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Brain function depends on adaptive self-organization of large-
scale neural assemblies, but little is known about quantitative
network parameters governing these processes in humans. Here,
we describe the topology and synchronizability of frequency-
specific brain functional networks using wavelet decomposition of
magnetoencephalographic time series, followed by construction
and analysis of undirected graphs. Magnetoencephalographic data
were acquired from 22 subjects, half of whom performed a finger-
tapping task, whereas the other half were studied at rest. We
found that brain functional networks were characterized by small-
world properties at all six wavelet scales considered, correspond-
ing approximately to classical � (low and high), �, �, �, and �
frequency bands. Global topological parameters (path length,
clustering) were conserved across scales, most consistently in the
frequency range 2–37 Hz, implying a scale-invariant or fractal
small-world organization. Dynamical analysis showed that net-
works were located close to the threshold of order/disorder tran-
sition in all frequency bands. The highest-frequency � network had
greater synchronizability, greater clustering of connections, and
shorter path length than networks in the scaling regime of (lower)
frequencies. Behavioral state did not strongly influence global
topology or synchronizability; however, motor task performance
was associated with emergence of long-range connections in both
� and � networks. Long-range connectivity, e.g., between frontal
and parietal cortex, at high frequencies during a motor task may
facilitate sensorimotor binding. Human brain functional networks
demonstrate a fractal small-world architecture that supports crit-
ical dynamics and task-related spatial reconfiguration while pre-
serving global topological parameters.

magnetoencephalography � wavelet � graph theory � connectivity �
binding

Coherent or correlated oscillation of large-scale, distributed
neural networks is widely regarded as an important physi-

ological substrate for motor, perceptual and cognitive represen-
tations in the brain (1, 2). The topological description of brain
networks promises quantitative insight into functionally relevant
parameters because their topology strongly influences their
dynamic properties such as speed and specialization of informa-
tion processing, learning, and robustness against pathological
attack by disease (3).

The topology of networks can range from entirely random to
fully ordered (a lattice). In this spectrum, small-world topology
is characteristic of complex networks that demonstrate both
clustered or cliquish interconnectivity within groups of nodes
sharing many nearest neighbors in common (like regular lat-
tices), and a short path length between any two nodes in the
network (like random graphs) (3). This is an attractive config-
uration, in principle, for the anatomical and functional archi-
tecture of the brain, because small-world networks are known to
optimize information transfer, increase the rate of learning, and
support both segregated and distributed information processing
(refs. 4–7; for review, see ref. 8). Small-world properties were
recently described empirically in neuroanatomical networks at a

microscopic level, e.g., the neuronal network of Caenorhabditis
elegans (5), and at the macroscopic level of interregional axonal
connectivity of the cat and macaque monkey cortices (9, 10).
Neurophysiological networks inferred from patterns of corre-
lated time-series activity in regions of monkey brains (11),
regions of human brains (12, 13), and voxels of human functional
MRI data also demonstrate small-world topology (14, 15).
However, the frequency dependence of small-world brain func-
tional networks, and their sensitivity to different behavioral
states, has yet to be determined (16).

To address the issue of frequency, we used a wavelet analysis
of magnetoencephalographic (MEG) signals recorded from a set
of 275 points overlying the scalp surface, to provide a time–
frequency decomposition of human brain activity. This decom-
position was followed by a correlation analysis in the wavelet
domain to reveal which MEG signals represented similar phys-
iological activity or were functionally connected, in each of six
distinct wavelet scales or frequency intervals. Graph theory was
applied to describe the topological properties of adjacency
matrices derived by a binary thresholding of the continuous
wavelet correlation matrices. We used small-world metrics to
characterize these undirected graphs representing brain func-
tional networks and to compare network properties across the
range of frequency intervals represented by scales of the wavelet
transform. We then used these frequency-dependent topological
analyses to deduce emergent dynamical properties of the system;
specifically, we derived an estimate of the synchronizability of
each network.

To address the second issue of state dependency, we extended
the analysis to compare the properties of scale-specific networks
derived from MEG data recorded with subjects either at rest or
performing a simple motor task (visually cued finger tapping).
As well as considering the global topological and dynamical
parameters of resting and motor task-related networks, we also
compared their spatial configurations. For example, we quanti-
fied the physical distances between functionally connected
nodes, and we mapped the spatial distributions of highly con-
nected ‘‘hubs’’ and topologically pivotal nodes.

