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Abstract

Recent studies have established that a significant

fraction of prostate cancers harbor a signature gene

fusion between the 5V region of androgen-regulated

TMPRSS2 and an ETS family transcription factor, most

commonly ERG. Studies on the molecular mechanisms

and functional consequences of this important chro-

mosomal rearrangement are currently limited to the

VCaP cell line derived from a vertebral bone metastasis

of a hormone-refractory prostate tumor. Here we report

on the NCI-H660 cell line, derived from a metastatic site

of an extrapulmonary small cell carcinoma arising

from the prostate. NCI-H660 harbors TMPRSS2–ERG

fusion with a homozygous intronic deletion between

TMPRSS2 and ERG. We demonstrate this by real-time

quantitative polymerase chain reaction, a two-stage

dual-color interphase fluorescence in situ hybridi-

zation (FISH) assay testing for TMPRSS2 and ERG

break-aparts, and single-nucleotide polymorphism oli-

gonucleotide arrays. The deletion is consistent with

the common intronic deletion found on chromosome

21q22.2–3 in human prostate cancer samples. We

demonstrate the physical juxtaposition of TMPRSS2

and ERG on the DNA level by fiber FISH. The androgen

receptor–negative NCI-H660 cell line expresses ERG in

an androgen-independent fashion. This in vitro model

system has the potential to provide important patho-

biologic insights into TMPRSS2–ERG fusion prostate

cancer.
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Introduction

Recent work demonstrates that nearly half of prostate-specific

antigen (PSA)–screened prostate cancers harbor TMPRSS2-

ETS fusions [1–3]. ERG (21q22.3), ETV1 (7p21.2), or ETV4

(17q21) is activated by a genetic rearrangement that fuses

the 3V end of either gene to the 5V end of androgen-regulated

TMPRSS2 (21q22.2). This generates an androgen-responsive

fusion oncoprotein, leading to overexpression of the respec-

tive ETS family member [1,2]. TMPRSS2-ETS fusion is the

first mechanistic explanation for dominant oncogene activa-

tion in a significant fraction of prostate cancers. TMPRSS2–

ERG fusion is the most common rearrangement, which is

significantly associated with prostate cancer–specific mortality

[4]. Therefore, gene fusion status represents an important

subclassification of prostate cancer from a biologic and a clini-

cal standpoint.

Abbreviations: AR, androgen receptor; FISH, fluorescence in situ hybridization; PrSC,

prostate stromal cell; PSA, prostate-specific antigen; qPCR, quantitative polymerase chain

reaction; RT-PCR, reverse transcription – polymerase chain reaction; SNP, single-nucleotide

polymorphism
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TMPRSS2–ERG fusion occurs most frequently through

intronic deletion between TMPRSS2 and ERG on 21q22.2–

3 [3]. None of the classic prostate carcinoma cell lines

(DU145, PC3, or LNCaP) harbors TMPRSS2–ETS fu-

sions. Understanding the functional biology of underlying

gene fusion is currently limited to the androgen-dependent

VCaP cell line that was established from the vertebral

bone metastasis of a hormone-refractory prostate tumor

[5]. The VCaP cell line represents an in vitro model for

TMPRSS2–ERG gene fusion but has unusual genomic fea-

tures in that it shows copy number gain on chromosome

21q, which has not been observed in > 300 prostate cancer

samples studied to date [1,3,4]. In addition, VCaP has at

least one normal TMPRSS2 and ERG gene, which makes

it difficult to study TMPRSS2–ERG rearrangement in vitro

in the presence of wild-type copies of both fusion partners.

In VCaP, fusion transcripts encode TMPRSS2 fused to

exon 4 of ERG, corresponding to the ERGa described by

Tomlin et al. [1].

Here we present the androgen-independent NCI-H660

cell line as a novel in vitro model for prostate cancer. NCI-

H660 cells harbor TMPRSS2–ERG gene fusion through a

common intronic deletion on chromosome 21 in homozygous

form. We propose it as a potential cell culture system to study

and manipulate TMPRSS2–ERG fusion in vitro.

Materials and Methods

Cell Lines and Xenografts

The prostate cancer cell lines NCI-H660, PC3, DU145,

LNCaP, 22Rv1, and CA-HPV-10 were purchased from the

American Type Culture Collection (Manassas, VA) and main-

tained according to the provider’s instructions. The VCaP cell

line is derived from a vertebral metastatic lesion as part of

the Rapid Autopsy Program at the University of Michigan

[5]. Normal prostate stromal cells (PrSCs) were obtained

from Cambrex Bio Science (East Rutherford, NJ).

