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We describe a Markov Chain Monte Carlo analysis of five human Y-
chromosome microsatellite polymorphisms based on samples from
five diverse populations. Our analysis provides strong evidence for
mutational bias favoring increase in length at all loci. Estimates of
population coalescent times and population size from our two
largest samples, one African and one European, suggest that the
African population is older but smaller and that the English East
Anglian population has undergone significant expansion, being
larger but younger. We conclude that Markov Chain Monte Carlo
analysis of microsatellite haplotypes can uncover information not
apparent when the microsatellites are considered independently.
Incorporation of population size as a variable should allow us to
estimate the timing and magnitude of major historical population
trends.

The genetic material comprising the nonrecombining region
of the Y chromosome is effectively haploid and is inherited

patrilineally. Such inheritance makes Y-chromosomal polymor-
phisms ideal for elucidating human male genetic histories, but
the scarcity of variable markers has limited progress for several
years. However, the recent discovery of polymorphic Y-
microsatellite repeat polymorphisms offers a range of markers
suitable for studying the ancestry of human populations.

Most microsatellite mutations involve either the gain or loss of
single repeat units such that alleles tend to evolve according to
a one-dimensional random walk. This apparent simplicity has
been exploited to formulate a number of genetic distance
measures, but there remain a number of problems that need to
be overcome. First is the problem we refer to as back-mutations
and involves the loss of information through convergence: an
allele that undergoes one increase followed by one decrease in
length will appear identical to an allele of the same original
length that has not mutated. Second, some mutations may
involve larger changes in sizes than one repeat unit, a possibility
examined by Di Rienzo et al. (1). Third, there is growing
evidence that the random walk is asymmetric. At least two
studies have reported that gains in length significantly outnum-
ber losses (2, 3), though the extent of the bias has not been
quantified.

For Y-chromosome microsatellites, where genetic recombi-
nation is absent, uncertainties about the mode of evolution can
be overcome by using network-based approaches (4–7) to illus-
trate potential relationships between haplotypes. In a study of
East Anglian Y-chromosome microsatellite haplotypes (4), we
constructed a network in which haplotypes were ordered by total
allele length summed over five loci. The resulting network is
strongly structured and possesses a well-defined central core
composed of several closely related, relatively common haplo-
types. Because common, well-connected haplotypes are unlikely
to be recent in origin, the core should be indicative of the genetic
structure of this population’s ancestors. The asymmetric shape of
the network, with fewer short haplotypes and greater numbers
of longer haplotypes, is suggestive of the mutational asymmetry

that has been documented at autosomal loci. However, without
a method of assessing the probabilities associated with inferred
genealogical relationships, it is impossible to know how much
confidence we can have in such networks. In principle, if we knew
the processes by which microsatellites evolve, we could derive a
probability distribution for the ancestral state.

An approach that offers the potential both to estimate the
ancestral state and the parameters associated with population
history and microsatellite evolution involves the use of Markov
Chain Monte Carlo (MCMC) methods. These have been used
successfully in phylogenetic analyses of mitochondrial data (8, 9)
and microsatellite data (10). These methods are more flexible
and powerful than other methods of phylogeny analysis. Because
there is no recombination between the Y-chromosome micro-
satellites studied, reconstruction of the ancestry is a mathemat-
ically precise problem, in that under an assumed evolutionary
process, the probability distributions for the ancestor and an-
cestry tree are well defined. This makes MCMC attractive,
because it computes the conditional probability P(ancestry,
evolutionary parametersudata). The fact that back-mutations are
frequent means that methods that attempt to construct unique
trees will give poor results whereas MCMC techniques incor-
porating stochastic tree geometries can still extract evolutionary
signals.

We were interested to examine the extent to which MCMC
methods are able to shed light on genealogical relationships
based on Y-microsatellite haplotypes and provide extra infor-
mation about the underlying evolutionary processes. For com-
parison with our existing data set of East Anglians (n 5 174),
Nigerians (n 5 23), and Sardinians (n 5 15), we genotyped an
additional 104 South African and 22 Japanese males. We then
developed, tested, and applied a MCMC coalescence algorithm.

