
Predicting protein–protein interactions based
only on sequences information
Juwen Shen†, Jian Zhang†, Xiaomin Luo†, Weiliang Zhu†‡, Kunqian Yu†, Kaixian Chen†, Yixue Li§, and Hualiang Jiang†‡¶

†Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological
Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China;
‡School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; and §Bioinformation Center, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved December 28, 2006 (received for review September 8, 2006)

Protein–protein interactions (PPIs) are central to most biological
processes. Although efforts have been devoted to the develop-
ment of methodology for predicting PPIs and protein interaction
networks, the application of most existing methods is limited
because they need information about protein homology or the
interaction marks of the protein partners. In the present work, we
propose a method for PPI prediction using only the information of
protein sequences. This method was developed based on a learn-
ing algorithm-support vector machine combined with a kernel
function and a conjoint triad feature for describing amino acids.
More than 16,000 diverse PPI pairs were used to construct the
universal model. The prediction ability of our approach is better
than that of other sequence-based PPI prediction methods because
it is able to predict PPI networks. Different types of PPI networks
have been effectively mapped with our method, suggesting that,
even with only sequence information, this method could be ap-
plied to the exploration of networks for any newly discovered
protein with unknown biological relativity. In addition, such sup-
plementary experimental information can enhance the prediction
ability of the method.

conjoint triad � support vector machine

The molecular bases of cellular operations are sustained
largely by different types of interactions among proteins.

Thus, a major goal of functional genomics is to determine
protein interaction networks for whole organisms (1). However,
only recently has it become possible to combine the traditional
study of proteins as isolated entities with the analysis of large
protein interaction networks by using microarray and proteomic
approaches (2, 3). Such kinds of studies are significantly impor-
tant because many of the functions of complex systems seem to
be more closely determined by their interactions rather than by
the characteristics of their individual components (4). For
example, metabolic pathways, signaling cascades, and transcrip-
tion control processes involve complicated interaction networks
(5). Recently, interaction networks have begun to be appreciated
because it is necessary to address the general principles of
biological systems by means of systems biology (6). Moreover,
the study of protein interaction networks has been driven by
potentially practical applications in drug discovery, because it
might provide great insights into mechanisms of human diseases.
This study may revolutionize the pipeline of drug discovery,
because drugs discovered based on the protein interaction
network may specifically modulate the disease-related pathway
rather than simply inhibit or activate the functions of an indi-
vidual target protein (7, 8). Determining accurate cellular
protein interaction networks with experimental methods in
combination with computational approaches therefore has be-
come a major theme of functional genomics and proteomics
efforts (9).

An impressive set of experimental techniques has been de-
veloped for the systematic analysis of protein–protein interac-
tions (PPIs), including yeast two-hybrid-based methods (10),
mass spectrometry (11), and protein chips (12) and hybrid

approaches (13). Several binding reaction-detected methods,
based on the presumption that the binding of one protein to
another provokes a variety of biophysical changes, have been
developed (14). These technologies recently identified hundreds
of potentially interacting proteins and complexes in several
species such as yeast (15), Drosophila (16), and Helicobacter
pylori (17). Ulrich et al. (18) presented a large-scale two-hybrid
map of �3,000 putative human PPIs. These data will serve as an
important source of information regarding individual protein
partners and offer preliminary insight into the global molecular
organization of human cells.

However, current PPI pairs obtained with experimental meth-
ods cover only a fraction of the complete PPI networks (19).
Therefore, computational methods for the prediction of PPIs
have an important role (20). A number of computational meth-
ods have been developed for the prediction of PPIs. Computa-
tional methods based on genomic information, such as phylo-
genetic profiles, predict PPIs by accounting for the pattern of the
presence or absence of a given gene in a set of genomes (21, 22).
The main limitation of these approaches is that they can be
applied only to completely sequenced genomes, which is the
precondition to rule out the absence of a given gene. Similarly,
they cannot be used with the essential proteins that are common
to most organisms (23). The prediction of functional relation-
ships between two proteins according to their corresponding
adjacency of genes is another popular approach. This method is
directly applicable only to bacteria, in which the genome order
is relatively more relevant (24). Park et al. (25) tried to find
protein interaction partners by viewing interactions between
protein domains in terms of the interactions between structural
families of evolutionarily related domains. Sprinzak and Margalit
(26) put forward another indirect interaction prediction method,
digging out signature feature related to interactions rather than
domain interaction information from the protein sequences via
protein classification. However, these methods are not universal,
because the accuracy and reliability of these methods depend on
the information of protein homology or interaction marks of the
protein partners.