LuCaP 23.1, 35, 49, 58, 73, 81, 86.2, 92.1, 93, 96, and 115

have been established by R.L.V. and have been previously

described [3]. Of note, LuCaP 49 (established from an omen-

tal fat metastasis) and LuCaP 93 are hormone-insensitive

[androgen receptor (AR)–negative] small cell prostate can-

cers with a neuroendocrine phenotype.

Tissue Samples

Lymph node specimens were collected from the radical

prostatectomy series at the University of Ulm (Ulm, Ger-

many) [6]. Hormone-refractory metastatic samples were

part of the Rapid Autopsy Program for prostate cancer

(University of Michigan Specialized Program of Research

Excellence) and consist of histologically confirmed pros-

tatic tumors involving solid organs (e.g., liver and lung) or

distant lymph nodes [7,8]. All samples were collected as

part of institutional review board protocols at each respec-

tive institution.

Polymerase Chain Reaction (PCR) and Real-Time

Quantitative PCR (qPCR) for TMPRSS2–ERG

Fusion Transcripts

We used the following primers for the detection of

TMPRSS2–ERG, as described by Tomlins et al. [1]:

TMPRSS2:ERG_f andTMPRSS2:ERG_r as reverse primers

in ERG exon 4 for real-time qPCR, and exon 5–6_r as re-

verse primer in ERG exon 6 for reverse transcription (RT)

PCR. Exon 5–6_f and exon 5–6_r primers were used for

the detection of ERG. Total RNA was isolated with Trizol

(Invitrogen, Carlsbad, CA) and reverse-transcribed using

TaqMan reverse transcription reagent in the presence

of random hexamers and oligo dT primers (Applied Bio-

systems, Foster City, CA).

RT-PCR amplifications were performed using 30 ng of

cDNA as template in a final volume of 50 ml using the Plati-

num Taq DNA Polymerase kit (Invitrogen) at an annealing

temperature of 63jC. Amplified PCR fragments were cloned

and sequenced as described [9].

For qPCR, the amount of each target gene relative to

GAPDH was determined for each sample using the com-

parative threshold cycle method (Applied Biosystems), as

described [1]. For androgen stimulation experiments, 2�
Power SYBR Green Master Mix (Applied Biosystems) and

25 ng of both forward and reverse primers were used for

ERG, PSA, and HMBS [10]. A 2� TaqMan Universal PCR

Master Mix, a final concentration of 900 nM forward and

reverse primers, and a 250-nM probe were used for TaqMan

TMPRSS2–ERGa detection using the following primers and

probe: TM_ERGa forward, CTGGAGCGCGGCAGGAA;

TM_ERGa reverse, CCGTAGGCACACTCAAACAACGA;

TM_ERGa probe, TTATCAGTTGTGAGTGAGGAC.

Determining TMPRSS2–ERG Fusion and Deletion Status

Using a Two-Stage Dual-Color Interphase Fluorescence

In Situ Hybridization (FISH) Assay

To assess the TMPRSS2–ETS fusion status, we applied

a two-stage dual-color break-apart FISH assay. First, we

identified the rearrangement of TMPRSS2. Second, we

tested for ERG break-apart to determine if ERG was the fu-

sion partner for TMPRSS2. The ERG break-apart assay

has been described [3]. The TMPRSS2 break-apart assay

consisted of the biotin-16-dUTP–labeled BAC clone RP11-

662D5 and the digoxigenin-11-dUTP–labeled BAC clone

RP11-260O11. These probes span the neighboring centro-

meric and telomeric regions of the TMPRSS2 locus, respec-

tively. Samples were mounted on Prolong Gold Antifade

Reagent with DAPI (Invitrogen) and analyzed under a 60�
oil immersion objective using an Olympus BX-51 (Olympus

America Inc., Center Valley, PA) fluorescence microscope

equipped with appropriate filters, a charge-coupled device

camera, and the CytoVision FISH imaging and capturing

software (Applied Imaging, San Jose, CA).

Fiber FISH

DNA was isolated from f 5 � 106 cells followed by

24 hours of incubation with 300 ml of Puregene Cell Lysis

Solution (Gentra Systems, Minneapolis, MN). About 10 ml of
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lysed DNA solution was stretched on a poly-L-lysine–coated

slide with a coverslip, followed by fixation in ethanol [11].