Given the limited amount of prior data on small-world prop-
erties of human brain functional networks measured by using
MEG (or electroencephalography) (12, 17), our hypothetical
predictions were modest. We expected to find evidence for
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small-world brain functional networks in MEG data recorded in
both behavioral states. Based on functional neuroimaging stud-
ies of finger tapping and timing of motor performance, we also
expected to find task-related changes in the connectivity of
motor, premotor, prefrontal, and lateral parietal cortical regions
(18–26).

Results
Small-World Parameters of Scale-Specific Networks. The small-
world metric � ranged between 1.7 and 2.0 (see Table 1 and Fig.
1), but at most scales in both states � � 1.9, indicating that
small-world topology was closely conserved over a wide range of
frequencies. In resting networks, the scaling regime for � was
1.1–75 Hz; in motor task-related networks, the scaling regime
was 2.2–75 Hz.

The mean degree k � 13, the clustering coefficient C � 0.21,
and the minimum path length L � 5.2 were also conserved over
scales and states (Fig. 1). Although the scaling regimes for these
parameters did not include the highest or lowest frequency
intervals, they consistently extended from 2 to 37.5 Hz. The �
network was distinguished by higher degree, greater clustering,

and shorter path length than the lower-frequency networks in
the scaling regime.

Degree Distributions of Scale-Specific Networks. There was further
evidence for scale-invariant topology when we compared the
degree distributions of the scale-specific networks in each be-
havioral state (Fig. 1 F–H). For all networks, the degree distri-
bution was best fit by an exponentially truncated power law, with
very similar parameter values at all scales and states [see
supporting information (SI) Table 2 for parameter values and
SI Fig. 5 for best fits].

Synchronizability of Scale-Specific Networks. The synchronizability
at all scales in both states was at or below the threshold of 0.01
at which systems of various oscillators globally synchronize (see
Fig. 1D), suggesting that the brain networks are located dynam-
ically on a critical point of the order/disorder transition (27).
There was evidence of scale invariance in synchronizability, with
a scaling regime consistently including the frequency range
2–37.5 Hz. It was also notable that synchronizability in both
motor and resting states was somewhat higher in the � band,

Table 1. Global topological and dynamical properties of frequency-specific human brain functional networks

Wavelet
decomposition
level

Frequency
range, Hz Corr � k L C � � S (�10�3)

Resting
1 37.5–75 0.18 � 0.02 0.50 � 0.05 16.3 � 5.1 4.5 � 0.5 0.23 � 0.02 1.9�0.2 61 � 14 9.7 � 1.9
2 18.8–37.5 0.26 � 0.02 0.74 � 0.04 12.6 � 3.1 5.2 � 0.5 0.21 � 0.02 1.9�0.1 70 � 41 8.2 � 2.3
3 9.4–18.8 0.30 � 0.03 0.81 � 0.03 12.4 � 1.8 5.4 � 0.4 0.20 � 0.01 1.9�0.2 100 � 72 6.3 � 2.7
4 4.7–9.4 0.30 � 0.03 0.82 � 0.03 12.3 � 2.0 5.4 � 0.4 0.21 � 0.01 1.9�0.2 106 � 75 6.4 � 3.3
5 2.3–4.7 0.30 � 0.02 0.81 � 0.02 12.5 � 2.0 5.2 � 0.4 0.21 � 0.01 2.0�0.1 118 � 71 7.6 � 2.9
6 1.1–2.3 0.33 � 0.05 0.83 � 0.02 13.7 � 3.3 5.1 � 0.4 0.23 � 0.02 1.9�0.1 137 � 62 6.0 � 2.4

Tapping
1 37.5–75 0.18 � 0.03 0.49 � 0.09 16.9 � 5.1 4.4 � 0.6 0.23 � 0.02 1.8�0.2 132 � 21 10.2 � 3.6
2 18.8–37.5 0.23 � 0.02 0.69 � 0.04 13.0 � 2.6 5.0 � 0.4 0.21 � 0.01 2.0�0.1 105 � 9 9.8 � 2.7
3 9.4–18.8 0.27 � 0.02 0.77 � 0.03 12.2 � 1.7 5.2 � 0.4 0.21 � 0.01 2.0�0.1 118 � 27 8.4 � 2.8
4 4.7–9.4 0.28 � 0.03 0.79 � 0.02 12.7 � 2.1 5.2 � 0.5 0.21 � 0.01 1.9�0.2 116 � 35 8.2 � 2.9
5 2.3–4.7 0.30 � 0.05 0.81 � 0.01 13.8 � 4.9 5.1 � 0.5 0.21 � 0.01 1.9�0.2 137 � 47 7.2 � 2.6
6 1.1–2.3 0.34 � 0.06 0.82 � 0.01 16.7 � 8.3 4.9 � 0.8 0.22 � 0.02 1.7�0.2 144 � 55 5.2 � 1.6

Corr, average correlation of the whole brain network before thresholding; � , threshold applied to wavelet correlation matrices; k, average degree of the
network; L, average path length; C, average clustering; � , small-world scalar value; � , characteristic length scale in millimeters; S, synchronizability.

