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Conformational fluctuations in proteins have emerged as a poten-
tially important aspect of biological function, although the precise
relationship and the implications have yet to be fully explored.
Numerous studies have reported that the binding of ligand can
influence fluctuations. However, the role of the binding site in
mediating these fluctuations is not known. Of particular interest is
whether in addition to serving as structural scaffolds for recogni-
tion and catalysis, active-site residues may also play a role in
modulating the cooperative network. To address this question, we
employ an experimentally validated ensemble-based description
of proteins to elucidate the extent to which perturbations at
different sites can influence the cooperative network in the pro-
tein. Applying this method to a database of test proteins, it is found
statistically that binding sites are located in regions most able to
affect the cooperative network, even for cooperative interactions
between residues distant to the binding sites. This indicates that
the conformational manifold under native conditions is deter-
mined by the network of cooperative interactions within the
protein and suggests that proteins have evolved to use these
conformational fluctuations in carrying out their functions. Fur-
thermore, because the energetic coupling pattern calculated for
each protein is robust and relatively insensitive to sequence, these
studies further suggest that binding sites evolved in regions of the
protein that are inherently poised to take advantage of the
fluctuations in the native structure.

COREX analysis � energetic coupling � native state ensemble �
thermodynamic linkage

B iological work in living organisms is mediated primarily
through the use of protein molecules. Knowledge of the

means by which proteins facilitate this work is of paramount
importance to an understanding of function as well as the
diseases that result from aberrant function. Of particular interest
in recent years has been the observation that proteins are highly
dynamic molecules that experience dramatic conformational
excursions from the canonical high-resolution structure (1–3). In
addition, it has also become clear that conformational dynamics
play an important role in determining the ability of proteins to
perform such diverse tasks as catalysis, allosterism, and signal
transduction (4–6).

The observation that protein conformational f luctuations play
an important role in function suggests that functional sites in
proteins may be uniquely coupled to structural f luctuations
(7–9) and thus identifiable by how perturbations at these sites
affect the conformational manifold. Here we use an ensemble-
based model of the protein to explore this issue. By identifying
a statistically significant difference in the response of the en-
semble to perturbations at active sites of proteins, as determined
from a representative test set, we find that binding sites play a
unique role in influencing the cooperative network within
proteins. This suggests that binding sites have been preferentially
optimized to use conformational f luctuations in the perfor-
mance of their function.

Results and Discussion
Response of the Ensemble to Perturbations. The notion that ligand
concentration can be used to drive the equilibrium between
different conformational states has been widely accepted since
Wyman introduced the concept of linked functions (10). How-
ever, proteins are conformationally heterogeneous (1–3), and it
is not clear that a description of the protein that accounts for only
the gross structural differences between two macroscopic ther-
modynamic states is sufficient to identify the energetic deter-
minants of why a ligand affects a particular equilibrium (7). To
address this issue it is necessary to use a variety of experimental
(1–6) and computational (7–9) approaches that can provide
insight into how functional sites are linked to each of the
microscopic states. If proteins have evolved to use conforma-
tional f luctuations around the average structure in the perfor-
mance of their function, as has been suggested from recent NMR
relaxation experiments (11), it would follow that functionally
important sites on proteins would be coupled in a unique way to
the equilibrium distribution of states in the ensemble.

To experimentally investigate the coupling between function-
ally important residues and the conformational ensemble, one
would ideally perturb the energy of each residue, one at a time,
and monitor its affect on the distribution of ensemble states (12).
As noted previously, this idealized experiment cannot be real-
istically achieved and can be only approximated by Ala3Gly or
Val3Ala mutations at solvent-exposed sites (12, 13). However,
with a suitably validated computational model of the confor-
mational ensemble, it is possible to use a computer program to
investigate this issue. Here we use such a strategy and propose
that the relative impact of functionally important sites on the
equilibrium distribution of states in the ensemble can be deter-
mined, and that the method can be independently validated by
the ability of the algorithm to predict various qualitative and
quantitative aspects of cooperative behavior in a model protein.