The slides were hybridized for 16 hours at 37jC with probes

specific to TMPRSS2 (RP11-120C17 labeled with biotin-

16-dUTP; red) and ERG (RP11-476D17 labeled with

digoxigenin-11-dUTP; green).

Single-Nucleotide Polymorphism (SNP) Array Analysis

Genomic DNA was isolated from a total of 25 samples (cell

lines, punch biopsies of xenografts, lymph nodes, and visceral

organ metastases) according to standard procedures. DNA

was hybridized according to the manufacturer’s protocol

(Affymetrix, Santa Clara, CA) [12], either to Affymetrix 10K or

50K Xba SNP arrays. Arrays were scanned with a GeneChip

Scanner 3000 (Affymetrix). Data were analyzed using the

informatics platform dChipSNP [13]. For each array type,

preprocessing included array data normalization to a baseline

array using a set of invariant probes and subsequent process-

ing to obtain single intensity values for each SNP on each

sample using a model-based (PM/MM) method [14]. We then

merged the datasets on common SNPs (both represented on

the 10K and the 50K arrays), ending with a set of f 8K SNPs.

Androgen Stimulation

Treatments with the synthetic androgen R1881 and the

AR antagonist flutamide were performed as described [1].

Results

The NCI-H660 cell line was originally described as a small

cell lung carcinoma [15]. Subsequently, it was correctly iden-

tified as an extrapulmonary small cell carcinoma originating

from the prostate gland [16,17]. The line is derived from a

lymph node metastasis taken from a patient before therapy.

The patient was a 63-year-old white male who was diag-

nosed with extrapulmonary small cell carcinoma in 1983. He

died from this cancer 18 days after the initial diagnosis

and was autopsied with multiple metastatic sites (Bruce E.

Johnson, personal communication, Dana Farber Cancer

Institute, Boston, MA). NCI-H660 has been reported to be

AR-negative by Western blot analysis, and its growth has

been reported to be androgen-independent [18]. When we

tested the NCI-H660 cell line for TMPRSS2–ERG fusion, we

detected two RT-PCR products (Figure 1A). Cloning and

sequencing identified the transcripts as ERGa, a previously

reported fusion type [1], plus an additional isoform con-

taining the first two exons of TMPRSS2, juxtaposed to

exon 4 of ERG (fusion type VI according to Wang et al. [9])

(Figure 1B). The two-sequence verified TMPRSS2–ERG

fusion transcripts in NCI-H660 are identical to the ones found

in human tumor samples [9]. Real-time qPCR demonstrated

expression of TMPRSS2–ERG gene fusion in the NCI-H660

cell line, leading to about a 6000-fold elevated ERG ex-

pression compared to normal PrSCs (Figure 1C). For com-

parison, the VCaP cell line shows about 50,000 times higher

Figure 1. Characterization of TMPRSS2– ERG fusion and ERG expression in the NCI-H660 prostate cancer cell line. (A) RT-PCR using a forward primer in exon 1

of TMPRSS2 and a reverse primer in exon 6 of ERG revealed two transcripts of TMPRSS2 –ERG fusion in NCI-H660 (first lane). For comparison, VCaP expressed

only one fusion transcript (second lane), whereas normal PrSCs did not harbor TMPRSS2– ERG fusion (third lane). (B) The identity of the fusion transcripts was

verified by sequencing. The shorter transcript consisted of TMPRSS2 exon 1 (T1) fused to ERG exon 4 (E4). This transcript was also found in the VCaP cell line.

The longer transcript was identified as TMPRSS2 exons 1 and 2 (T1 and T2), fused to ERG exon 4 (E4). Upper panel: sequencing profiles of T1-E4 and T2-E4

transcripts. Lower panel: corresponding schemes of the two fusion types. (C) Real-time qPCR for TMPRSS2– ERG expression (upper panel) and ERG expression

(lower panel) on several cancer cell lines. The standard (PrSCs) was expressed as 1 (dashed line). Orange bars correspond to TMPRSS2 –ERG fusion through

deletion in NCI-H660, leading to a f 6 � 103– fold overexpression of ERG. Green bars correspond to TMPRSS2 –ERG fusion in VCaP, leading to a f 5 �
104– fold overexpression of ERG. Grey bars correspond to the other prostate cancer cell lines tested (PC3, LNCaP, DU145, and 22Rv1) that do not harbor