It is virtually axiomatic that ‘‘sequence specifies structure,’’
which gives rise to an assumption that knowledge of the amino
acid sequence alone might be sufficient to estimate the inter-
acting propensity between two proteins for a specific biological
function (27). Accordingly, prediction of PPIs based only on
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sequence information is an ideal approach for both the compu-
tational and experimental senses. The advantage of such a
method is that it is much more universal. However, it is a major
challenge in computational biology, and only a few groups have
engaged in the development of methodology for such a predic-
tion approach. Joel and David (28) endeavored to solve this
problem by using a machine learning method with several
physiochemical descriptors. Loris (29) developed a fusion tech-
nique of classifiers to predict PPIs. Nevertheless, these methods
are not robust and reliable because they have not adequately
considered the local environments of the residues in the se-
quences. Moreover, the prediction models were constructed
based on limited PPI pairs (�3,000 pairs) but with hundreds of
variants. Therefore, on one hand, they are apt to encounter the
problem of overfitting and results that are data-dependent; on
the other hand, these methods have not been used to predict PPI
networks among a great many proteins.

In the present work, a machine learning method based on a
support vector machine (SVM) combined with a kernel function
and a conjoint triad feature abstract was developed for the
prediction of PPIs based only on the primary sequences of
proteins. To reduce the problem of overfitting, �16,000 PPI
pairs were used to generate the prediction models. The predic-
tion results of our method are more robust than those of recently
published sequence-based PPI prediction models (28, 29). No-
tably, different levels of networks of PPIs have been effectively
reproduced with this approach, indicating that, even with only
sequence information, this sequence-based approach could be
applied to explore the networks for newly discovered proteins
with unknown biological functions.

Results
Our method for PPI prediction was developed based on an SVM.
The detailed procedure of an SVM can be found in refs. 30–34.
In our approach, each protein sequence is represented by a
vector space consisting of features of amino acids [supporting
information (SI) Fig. 3], and the PPI pair is characterized by
concatenating the two vector spaces of two individual proteins.
To reduce the dimensions of vector space and suit synonymous
mutation, the 20 amino acids were clustered into several classes
according to their dipoles and volumes of the side chains. The
conjoint triad method abstracts the features of protein pairs
based on the classification of amino acids. A kernel function that
is especially designed propitious to the symmetrical property of
PPI has been adopted for binary classification on a large data set.

Classification of Amino Acids. Electrostatic (including hydrogen
bonding) and hydrophobic interactions dominate PPIs. These
two kinds of interactions may be reflected by the dipoles and
volumes of the side chains of amino acids, respectively. Accord-
ingly, these two parameters were calculated, respectively, by
using the density-functional theory method B3LYP/6–31G* and
molecular modeling approach. The result is listed in SI Table 2.
Based on the dipoles and volumes of the side chains, the 20
amino acids could be clustered into seven classes. Amino acids
within the same class likely involve synonymous mutations
because of their similar characteristics.

Conjoint Triad Method. For predicting PPI by sequences, one of the
main computational challenges is to find a suitable way to fully
describe the important information of PPI. To solve this prob-
lem, we proposed a descriptor named conjoint triad, which
considered the properties of one amino acid and its vicinal amino
acids and regarded any three continuous amino acids as a unit.
Thus, the triads can be differentiated according to the classes of
amino acids, i.e., triads composed by three amino acids belonging
to the same classes, such as ART and VKS, could be treated
identically, because they may be considered to play similar roles

while processing PPI. The PPI information of protein sequences
can be projected into a homogeneous vector space by counting
the frequencies of each triad type. The process of generating
descriptor vectors is described as follows.

First, we use a binary space (V, F) to represent a protein
sequence. Here, V is the vector space of the sequence features,
and each feature (vi) represents a sort of triad type; F is the
frequency vector corresponding to V, and the value of the ith
dimension of F (fi) is the frequency of type vi appearing in the
protein sequence. For the amino acids that have been catalogued
into seven classes, the size of V should be 7 � 7 � 7; thus, i �
1, 2, . . . 343. The detailed definition and description for (V, F)
are illustrated in SI Fig. 3. Clearly, each protein has a corre-
sponding F vector. However, the value of fi correlates to the
length (number of amino acids) of protein. In general, a long
protein would have a large value of fi, which complicates the
comparison between two heterogeneous proteins. To solve this
problem, we defined a new parameter, di, by normalizing fi with
Eq. 1:

di � (fi � min {f1, f2, . . .. . ., f343})�max{f1, f2, . . .. . ., f343}.