Ensemble View of Site-to-Site Coupling. To investigate site-to-site
coupling (i.e., cooperativity) in a protein, we have used the
COREX algorithm (12–21). COREX models the protein en-
semble by approximating structural f luctuations as local order/
disorder transitions applied throughout the high-resolution
structure. We have previously demonstrated that this approach
provides a reliable estimate of the regional stabilities within
proteins (14, 17) as well as detailed insight into the cooperative
networks that exist within protein structures (12, 16, 18–21).
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Within the context of an ensemble, cooperativity can be
evaluated by assessing whether two regions of the molecule are
thermodynamically coupled. In other words, if the pairwise
properties of two residues are consistent in the most probable
states, those residues will be coupled; e.g., both residues are in
folded (or unfolded) regions or one residue is always in a folded
region when the other is an unfolded region. If on the other hand
the pairwise properties of two residues are random among the
most probable ensemble states, the residues are not coupled.
Within the context of the COREX algorithm, the impact of any
residue j on all other residues in the protein can be evaluated
quantitatively by stabilizing all states in which residue j is folded
(12). This perturbation will redistribute the conformational
ensemble, and each residue will be perturbed according to the
degree of coupling in the most probable states. Two important
predictions of this method are the following: (i) distal residues
can be coupled in the absence of a visible connectivity pathway
(12, 20, 21); and (ii) the coupling between two residues need not
be symmetric (the response of residue j to a perturbation at
residue k is not necessarily reciprocal) (12, 20).

For the present study, the reliability of the cooperativity
information obtained by COREX was first established by com-
paring the calculated results with recently obtained experimental
Val3 Ala mutations of eglin c (22). The comparison to eglin c
is particularly relevant because the experimental results confirm
the two unexpected aspects of cooperativity that are well sim-
ulated by the COREX algorithm (Fig. 1). First, as found by Lee
and colleagues (22), the effects of mutations do indeed propa-
gate to distal sites in the absence of a visible connectivity
pathway. Second, and most surprising, cooperativity is not
bidirectional (Fig. 1). In the specific case of eglin c, for example,
it is found that the quantitative impact of the V18A mutation on
V54 is significantly less than the reciprocal mutation (i.e., the
effect of the V54A mutation on V18). Although the experimen-
tal analysis of eglin c, which involved monitoring the effects of
mutations on the NMR-derived relaxation parameters (22),
cannot be quantitatively compared with the energetic coupling
calculated by COREX, the qualitative agreement demonstrates
that the general features of the cooperative behavior in eglin c
are captured.

Global Coupling to the Ensemble. The results for eglin c, as well as
previous studies with dihydrofolate reductase (DHFR) (21),
suggest that cooperativity information as determined by
COREX provides a reasonable description of the actual coop-
erative network within proteins. To investigate the importance
of binding sites in mediating cooperativity, we considered the
following. Within the context of an ensemble, cooperativity
refers to the susceptibility of each site to a perturbation at
another site. For two sites to be coupled, the relevant confor-
mational equilibrium must be suitably poised such that redis-
tributing the ensemble through a perturbation at site j affects the
probability that residue k is folded. Thus, we see that the
distribution of states in the native state ensemble of a protein is
inextricably linked to the cooperativity: the ensemble itself
defines the cooperativity (20). It is our hypothesis that if coupling
is important to function, then proteins should have evolved so
that active-site residues will be important for attenuating the
equilibrium and therefore identifiable by how they affect the
cooperative network in the protein. To extend our original
analyses (12, 21) to challenge this hypothesis, we introduce here
the global cooperative response (GCR) (see Methods). We note
that because cooperativity is not bidirectional, the GCR must be
calculated for each residue pair in such a way as to account for
both the effect of residue j on residue k and vice versa. Because,
the GCR value is a measure of how a mutation changes the
thermodynamic coupling between all residue pairs, it provides a
metric of how important a site is to maintaining the cooperative

network in the entire protein. This calculation is illustrated in
Fig. 2.