TMPRSS2 –ERG fusion and show baseline or moderately elevated ERG expression. Meg01 is a leukemia cell line without TMPRSS2 –ERG fusion, but with

overexpression of ERG (f 3 � 103– fold), which served as a positive control for ERG expression.
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Figure 2. Dual-color TMPRSS2 and ERG break-apart FISH assays for the detection of TMPRSS2 –ERG fusion in NCI-H660 and VCaP. (A) The scheme of the

dual-color TMPRSS2 and ERG break-apart FISH assays explains the detection of TMPRSS2 – ERG fusion. The location of the genes is indicated relative to the

chromosome (boxes); the orientation of the genes is indicated by arrows. C = centromere; E = exon. For both assays, the relative location of differentially labeled

telomeric and centromeric BAC probes is indicated by colored circles, with the color indicating the probe color in (B), (C), (D), and (E), and with the number

identifying the BACs as follows: 1 = RP11-24A11; 2 = RP11-372O17; 3 = RP11-662D5; 4 = RP11-260O11. (B) FISH image of a VCaP interphase nucleus

assessed by dual-color ERG break-apart assay (as illustrated in A). The nucleus contains several juxtaposed red and green signals for amplified wild-type alleles,

and separated red and green signals indicating ERG insertion. (C) FISH image of a VCaP interphase nucleus assessed by dual-color TMPRSS2 break-apart assay

(as illustrated in A). The nucleus contains several juxtaposed red and green signals for amplified wild-type alleles, and separated red and green signals indicating

TMPRSS2 insertion. (D) FISH image of an NCI-H660 interphase nucleus assessed by dual-color ERG break-apart assay (as illustrated in A). The nucleus shows

only two single red centromeric signals but no telomeric green signals. This is indicative of a fusion of TMPRSS2 with ERG through homozygous deletion of the

intergenic region. (E) FISH image of an NCI-H660 interphase nucleus assessed by dual-color TMPRSS2 break-apart assay (as illustrated in A). The nucleus

contains a juxtaposed red and green signal for the wild-type allele, and a single green signal indicating the deletion of one centromeric red probe. This is indicative

of the fusion of TMPRSS2 with ERG through deletion of the intergenic region. (F) High-resolution FISH on chromatin fibers of NCI-H660 assessed by a TMPRSS2-

specific probe (RP11-121A5; red) and an ERG-specific probe (RP11-476D17; green) (as illustrated in Figure W1).
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ERG expression, and Meg01, a leukemia cell line with

known overexpression of the ERG oncogene, expresses

about 3000 times more ERG than PrSCs (Figure 1C). The

prostate carcinoma cell lines PC3, LNCaP, and DU145, and

the xenograft cell line 22Rv1 neither harbor TMPRSS2–ERG

fusion nor show high ERG expression levels (Figure 1C).

To confirm TMPRSS2–ERG rearrangement in the NCI-

H660 cell line, we used a two-stage dual-color break-apart

FISH assay testing first for TMPRSS2 and then for ERG

break-apart as indirect evidence for TMPRSS2–ERG fusion.

The indirect two-stage break-apart assessment is neces-

sary because both genes are located so close to each other

(a distance of only f 3 megabases) that a fusion cannot

be observed directly by a conventional FISH fusion assay.

Fusion through deletion of the region between TMPRSS2

and ERG is indicated by loss of the probes located be-

tween the two genes [3]. FISH assays for TMPRSS2 and

ERG break-apart are presented schematically in Figure 2A.

These assays demonstrated that NCI-H660 cells have bi-

allelic TMPRSS2–ERG fusion through genomic deletion

between TMPRSS2 and ERG on chromosome 21q22.2–3

(Figure 2, D and E ). The ERG break-apart assay showed

that on the centromeric side of the deletion, both telomeric

signals (probe 2, green; Figure 2A) are lost. The TMPRSS2

break-apart assay showed one centromeric signal (probe 3,

red; Figure 2A), consistent with one deletion reaching this

area and one deletion occurring at a more centromeric re-

gion. This observation of a homozygous genomic loss be-

tween TMPRSS2 and ERG on chromosome 21q22.2–3 has

important implications for using this cell line as a prostate

cancer model system, as no wild-type ERG allele is ex-

pressed. To date, we have observed one homozygous dele-

tion in over 300 fusion-positive prostate cancers (unpublished

observation). The fact that genomic deletions between ERG

and TMPRSS2 show different borders is in concordance with

our earlier observation that the deleted region is variable in

length [3]. For the first time, we were able to visualize the

fusion of TMPRSS2 and ERG on chromatin fibers of NCI-

H660 cells by a high-resolution fiber FISH approach [11]

using probes spanning specifically both loci (Figures 2F

and W1).