Fig. 1. Scale-invariance of global topological and dynamical parameters of brain functional networks. Each image summarizes the group mean parameter
values over all wavelet scales and in both resting (red) and motor (blue) states; error bars represent 95% confidence interval; blue and red bars below the x axis
indicate the extent of the scaling regime for each parameter in both resting (red) and motor (blue) states. (A) Average path length, L. (B) Clustering, C. (C) Sigma,
�. (D) Synchronizability, S. (E) Characteristic length, � (mm). (F–H) Parameters of an exponentially truncated power law degree distribution of the form P(k) �
A k��1ek/kc. (F) Coefficient, A. (G) Power law exponent, �. (H), Exponential cut-off degree, kc.
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which reflects the distinctive topological properties (greater
density and clustering) of the � network.

Spatial Configuration of Scale-Specific Networks. The spatial distri-
bution of network hubs was also broadly similar across scales and
states (see Fig. 2 and SI Fig. 5). See SI Fig. 6 for average hub
distributions across all scales in both states. However, there were
striking differences between scales and states in the physical
distance between functionally connected network nodes (see
Fig. 3).

In the resting state, long-range functional connectivity be-
tween brain regions was stronger at low frequencies. At higher
frequencies (�, �), long-range connectivity was weaker, and most
of the edges in the graph represented high-density local con-
nections (see Figs. 1E and 4), shown by the increase in charac-
teristic length scale of network edges �, going from high to low
frequency scales; and by the increasing number of connector
compared with provincial nodes at low frequencies (see SI Fig.

7 for a schematic and SI Fig. 8 for distributions of provincial and
connector hubs in both states and all frequency bands).

In the finger-tapping state, long-range functional connections
emerged more strongly at high frequencies (�, �), shown by the
significant motor task-related increases in characteristic length
scale of edges in high-frequency motor networks. It is also
represented by the shift from resting-state � networks dominated
by provincial hubs (predominantly connected to locally neigh-
boring regions of bilateral occipital, parietal, and central cortex)
to motor � networks with a larger number of connector hubs in
medial premotor and bilateral prefrontal cortex. Some of the
new long-range connections engendered by task performance at
high frequencies link to topologically pivotal nodes in right
medial premotor and prefrontal cortex with high betweenness
scores (see Fig. 3; and see SI Fig. 9 for betweenness distributions
at all frequencies). This indicates that task performance is
associated with reconfiguration of high-frequency networks to
favor long-distance connections between prefrontal and premo-

Fig. 2. Self-similarity of spatial distribution of highly connected network nodes or ‘‘hubs’’ in the frequency range 2–38 Hz (64). Each column shows the surface
distribution of the degree of network nodes in frequency bands � to �: red represents nodes with high degree. The last column shows the spatial distribution
of degree averaged over these four frequency bands, which emphasizes the similarity of spatial configurations across scales. See SI Fig. 5 for the hub distributions
in both states at all frequency bands.

Fig. 3. State-related differences in spatial configuration of the highest frequency � network. The top row shows the degree distribution and betweenness scores
for the resting state � network; the middle row shows the same maps for the motor � network; the bottom row shows the between-state differences in degree
and betweenness. It is clear that motor task performance is associated with emergence of greater connectivity in bilateral prefrontal and premotor nodes, and
appearance of topologically pivotal nodes (with high betweenness scores) in medial premotor, right prefrontal, and parietal areas. See SI Fig. 7 for the
betweenness distributions in both states at all frequency bands.
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tor sensors not otherwise functionally connected to each other
(see SI Fig. 10 for distributions of the length of connections in
each state in all frequency bands).

Discussion
We have explored the frequency dependency and task specificity
of complex brain functional networks measured in humans by
using MEG. We have used the wavelet transform to decompose
functional connectivity between spatially remote sources into a
hierarchy of scales or frequency intervals; and we have compared
scale-dependent profiles of network organization in data ac-
quired with subjects at rest to the same parameters estimated in
data acquired with subjects performing a simple motor (finger-
tapping) task.