First, the thermodynamic coupling between any residue pair in
a protein is calculated by evaluating the effect of an energetic
perturbation at residue k on residue j and vice versa (Fig. 2 A).
Inspection of this cooperativity pattern reveals that some regions
may show predominantly positive coupling between residue
pairs, whereas others demonstrate a negative coupling. Next,
point substitutions to Ala are applied to the host protein (labeled
as WT in the figure) at each position, one at a time, in such a way
as to not perturb the structure (i.e., the Protein Data Bank file
is changed only at the mutated residue). Shown in Fig. 2B is the
matrix of cooperativity values determined for each residue pair
in the pseudomutant G67A of DHFR. Comparison of Fig. 2 A
and B reveals that the calculated cooperativity pattern is not
significantly affected by the substitution (20). However, despite
the similarity in the pattern, the magnitude of the coupling values
do change. The difference between the cooperativity matrices of

Fig. 1. Energetic coupling between residues V18 and V54 in eglin c. (A)
Influence of a single-site perturbation on all other sites of the protein, as
calculated by Eq. 1. (B) Ribbon diagrams of eglin c color-coded according to the
magnitude of the influence of the perturbation at V18 on all other sites of the
protein. Residues V18 and V54 are shown in CPK. (C) Ribbon diagrams of eglin
c color-coded according to the magnitude of the influence of the perturbation
at V54. B and C were prepared by using the program MOLMOL (49). (D)
Relative effect of the mutation at V18 on V54, and its reciprocal. For a more
direct comparison, the predicted and experimental values were normalized
[COREX calculations were divided by the influence of the thermodynamic
perturbation at V54 on V18, �Gf,18

pert,54; the experimental values were divided by
the change of Saxis

2 at V18 caused by V54A mutation (22)]. The eglin c Protein
Data Bank structure used in this analysis was 1CSE.
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the host and mutant provides a measure of how important that
residue is to maintaining the cooperative network (Fig. 2C).
Summation over all residue pairs in the difference matrix is

defined as the GCR value for position 67 of DHFR. We note that
the differences seen (Fig. 2C, upper left) are not merely trivial
effects associated with structural changes to residues in the
immediate vicinity of the mutation. As the contact map in Fig.
2C reveals, the observed cooperativity changes are independent
of the distance between residue 67 and the coupled sites, and
indicates that the effect is not mediated by a continuous struc-
tural pathway. Repetition of the steps outlined in Fig. 2 for each
residue provides the residue-specific GCR (Fig. 3A). Consistent
with Fig. 2C, if point mutations are applied only to ensemble
states in which the mutation site resides in an unfolded region
(i.e., to keep the native contacts identical to that of the WT),
essentially identical GCR values are calculated (data not shown),
indicating that conformational f luctuations (i.e., unfolding
events) are a key determinant of the cooperative behavior in
DHFR.

Despite the relative robustness of the cooperativity pattern
generated for DHFR, some residues are observed to perturb the
ensemble to a greater extent than others, with the values

Fig. 2. The GCR is the difference in the cooperativity map between an Ala
substitution at each position and the WT structure. (A and B) Energetic
coupling between the residues in WT (A) and G67A (B) E. Coli DHFR. A
perturbation energy, �gpert, of 2 kcal/mol was used to calculate the bidirec-
tional cooperativities (Eq. 2). Red corresponds to a positive coupling of two
residues, blue represents a negative coupling, and cyan refers to neutral
coupling as indicated by the color bar. (C) Difference in the pairwise cooper-
ativities of WT and G67A E. coli DHFR (upper left) and the distance map
between C� atoms (bottom right). The natural log (Ln) of the GCR values for
DHFR range from 7.45 to 9.90, with an average of 8.2. When normalized by the
dimensions of the matrix (159 � 159), the average change in energetic
coupling per residue pair is 0.14 kcal/mol (with a low of 0.06 kcal/mol and a
high of 0.87 kcal/mol) for a 2 kcal/mol perturbation. The Protein Data Bank
structure used in this analysis was 7DFR.