[1]

The numerical value of di of each protein ranges from 0 to 1,
which thereby enables the comparison between proteins. Ac-
cordingly, we obtain another vector space (designated D) con-
sisting of di to represent protein. Next, we concatenate the vector
spaces of two proteins (DA and DB) to represent their interaction
features (DAB) (Eq. 2):

�DAB} � {DA} � {DB}. [2]

Thus, a 686-dimensional vector [343 (for one protein) plus 343
(for another protein)] has been built to represent each protein
pair.

Kernel Function. The kernel function K(�,�) dominates the learning
capability of the SVM. Considering the fact that PPI is symmet-
rical, i.e., {DAB} and {DBA} represent the same interaction pairs
between proteins A and B, we designed a kernel function,
K(DAB, DEF) (Eq. 3), which is denoted as a S-kernel function in
the following:

K(DAB, DEF) � exp(���s�2)s � min{(�DA � DE�2

� �DB � DF�2), (�DA � DF�2 � �DB � DE�2)}. [3]

SVM Parameter Optimization. As in other multivariate statistical
models, the performances of the SVM for classification depend
on the combination of several parameters. In general, the SVM
involves two classes of parameters: the capacity parameter C and
kernel type K. C is a regularization parameter that controls the
tradeoff between maximizing the margin and minimizing the
training error. The kernel type K is another important param-
eter. In the S-kernel function used in this study (Eq. 3), � is an
important parameter to dominate the generalization ability of
SVM by regulating the amplitude of the kernel function. Ac-
cordingly, two parameters, C and �, should be optimized. The
parameter optimization was performed by using a grid search
approach within a limited range. To minimize the overfitting of
the prediction model, 3-fold crossover validation was used to
investigate the training set. Predict accuracy defined by Eq. 4
that is associated with mean-square-error was used to select the
parameters:

Predict accuracy � 1 � MSE�(1 � (�1))2. [4]
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During SVM classification, each data point represents a
protein pair (DAB, y); if the protein pair is experimentally
interactive, y is assigned 1, otherwise y is �1. Fig. 1 shows the
profile of predicting the accuracy of the threefold crossover
validation on the training set versus the variations of parameters
C and �. Obviously, the prediction accuracy profile has a
maximum peak at (C, �) � (128, 0.25), indicating that the
optimal values of C and � for constructing SVM models are 128
and 0.25, respectively.

Prediction Ability. Using the optimal values of C and �, the PPI
prediction model was constructed based on the training set by
using the SVM learning algorithm with the S-kernel function. To
minimize data dependence on the prediction model, five training
sets and five test sets were prepared by the sampling method
described in Materials and Methods. Each training set consisted
of 32,486 protein pairs; half of the protein pairs were randomly
selected from the data of positive PPI pairs, and the other half
were randomly selected from the negative protein pairs. Each
test set was constructed with another 400 protein pairs. Thus, five
prediction models were generated for the five sets of data. The
prediction results are listed in Table 1. For all five models, the
precisions are �82.23%, the sensitivities are �84.00%, and
the prediction accuracies are �82.75%. On average, our method
may produce a PPI prediction model with an accuracy of 83.90 �
1.29%. To test the reliability of our S-kernel function, we also
constructed PPI prediction models by using four other kernel
functions, namely, radial basis, polynomial, sigmoid, and linear
functions, on the same PPI data sets. The prediction accuracies
of those four kernel functions were 80.5%, 72.9%, 50.0%, and

62%, respectively (SI Table 3). The results indicate that the
prediction model constructed with our kernel function is more
accurate than the models constructed with the other kernel
functions. Considering the potential errors of gathering a large
amount of PPI data from different sources and experimental
errors, it can be concluded that the prediction ability of our
method may compare with that of experiments like the yeast
two-hybrid method. Moreover, the prediction models con-
structed by our method may be extended to predict PPIs encoded
in a pairwise PPI network, as we demonstrate below.