Fractal Brain Networks. The approximate physiological bandwidth
of human brain oscillations is 0.1–100 Hz (four orders of
magnitude). Here, we have found that functional brain networks
are consistently organized in a small-world topology, with critical
dynamics, over the frequency range 1–75 Hz. Several key pa-
rameters of global topology and synchronizability were very
similar. In particular, there was strong evidence for a scale-
invariant or fractal architecture of small-world brain functional
networks in the scaling regime 2–37.5 Hz (see Figs. 1 and 2).
Scale invariance was evident for classical small-world parameters
(such as degree, path length, and clustering) as well as for the
parameters of the exponentially truncated power law that pro-
vided the best fit to the degree distributions in all scales and
states (see Table 1 and SI Table 2).

Fractal properties, i.e., self-similarity over several scales of
measurement, have been described in many types of neurobio-
logical data including electroencephalographic and functional
MRI time series (28–31), structural MRI measurements of the
cortical surface and gray–white matter boundary (32, 33), and
microscopic data on neuronal dendritic and cerebrovascular
arborizations (34). It is also notable that small-world networks
have been generated computationally by a fractal growth process
(35) and that adaptive rewiring of initially random networks by
neurogenesis may allow development and maintenance of small-

world connectivity in the brain (36–40). However, the current
data provide the first evidence for self-similarity of global
topology and dynamics of large-scale brain functional networks
over a range of frequencies.

It is interesting to consider the high- and low-frequency
intervals outside this scaling regime. The highest-frequency �
network was distinguished, in resting data, by shorter path
length, greater mean degree and clustering, and greater syn-
chronizability than networks in the scaling regime. The resting �
(and �) networks also were associated with relatively short-range
distances between functionally connected nodes. Because a
major proportion of the brain’s energy budget is dedicated to
costs of restoring membrane potentials following depolarization
(41), and because these costs will be exacerbated by high-
frequency oscillations, we conjecture that metabolic or energetic
constraints may determine the upper limit on the scaling regime
for brain functional networks. The same considerations would
not easily explain the lower limit on the scaling regime, but we
note that there was high variability of network parameters in the
lowest-frequency interval, perhaps due to the relatively short
time series segments available for estimation of correlated
long-period oscillations. It will be important in future studies to
explore the scaling properties of brain functional networks at
frequencies �2 Hz in longer time series.

Effects of Motor Task Performance. There was no evidence for
major change in global network parameters as a result of visually
cued finger tapping; however, there was extensive spatial recon-
figuration of higher-frequency networks during performance of
the motor task (see Fig. 3). We propose that small-world brain
functional networks may be topologically and dynamically con-
strained within a narrow window of permissible global param-
eters, but diversity of function may nevertheless be supported by
reconfiguring the set of specific interregional connections that
subtend the same global network architecture. In these data, we
see this most clearly in the emergence of new long-range
connections (see Fig. 1E) and pivotal nodes in frontal and
parietal regions in the � and � networks during motor task
performance, although the global topological parameters of
these networks were not much affected by the change of
behavioral state.

For this to be a plausible model for adaptive reconfiguration
of brain functional networks, one would expect the network in
any particular state to be sparse, implying that there is a large
reserve of alternative connections that could be formed in
support of new functions. One might also expect the network’s
dynamics to be compatible with rapid reconfiguration. Both
these conditions are supported by the data. The networks
reported here are sparsely connected in both resting and motor
states, with an average connection density of 0.095, calculated by
the number of connections (� k � n � 13 � 274 � 3,562) divided
by the possible number of connections between 274 nodes
((n2 � n)/2 � 37,401). Moreover, the synchronizability of the
networks in all scales and states is close to the threshold of 0.01,
which marks the lower limit of the transition zone from globally
ordered to disordered behavior in systems of coupled oscillators.
The � network in both states, and the � network in the motor
task, both have synchronizability of �0.01, implying that higher-
frequency networks in particular have critical dynamics ‘‘on the
edge of chaos,’’ which would favor their rapid, adaptive recon-
figuration in the face of changing environmental demands.