Fig. 3. GCR values for binding-site residues are higher than for non-binding-
site residues. (A) Residue-specific GCR values calculated for E. coli DFHR. The
distribution of GCR values are provided in the histogram, with the contribu-
tion of binding-site residues highlighted in blue. (B) Fractions of binding-site
residues in the high (GCR � mean � �), medium (mean � � � GCR � mean-�),
and low (GCR � mean-�) coupling groups, compared with the average frac-
tion obtained from non-binding-site residues in each category. Error bars
indicate one standard deviation. The crystal structure of eDHFR with NADP�

and folate is provided in Right. Binding-site residues are colored red, and
ligands are colored yellow. (C) Cartoon representations of randomly gener-
ated decoy binding sites, also colored red.
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following a normal distribution (Fig. 3A). Interestingly, the
average GCR value of binding-site residues in DHFR (blue bars
in Fig. 3A) is higher than that found for the non-binding-site
residues, with a significant fraction of the binding-site values
falling outside the standard deviation (�) of the mean response.
This result indicates that binding-site residues in DHFR are
statistically more thermodynamically coupled to, and hence
more able to impact, the cooperative network in proteins than
are non-binding-site residues.

Additional inspection of Fig. 3A, however, reveals that al-
though binding-site positions are often found to be among the
group of residues most able to affect the distribution of states
(i.e., they are found in the group whose GCR values are more
than one standard deviation above the mean), not all binding-site
residues are found in this group, and not all residues in this group
are binding-site residues. It should be expected that not all
binding-site residues contribute equally to a protein’s function.
Experimentally, it has been observed for several binding sites
(23–26) that the different residues comprising each site can
contribute vastly different amounts to the functional processes of
the protein (i.e., catalysis or allosteric response).

Theoretically, binding sites should have two distinct although
not necessarily overlapping properties. First, binding events
should elicit a structural response in the protein for an allosteric
or enzymatic system. In ensemble terms, this is akin to a
redistribution of the probabilities of the states. Second, the
binding site should be chemically and topologically compatible
to the ligand itself (i.e., have an affinity for the ligand). The
method described in this communication attempts only, and in
a general manner, to quantify the first property listed above.
Given the need for proteins to bind ligands both specifically and
with high affinity, it is therefore not surprising that all binding-
site residues are not found to be equally coupled to the ensemble.

To determine the uniqueness of the observed coupling for the
DHFR binding site, the fraction of binding-site residues in the
high coupling group was compared with the fractions obtained
from randomly assigned decoy binding sites of similar size to the
actual DHFR binding site (Fig. 3C). The uniqueness of the GCR
distribution for the actual binding site is shown in Fig. 3B, with
the fraction of high coupling residues from the actual binding site
being �6� above the average fraction obtained from the decoy
set, whose statistics arise from the non-binding-site residues in
each group. This result indicates that the binding site in DHFR
has a greater impact on the cooperative network in the protein
than any other randomly sampled contiguous region of the
protein surface, and by a statistically significant margin.

To investigate the generality of this result with regard to
sequence composition, an identical analysis was performed on
chicken DHFR (cDHFR), a structural homolog with 30%
sequence identity to the Escherichia coli protein and with an
additional 30 residues. As seen from Fig. 4A, similar results were
obtained for the cDHFR. For this protein, the fraction of
binding-site residues in the high coupling group is �5� above the
decoy set. These results indicate that the calculations are a robust
property of the DHFR fold and not significantly affected by the
precise amino acid sequence or the amino acid composition.

To further evaluate the generality of these findings and to
establish that the results were not in some way capturing
structural properties of the DHFR binding cleft, the analysis was
extended to a test set of nonhomologous protein structures that
differ in both size and the nature of the biological ligand (Table
1). As was observed for both the E. coli DHFR (eDHFR) and
cDHFR proteins, binding-site residues for all proteins tested
were also found preferentially in the high coupling group and, on
average, the fraction of binding-site residues in the high coupling
group was significantly higher than that calculated for a set of