Network Prediction. The most useful application of a PPI predic-
tion method is its capability of predicting PPI networks. To our
knowledge, PPI prediction methods based on protein sequences
have not been reported in the application of network prediction.
So, we extended our method to predict PPI networks assembled
by pairwise PPIs. Three kinds of PPI networks have been
predicted by our method: the one-core network, which is con-
structed by a core protein interacting with numerous other
proteins (Fig. 2A); the multiple-core network consisting of an
interacting pathway of several core proteins, which interact with
other proteins (Fig. 2B); and the crossover network, which
consists of several multiple-core networks and/or one-core net-
works with complicated interaction among these networks
(Fig. 2C).

The one-core network is the simplest because one protein
radially interacts with other proteins. CD9, an important tet-
raspanin protein, interacts with many associated factors, forming
a typical one-core network (35). The prediction result revealed
that 13 of the 16 PPI pairs could be addressed by our method
(Fig. 2 A), indicating that this method is capable of digging out
partners of a protein encoded in a network composed of pair-
wise PPIs.

The Ras-Raf-Mek-Erk-Elk-Srf pathway is a currently ac-
cepted consensus network that has been implicated in a variety
of cellular processes (36). So far, �100 cytoplasmic proteins have
been reported to be involved in this pathway connected by means
of a typical multicore network. Ras, Raf, Mek, Erk, Elk, and Srf
serve as core proteins, which determine the signal transduction.
Of the 189 PPI pairs in this network, 161 PPI pairs were
predicted correctly by our method (Fig. 2B). The distribution of
false frequency for each core protein is listed in SI Table 4. This
result suggests that our method also can be used to predict PPIs
encoded in a more complicated network.

Biologically, general PPI networks are crossover networks. If a
computational method can predict such networks, it should be
useful in practical applications. The Wnt-related pathway is essen-
tial in signal transduction, and the related network is a typical
crossover network, of which the protein interaction topology has
recently been demonstrated by Ulrich et al. (18) using yeast
two-hybrid experiments (18). To illustrate the capability of our
method in predicting such networks, we tried to reproduce the
network of Wnt. The prediction result showed that 73 interactions
among the 96 PPI pairs in the network were covered by our method
(Fig. 2C), suggesting that our method can be applied in the
prediction of general PPI networks.

In practice, primary experimental information may be used in
PPI network prediction. To test whether the additional experimen-
tal clues can enhance the prediction ability of our method, we
repredicted the network of Ras-Raf-Mek-Erk-Elk-Srf pathway by
adding the existing interaction information of 30% interaction
pairs. Indeed, the additional experimental information can increase
the prediction ability; the accuracy increased from 84% to 90% (SI
Fig. 4).

Discussion
We have presented a computational approach for PPI predic-
tion. The SVM learning algorithm was used to develop meth-

Fig. 1. Accuracy surface of threefold crossover validation on training set
versus the variations of parameters C and �.

Table 1. Prediction results of the test sets

Test set Accuracy, % Precision, % Sensitivity, %

Mean
square
error

1 84.25 84.42 84.50 0.63
2 82.75 83.59 84.00 0.69
3 83.25 84.82 85.50 0.67
4 83.25 82.23 84.00 0.67
5 86.00 86.00 86.00 0.56
Sum* 83.90 � 1.29 84.21 � 1.41 84.80 � 0.91 0.64 � 0.05

Precision is the true positive/(true positive � false positive). Sensitivity is the
true positive/(true positive � false negative).
*Mean and variance are averaged by the results of five test sets.
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odology. Notably, we advanced a strategy to construct the
vector space (V) for representing the PPI information. The
protein sequence was characterized by a conjoint triad de-
scriptor, which considered the properties of each amino acid
and its vicinal amino acids. The PPI information encoded in
the protein sequences was projected into the vector space by
calculating the frequencies of the conjoint triads (SI Fig. 3).
Because the 20 amino acids have been catalogued into seven
classes according to their physicochemical properties (SI Table
2), the dimensions of vector space could be dramatically
reduced, from 20 � 20 � 20 to 7 � 7 � 7. Accordingly, the
reduced variance dimension may partially overcome the over-
fitting problem, by which a good prediction model can be
constructed based on even a limited amount of data (e.g.,
currently available data for PPI pairs). In addition, the con-
joint triad descriptor implicitly includes the information of
synonymous mutation for PPI, which widens the prediction
range.