Two experimentally testable predictions arising from this
model are, first, that performance of other (nonmotor) tasks
should also be associated with emergence of spatially reconfig-
ured but globally constrained small-world networks and, second,
that deviation of global topological and dynamical network
parameters from the narrow range identified here might be
diagnostic of pathological processes, for example, epilepsy might

Fig. 4. Change of provincial, connector, and kinless hubs with neighborhood
size. As the radius r is increased, the proportion of provincial nodes is in-
creased, and the proportions of kinless and connector hubs are decreased. The
radius at which the proportion of connector and provincial hubs is equal,
denoted �, is a measure of the characteristic length scale of connections
between nodes in the network. (Left) Number of provincial, connector, and
kinless hubs as functions of radius r in high-frequency � networks acquired
during motor task performance, � � 225. (Right) Number of provincial, con-
nector, and kinless hubs as functions of radius r in high-frequency � net-
works acquired during the resting state, � � 75. � is significantly smaller for
the �, �, and � bands in the resting state than in the tapping state,
indicating that performance of the motor task is associated with emer-
gence of longer range connectivity in the brain functional network. See SI
Fig. 6 for provincial and connector hub distributions in both states at all
frequency bands.
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be associated with synchronizability � 0.01 or neurodegenera-
tive disorders might be associated with increased path length and
reduced clustering (42).

Temporal Binding Theories of Cognition. There is a strong prior
literature suggesting that correlated oscillations at high frequen-
cies (especially in the � band) are important as a physiological
substrate for sensorimotor binding (43–45). Our data support
this view: the emergence of high-frequency, long-distance con-
nections, e.g., between frontal and parietal cortex, was the most
salient network change associated with visually cued finger
tapping, a task that will depend on rapid temporal integration of
sensory cues and motor commands.

Our results further indicate that there is spatially organized
coherent oscillation at lower frequencies, and the conservation
of small-world topology over the scaling regime 2–37.5 Hz
suggests that temporal binding at these frequencies may also be
important for distributed information processing. A detailed
interpretation of the cognitive significance of this observation is
necessarily speculative in the absence of certainty concerning the
nature of the neural code. However, it has been argued that
frequency may code the channel of communication in neural
circuits, and phase modulations may transmit information in
specific channels (46). On this assumption, the existence of a
scale-invariant small-world topology for brain functional net-
works might serve as a mechanism for integrating information
transmitted in frequency-specific circuits. Correlated oscillations
at � frequencies, which are organized in networks with more
critical dynamics, might then be regarded not as the only
substrate for temporal binding but as a distributed mechanism
for ‘‘catalyzing’’ rapid, state-related changes in spatial configu-
ration of brain functional networks.

Methodological Considerations. The methods used in this analysis
have included wavelet decomposition and correlation analysis of
signals and graph theoretic analysis of network properties. Brain
processes are both nonstationary and long-memory. Wavelets
can be used to produce well behaved covariance estimators of
this class of processes (47). Transient objects within the time
series can be easily represented by using the natural adaptivity
of wavelets, unlike the large amalgamation of sine waves used by
the Fourier transform (29). Further, whereas Fourier analysis
requires a discrete set of frequencies of interest, the wavelet
decomposition sweeps the data through a small set of frequency
bands of finite length (48). By using MEG data sampled at 600
Hz, these wavelet frequency bands lie within the well known
human brain rhythm bands of electroencephalography and can
therefore be compared. Furthermore, the maximum overlap
discrete wavelet transform was used instead of the standard
discrete wavelet transform both because of its ability to cope
with an arbitrary signal length and its superior estimators of
wavelet correlation (49).

The present work was performed on MEG data in sensor
space, which contains some inherent correlation between mag-
netic fields on the surface of the brain, which limits anatomical
inferences drawn from the data (see SI Supporting Materials and
Methods section 2.4 and SI Fig. 11). Although this caveat does
not affect our conclusions about global topology and network
dynamics, future work will include a source reconstruction of the
activity in the brain, which will allow improved extrapolation to
anatomical locations.

Conclusion
We have shown that there is a scale-invariant or fractal organi-
zation of large-scale brain functional networks in the resting
state, which consistently demonstrate small-world properties in
the scaling regime 2–37.5 Hz. Performance of a simple motor
task was associated with conservation of global topological and

dynamical parameters but emergence of long-range connectivity
in � and � bands. We propose that scale-invariant small-world
topology may be relevant to temporal binding of information in
frequency-encoded channels and that � networks, which exist in
a dynamically critical state, may provide a mechanism for
state-related spatial reconfiguration of connections subtending
normally conserved global parameters of small-world network
organization.