Fig. 4. High binding-site GCR values are independent of ligand size and type. (A–D) The fractions of binding-site residues in the high (GCR � mean � �), medium
(mean � � � GCR � mean-�), and low (GCR � mean-�) coupling groups for chicken DHFR (cDHFR) (A), staphylococcal nuclease (SNase) (B), interleukin 4 (IL-4)
(C), and chymotrypsin inhibitor 2 (CI2) (D). Error bars indicate one standard deviation from the mean for a set of randomly selected decoy sites on each protein,
as shown in Fig. 3 for eDHFR. The value shown in red is the number of standard deviations above the decoy set for the fraction of residues in the actual binding
site. (E) Actual binding-site residues for CI2, shown in red on space-fill and ribbon representations. Perturbations to binding-site residues affect the cooperativity
between all residues throughout the structure, even though the binding site is not situated in a central location in the structure. The Protein Data Bank structures
used in this analysis were 8DFR (cDHFR), 1STN (SNase), 1HIK (IL-4), and 2CI2 (CI2). We also note that analysis of eglin c showed similar results to CI2, which is a
structural homolog [1.68 Å backbone rms deviation (50)] with 30% sequence identity (data not shown).
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randomly assigned decoy sites (Fig. 4). Several important ob-
servations can be made from inspection of Fig. 4 and Table 1.
First, there is no correlation between the observed statistics and
the size of the protein and/or the size and type of ligand. The only
caveat is that this analysis was restricted to single-chain, mono-
meric proteins. Second, the results also appear to be indepen-
dent of the location and physical attributes of the binding sites.
This is demonstrated by comparing the binding site for DHFR
(Fig. 3B), which is a cleft in the center of the protein, with the
binding site for CI2, which is a loop that protrudes from the
molecule (Fig. 4E). Coupled to the observation that there exists
no correlation between the impact of a residue on the cooper-
ative network and the distance between that site and any pair of
coupled residues (Fig. 2C), these results further indicate that the
effects that are being monitored are not trivial consequences
associated with changing the structural contacts between two
sites.

Finally, when the statistics for each binding site in DHFR is
considered separately (Table 1), the hyperconnectivity is none-
theless maintained, indicating at least for the case of DHFR, that
the effect is not regionally distributed within the binding site. It
would be of significant interest to determine whether there exist
differences between binding sites in multichain proteins that
demonstrate allosteric behavior. However, the role of binding
sites in maintaining coupling in large multimeric systems awaits
further study.

Conclusions
Although the importance of chemical and structural comple-
mentarity between protein and ligand are well known, the high
intrinsic ability of an active site to affect the coupling throughout
a protein (independent of distance) is rather surprising. Proteins
are conformationally heterogeneous ensembles that have been
shown to use their intrinsic f luctuations to perform their func-
tion (11). This means that binding and function are facilitated by
many states that are near the minimum in the energy basin
around the native structure, a result which is by no means
unexpected. However, it appears that proteins have gone further
and have evolved to optimize their sensitivity to selectively
respond to perturbations at functional sites. Such a sensitivity
undoubtedly provides a selective advantage in initiating catalyt-
ically important dynamic transitions or transmitting the effects of
binding to distal sites.

Equally as important as the existence of this ‘‘hyperconnec-
tivity’’ of active-site residues is the implications it may hold for
the evolution of proteins as biological machines. The results
presented here reveal that functional sites have unique thermo-
dynamic properties in that they are energetically more coupled
to the cooperativity of the ensemble. This opens an intriguing
question as to the origins of binding sites in proteins and
therefore to the evolution of different folds. One possibility is
that the observed hyperconnectivity between the binding site
and the ensemble is an intrinsic property of each fold. If this were
the case, protein folds could not be viewed as blank scaffolds

onto which virtually any function can be evolved, and at any
location on the structure. According to this hypothesis, the
protein fold would determine the location(s) of the binding
site(s) (and possibly the potential range of functions).

Alternatively, the hyperconnectivity could be a property that
evolves once a binding site has been selected by nature from
among a near limitless number of potential folds and locations
within each fold. Although the current analysis does not allow us
to distinguish between these two scenarios, it does suggest that
thermodynamic criteria, independent of structural, chemical,
and topological complementarity, can be established for the
identification of putative binding sites on proteins. Such a
method awaits further study.

It is interesting to note that the number of possible folds that
have been predicted, based on existing fold space, is far less than
the theoretical number of potential folds (27). Combined with
the fact that several folds have evolved to perform multiple
functions at analogous sites (28–32), this observation is consis-
tent with the notion that the putative binding site is coded in the
fold [more precisely the energetic balance within the fold (20)],
and that not all possible folds will necessarily have the thermo-
dynamic attributes for an effective binding site. If this were the
case, folds with little or no potential for a binding site, although
possibly appearing at various stages of evolution, may not survive
the selection process. The relative ability to design function into
novel protein folds (33–35) rather than redesigning function at
existing active sites (36–39) may provide significant insight from
which to resolve this issue.