Threefold crossover validation was used to increase the predic-
tion accuracy, and the two important parameters for SVM learning,
C and �, were optimized as 128 and 0.25 (Fig. 1). The prediction
ability of our method was first evaluated five times on five test sets.
The result indicates that this method may produce a stable predic-
tion model with higher accuracy than other similar methods (Table
1) (26, 27). Moreover, the data set for constructing prediction
models is much larger than others, suggesting that our prediction
models are more reliable. Considering the symmetrical nature of
PPI, i.e., A–B interaction equals B–A interaction, we designed a
kernel function-symmetrical kernel function (S-kernel function) for
the SVM (Eq. 3). The advantage of S-kernel function is obvious
when comparing the prediction accuracy with other kernel func-
tions (SI Table 3).

Accurately predicting PPI networks is the most important issue
for PPI prediction methods. So far, PPI prediction methods based
only on protein sequence information have not been applied to the
prediction of PPI networks. We used such a method to predict

Fig. 2. Predicted results of PPI networks of a one-core network for CD9 (A), a multicore network for the Ras-Raf-Mek-Erk-Elk-Srf pathway (B), and a crossover
network for the Wnt-related pathway (C). Core and satellite proteins are colored indigo blue and light blue, respectively. Lines connecting core proteins and
satellite proteins are divided into two classes: dark blue, true prediction; orange, false prediction.
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networks composed of pairwise PPIs. The results indicate that our
method may reproduce most of the PPIs encoded in three typical
networks (Fig. 2). Most importantly, this method can be used to
predict the most complicate PPI network, the crossover network
(Fig. 2C).

Computation Environment. All calculation programs implementing
SVM were written in C�� based on the core of the libsvm 2.8
package (www.csie.ntu.edu.tw/	cjlin/libsvm) and run on a 128-
CPU Origin 3800 server (Silicon Graphics, Mountain View, CA).

Materials and Methods
Data Set Preparation. PPI information was from the Human Protein
References Database (HPRD), version 2005�0913 (www.hprd.org).
This version of HPRD contains 16,443 nonredundant entries of
experimentally verified PPIs obtained from a manual search of the
literature. More than 95% of the interactions in the database are
based on individual in vivo (e.g., coimmunoprecipitation) or in vitro
(e.g., GST pull down) experiments (37). The data quality of this
database is high enough for the construction of PPI prediction
models. All of these PPI pairs were used in preparing the positive
data set. The selection of a negative data set is essential to the
reliability of the prediction model. However, it is difficult to
generate such a data set because we have limited information about
proteins that are really noninteractive. Unlike the random way for
selecting a negative data set (38), we used a relatively rational
strategy to select the negative data set, which was composed by the
proteins appearing in the positive data set. Any protein pair
appearing in the positive data set could be selected as a candidate
for a negative pair in an exclusive way, for example, AB and IJ are
positive interaction pairs, thus AI, AJ, BI, or BJ could be the
negative pairs. Additionally, other requirements were considered:
(i) the total number of negative pairs should equal that of the

positive pairs (16,443 in this study) and (ii) the contribution of the
proteins composing the negative set should be as harmonious as
possible.

The training set consisted of 32,486 protein pairs, half from the
positive data set and half from the negative date set. A test set was
constructed with another 400 protein pairs. Both the positive and
negative pairs were randomly selected.

Dipole and Volume Calculations. The structures of the 20 amino
acids were extracted from the standard fragment library of
Insight2005 (Accelrys, San Diego, CA). Dipoles of the side
chains of the amino acids were calculated by using the density-
functional theory method of B3LYP/6–31G* encoded in Gauss-
ian03 (39), and the volumes of the side chains were calculated by
using Sybyl6.8 (Tripos, St. Louis, MO).

Prediction for PPI Networks. The core protein in a one-core network
was removed from the PPI data set, and the rest of the PPI proteins
were used to build a prediction model with the optimal parameters.
Afterward, PPIs between the core protein and satellite proteins
were predicted by the prediction model. A similar method was used
to construct prediction model for a multicore network by removing
the core proteins from the PPI data set, and PPIs between the core
proteins and satellite proteins were predicted by the model. For a
crossover network, all proteins in the network were removed from
the PPI data set during construction of the prediction model, and
then PPIs in the network were predicted by the model.
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