We then used oligonucleotide SNP arrays to further char-

acterize the NCI-H660 cell line and to compare it with other

cell lines, xenografts, and prostate cancer samples, including

Figure 3. Genomic loss between TMPRSS2 and ERG on chromosome 21q22.2–3 in prostate cancer cell lines, xenografts, and metastatic prostate cancer

samples. 8K SNP data on a panel of 25 prostate cancer samples revealed genomic deletion between TMPRSS2 and ERG (21q22.2–3) in a subset of samples. (A)

Twenty-five prostate cancer samples, including 7 cell lines, 11 xenografts, and 7 prostate cancer metastases, were analyzed for their TMPRSS2 –ERG fusion

status by qPCR and/or FISH and color-coded as described before [3] (blue, fusion-negative; green, fusion-positive through translocation; orange, fusion-positive

through deletion). The plots on the right side of the panel represent the copy number ratio of the NCI-H660 and VCaP cell lines (vertical red lines represent

baseline; no copy number variation). It is evident that VCaP shows copy number gain throughout the whole q arm of chromosome 21. (B) Magnification of the black

framed box in (A), and status of the AR on chromosome X in these 25 samples. The blue signal in NCI-H660 corresponds to genomic copy number loss between

TMPRSS2 and ERG. The strong intensity of this signal is consistent with homozygous loss, as demonstrated by FISH. The boundaries of the intronic deletion of

NCI-H660 are very similar to the deletions seen in xenografts and tissue samples. Toward the telomeric side of the deletion in NCI-H660, the signal intensity is

weaker, confirming different lengths of the deletions seen by FISH. The androgen-independent NCI-H660 cell line shows a loss in the region of the AR, whereas

VCaP, which is known to be androgen-responsive, shows genomic gain in this area.

204 TMPRSS2–ERG Fusion in NCI-H660 Prostate Cancer Cells Mertz et al.

Neoplasia . Vol. 9, No. 3, 2007



hormone-naı̈ve and hormone-refractory metastases (Figure 3,

A and B). We identified the loss of about three megabases of

genomic material on SNPs located between TMPRSS2 and

ERG in the NCI-H660 cell line with a strong loss of signal

intensity, corresponding to the homozygous deletion in these

cells that was detected by FISH (Figure 2, D and E). Toward

the telomeric side of the deletion in NCI-H660, the copy

number ratio increases, suggesting that one allele is present

in that area. This confirms the different lengths of the deletions

that were detected by FISH. For comparison, the VCaP cell

line showed significant copy number gain on chromosome 21q

(Figure 3A). In agreement with SNP data, we found multiple

signals for both wild-type TMPRSS2 and wild-type ERG in

VCaP nuclei using independent TMPRSS2 and ERG break-

apart FISH assays (Figure 2, B and C). Therefore, we con-

clude that the copy number gain on chromosome 21 leads to

copy number gains of wild-type TMPRSS2 and ERG. Inter-

estingly, the two small cell prostate cancer xenografts included

in this study (LuCaP 49 and LuCaP 93) both showed

TMPRSS2–ERG rearrangement through genomic deletion

(denoted by * in Figure 3, A and B).

Because NCI-H660 is derived from an androgen-

independent small cell prostate tumor and was shown to be

negative for AR on both transcript and protein levels [18], we

also analyzed the AR locus on chromosome X for all samples

(Figure 3B). NCI-H660 had a loss in that region, as most of

the other xenografts and tissue samples in that panel. SNP

data confirmed the negative AR status of this cell line.

To investigate whether TMPRSS2–ERG fusion results in

the androgen regulation of ERG in AR-negative NCI-H660

cells, we assessed the expression of ERG by qPCR in

androgen-treated NCI-H660 and VCaP cells. The androgen-

sensitive VCaP cell line has been shown to respond to

androgen stimulation with increased ERG expression sen-

sitive to bicalutamide and flutamide [1] (Figure 4A). As ex-

pected, NCI-H660 does not respond to androgen stimulation

with increased expression of PSA or ERG, nor is it sensitive

to the AR antagonist flutamide (Figure 4B).

