reviewing this manuscript.
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