Materials and Methods
Twenty-two healthy right-handed volunteers (12 male, 10 fe-
male) with mean age � 31.0 � 6.5 (SD) years were enrolled in
the study. Eleven subjects (6 male, 5 female) performed a
finger-tapping task, whereas 11 other subjects matched for age
(P � 0.93, t test) and gender were used to procure resting data.
MEG data were acquired at the National Institute of Mental
Health by using a 275-channel CTF MEG system (VSM
MedTech, Coquitlam, BC, Canada) at 600 Hz. For the finger-
tapping task, visual stimuli were presented at 1.2 Hz for four
trials of 10.24 s each using a custom-built mechanical sensor
while motor responses (taps of the right index finger) were
registered. In the resting state, data were acquired in a single
session while subjects remained quietly immobile with eyes open
for 30 min. For the purposes of comparison to the shorter motor
task-related data, four data segments of 10.24-s duration were
sampled from the resting time series at equally spaced intervals,
excluding data acquired in the first 2 or last 2 minutes.

All time series were decomposed by using the maximum
overlap discrete wavelet transform (15, 29, 48, 49). Wavelet
scales 1–6 collectively represented physiological activity in the
frequency range 1–75 Hz, corresponding approximately to the
classical electroencephalogram bands: � (37.5–75 Hz), � (18.7–
37.5 Hz), � (9.4–18.7 Hz), 	 (4.9–9.6 Hz), high � (2.4–4.8 Hz),
and low � (1.1–2.2 Hz). To quantify the strength of association
at specific frequencies between MEG signals in different brain
regions, we calculated the absolute value of the correlation
between wavelet coefficients for each pair of sensors at each
scale of the transform [see Achard et al. (15) for details].
Correlation matrices were averaged over all four trials. To
convert these continuous wavelet correlation matrices to an
undirected graph G, we set to zero any correlations with value
less than a threshold � and set to one any correlations greater
than �. This operation transforms each wavelet correlation
matrix to a binary adjacency matrix A, which can be graphically
represented as a network comprising nodes (brain regions)
connected by an edge or line if the wavelet correlation between
them was greater than �.

We chose our threshold � using three constraints: (i) the false
discovery rate (which controls the expected proportion of false
positives among suprathreshold correlations) must be �5%; (ii)
the average degree must be no smaller than 2 � ln(N) to allow
use of graph theory to estimate the small-world scalar �; and (iii)
at least 99% of the nodes of the brain must be connected,
because we were interested in global brain dynamics. Within
these constraints, we chose the highest threshold possible to
optimize the strength and thus biological plausibility of connec-
tions (50). A high threshold reduces the number of false-positive
edges in the graph and is consistent with the known relative
sparsity of anatomical connections in the brain (51).

Small-world parameters including average degree, path length
(52, 53), clustering (54), and � were computed as described (15,
39, 40, 55). Inherent correlations between parameters are dis-
cussed in SI Section 2.6 and SI Fig. 12. To exclude the possibility
that results were affected by the precise choice of �, we also
estimated � in networks thresholded with several values of � and
found evidence at all scales of small-world topology � � 1 in
networks thresholded by 0.4 
 � 
 0.8.
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The distribution of hubs (i.e., nodes with greater than average
degree) could further be broken down into provincial (mostly
local connections within a radius r), connector (both local and
long-range connections), and kinless (mostly long-range con-
nections outside r) hubs as in (56, 57) (see Fig. 4 for hub changes
with radius and SI Fig. 7 for a schematic). The characteristic
length scale � of the network was defined as the radius at which
the number of provincial hubs (� P) in a network is equal to the
number of connector hubs (� C). Betweenness nodes showed
areas of pivotal topology and were computed as described
(58–61) (see Fig. 3 for changes in betweenness distributions in
the � band, SI Fig. 9 for spatial distributions in all bands, and SI
Fig. 13 for a numerical distribution). We further considered the
general dynamical tendencies of an arbitrary network topology
by modeling it as a uniformly coupled system and computing its
synchronizability as described (62, 63).

It was clear by preliminary inspection of network parameters
estimated at different scales of the maximum overlap discrete
wavelet transform that most global topological and dynamical

parameters were conserved within narrow bounds over all scales.
To define more precisely the scaling regimes for each parameter, we
fitted a simple linear regression model for the effect of scale on each
of the parameters of interest and tested whether it was significantly
greater than 0. If so, we iteratively identified the scale correspond-
ing to largest residuals of the fitted model, removed this scale from
the model, and reestimated the model until the effect of scale was
not statistically significant. This procedure was used to define the
extent of scale invariance, or the scaling regime, for each topological
and dynamical parameter in each behavioral state.

Please see SI Supporting Materials and Methods for a more
detailed description of materials and methods.
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