Methods
Generation of the Native State Ensemble. An ensemble of confor-
mational states for each protein was generated by using the
COREX algorithm (12, 14, 15, 40). The individual conforma-
tions are generated by treating contiguous groups of residues as
folding units and generating states where each unit is either
folded or unfolded. By systematically varying the boundaries of
the folding units and by sampling all possible combinations of
multiple groups being unfolded simultaneously, an exhaustive
enumeration of conformations is generated. As described in a
recent review (16), when a region is considered as unfolded, it
is not treated in explicit structural terms. Instead, the average
free energy of unfolding that segment is calculated by using a
surface area-based parameterization. The Boltzmann weight of
each state [Ki � exp(��Gi/RT)] is determined from the calcu-
lated Gibbs energy, which has been calibrated previously and
tested extensively (41–47). The probability of each state i is
determined by Pi � Ki/�iKi, where summation is over all states
in the ensemble.

Calculation of the GCR. A residue-level description of the stability
of the ensemble, which is facilitated through a quantity known
as the residue-specific free energy, was defined as �Gf, j �
�RT � ln �f, j � �RT � ln(�Pf, j/�Pnf,j), where �Pf, j and �Pnf, j

Table 1. Monomeric proteins studied

Protein
No. of

residues Interaction partner
Statistical

significance

Chymotrypsin inhibitor CI-2 65 Protein (chymotrypsin) 7.1�

IL-4 129 Protein (IL-4 receptor) 3.5�

Staphylococcal nuclease 134 Nucleotide (pdTp/Ca2�) 3.1�

eDHFR 159 Cofactor/substrate NADPH/folate (overall) 6.3�

Folate site alone 6.5�

NADPH site alone 5.5�

cDHFR 186 Cofactor/substrate NADPH/folate 5.5�
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are the summed probabilities of states in which residue j is folded
and unfolded (i.e., nf, nonfolded), respectively.

Thermodynamic cooperativity between any residue pair in a
protein can be calculated by expanding the above equation to
account for changes observed in the folding status of residue j
upon an energetic perturbation applied to any other residue k.
Specifically, for each state for which residue j is in a folded
conformation, a perturbation free energy, �gpert,k, is applied
which stabilizes that state. As a result, the ensemble of states will
be redistributed in a specific way, and the response of the
ensemble will provide direct access to the coupling between that
residue and every other residue. For any residue j, the effect of
an energetic perturbation at k can be calculated as

��Gf, j
pert,k � 	�RT ln � f, j
 � 	�RT ln � f, j

pert,k


� �Gf, j � �Gf, j
pert,k, [1]

where �Gf,j
pert,k corresponds to the stability of residue j upon

introducing the energetic perturbation to all states in which
residue k is folded. Considering that cooperativity between any
residues pair is not necessarily bidirectional (12, 22, 48), the

above equation is modified to include the reciprocal effect as
well:

��Gj,k
pert � 	�Gf, j � �Gf, j

pert,k
 � 	�Gf,k � �Gf,k
pert,j
 . [2]

Shown in Fig. 2 A is thus the bidirectional cooperativity of each
residue pair (Eq. 2) for the DHFR protein.

To further quantify the importance of any particular position
in a protein structure in its ability to transduce structural and
energetic perturbations, we systematically substitute each resi-
due to an alanine. Those residues that already were alanine in the
host protein were replaced by glycine. The influence of a
mutation applied to any residue l on the cooperativity between
any residue pair j and k can then be determined by the difference
in cooperativities as calculated by Eq. 2 (�Gj,k

pert � �Gj,k
pert,mut,l).

The overall effect of a mutation at residue l on the cooperative
network of a protein, defined here as the global cooperative
response (GCR), can then be assessed by GCRl �
�j�k���Gj,k

pert � ��Gj,k
pert,mut,l�, where the summations are over all

residues in the protein.
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