Discussion

A significant percentage of prostate cancers express a sig-

nature gene fusion of the 5V region of androgen-regulated

TMPRSS2 gene to an ETS family transcription factor, most

commonly the ERG gene. This is the first demonstration of

constitutive oncogene activation in prostate cancer. However,

the functional consequences of this chromosomal rearrange-

ment are difficult to predict and study. Reliable preclinical

in vitro models, which use homogenous human cellular ma-

terial that can be studied in large quantities over time, are

needed. The NCI-H660 cell line is a novel in vitro model

for prostate cancer that closely relates to the molecular sig-

nature of clinical cases. We demonstrate that NCI-H660 has

an intronic deletion on chromosome 21 that was found to be

the most common mechanism underlying TMPRSS2–ERG

fusion [3]. This deletion is observed on both alleles as a

homozygous loss. Therefore, NCI-H660 expresses neither

TMPRSS2 nor ERG in the native genomic context.

NCI-H660 does not express AR and is representative of

TMPRSS2–ERG–positive androgen-independent prostate

cancer. It has been shown that both TMPRSS2–ERG

fusion and the associated deletion occur in androgen-

independent prostate cancers and metastases that have no

functional AR [3]. The membrane-bound serine protease

TMPRSS2 can be expressed in both androgen-dependent

and androgen-independent tumors (i.e., this usually androgen-

responsive gene can be uncoupled from androgen control)

[19]. Androgen-independent expression of TMPRSS2–ERG

in the NCI-H660 cell line is in line with this observation. NCI-

H660 as an androgen-independent model system might fa-

cilitate the search for androgen-independent factors and

pathways influencing TMPRSS2–ERG fusion. In contrast to

a recent report showing that TMPRSS2–ERG gene fusion is

not expressed in AR-negative prostate cancer specimens

[20], we and others [21] have found TMPRSS2–ERG and

ERG expression in the AR-negative NCI-H660 cell line. This

implies that TMPRSS2–ERG fusion is constitutively stimu-

lated in this androgen-independent prostate cancer cell line.

Further efforts will be directed at investigating which factors

can activate TMPRSS2–ERG fusion with subsequent ERG

overexpression, using the NCI-H660 cell line as an in vitro

model for TMPRSS2–ERG fusion through deletion.

In summary, the NCI-H660 cell line is a potent in vitro tool

with a genotypic profile that reflects the TMPRSS2–ERG

Figure 4. The androgen stimulation of the VCaP and NCI-H660 prostate

cancer cell lines carrying TMPRSS2– ERG fusion. PSA (red bars), ERG

(exons 5 and 6; dark blue bars), and TMPRSS– ERG (TMPRSS2 exon 1 to

ERG exon 4; light blue bars) expression relative to HMBS in androgen-

sensitive VCaP cells (A) and androgen-insensitive NCI-H660 cells (B) was

assessed by qPCR. Cell lines were incubated with vehicle or 10 �M of the

AR antagonist flutamide for 2 hours before treatment for 24 hours with 0.5 or

5 nM of the synthetic androgen R1881 or vehicle, as indicated. Relative

amounts of PSA, ERG, or TMPRSS2 –ERG per HMBS were compared for

VCaP and NCI-H660.
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rearrangement found in human prostate cancer. The NCI-

H660 cell line should be a valuable model for prostate cancer

and has the potential to provide important pathogenic insight

and guidance for therapeutic strategies.
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Figure W1. FISH on DNA fibers to map TMPRSS2 –ERG fusion in the NCI-H660 cell line. FISH was conducted on preparations of extended chromatin fibers of

NCI-H660, resulting in a superior mapping resolution compared to interphase FISH. This is useful in mapping and assessing the relative length of adjacent DNA

fragments. (A–D) Stretched NCI-H660 DNA fibers were hybridized with probes specific to TMPRSS2 (RP11-120C17; red) and ERG (RP11-476D17; green). The

TMPRSS2 fusion partner is shorter relative to the ERG one (as seen from the illustration). Four representative pictures are shown. Immediately after exposure to

light, DNA fibers start breaking at many locations. From each break, the two free ends of DNA spring back to the nearest attachment point and coil, leaving a gap

between them. These ends resemble little beads and are thicker than the rest of the fiber. Therefore, DNA probes hybridize like arrays of dots (‘‘beads on a string’’).