Methods
Microsatellite Typing. Microsatellite typing was carried out as
described in Cooper et al. (4), except that an additional primer
was designed to allow separate amplification of locus DYS389A.
The primer (DYS389R2: TGAGAGTTGGGTACAGAAG-
TAGG) was designed from the sequence previously described
(4) (European Molecular Biology Laboratory database no.
X97312). DYS389R2 was used in PCR with DYS389F to amplify
a region of 118–138 bp, encompassing the single GATA repeat
array corresponding to DYS389A.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: MCMC, Markov Chain Monte Carlo.

†G.C. and N.J.B. contributed equally to this work.

¶To whom reprint requests should be addressed. E-mail: w.amos@zoo.cam.ac.uk.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

11916–11921 u PNAS u October 12, 1999 u vol. 96 u no. 21



DNA Samples. DNA samples were 174 East Anglians, 23 Nigeri-
ans, and 15 Sardinians as described (4) with the addition of 104
South African and 22 Japanese males.

MCMC Methods. We assume a neutral evolution model in a
population of constant size, with a microsatellite single-step
mutation process i.e., mutations change microsatellite length by
one repeat unit. Increases and decreases in length are at rates
denoted m1 and m2, respectively, to allow estimation of the
extent of any bias in mutation process from the data. All
microsatellites are assumed to have the same mutation rate and
extent of bias. We use MCMC techniques to compute posterior
probability distributions of these parameters and the ancestry
conditional on the observed data. MCMC essentially performs
Monte Carlo integration (using Markov Chains) of the normal-
ization integrals obtained through use of Bayes theorem. Our
MCMC implementation is similar to that of ref. 10 except for the
introduction of the mutation bias and the fact that the mutation
rate and population size are not treated independently i.e., we
use the variable mN instead of m and N separately, where m 5 m1

1 m2 is the mutation rate and N is the effective population size.
This has the advantage that we can use uninformative priors
throughout. The analysis of ref. 10 was based on the East Anglian
data set previously reported and analyzed through network and
classical methods (4). Full details of our MCMC methods are
given in the Appendix.

Results
The evolutionary process is defined by the two variables mN, the
average number of mutation events that occur in a lineage since
the coalescent, and v 5 (m1 2 m2)y(m1 1 m2), the mutation
bias or balance between expansion and contraction mutations.
The magnitude of bias is expected to be constant across popu-
lations, whereas mN is expected to vary between populations; the
ratio between populations reflecting relative population sizes.
Bayesian analysis was carried out on individual loci separately,
on haplotypes constructed from all possible combinations of two,
three, and four loci and on five-locus haplotypes.

Mutation Bias (v). The posterior probability density for the bias of
the individual loci of the East Anglians and South Africans
(Table 1, Fig. 1) shows weak evidence for mutation bias (single-
locus best-estimates of v are positive in nine of 10 cases) but the
signal is not strong enough to yield significance in any particular
instance. For five-locus haplotypes analyzed across five popula-
tions, the estimates of mutation bias are consistently positive and
are significantly greater than zero for the three largest samples
(East Anglians, South Africans, and Nigerians) (Table 2). More-

over, none of the five population estimates differ in magnitude
from any other. These observations provide good evidence that
Y microsatellites mutate asymmetrically. The average size of v

Fig. 1. Estimated probability density distribution of mutation bias for indi-
vidual loci and the five-locus haplotype.

Table 1. Mutation rate and bias, calculated for individual loci (based on a run of 2 3 105 steps) for East
Anglians and South Africans

DYS391 DYS19 DYS390 DYS389A DYS389B

East Anglian
Classical mN 0.32 0.46 0.94 0.36 0.43
Classical skewness 0.27 1.45 20.07 1.18 20.37
Range 3 5 5 5 5
MCMC mN 1.0 (0.6) 2.1 (1.0) 4.9 (2.7) 2.2 (1.0) 3.3 (1.4)
MCMC bias 0.2 (0.4) 0.3 (0.4) 0.2 (0.4) 0.2 (0.4) 0.04 (0.4)

South Africans
Classical mN 0.15 0.79 3.32 0.93 0.76
Classical skewness 1.43 0.08 0.63 20.71 20.72
Range 2 4 5 5 5
MCMC mN 0.5 (0.3) 4.9 (2.9) 2.2 (1.1) 7.2 (4.2) 4.9 (3.2)
MCMC bias 0.1 (0.5) 0.2 (0.4) 0.5 (0.4) 20.1 (0.4) 0.02 (0.5)

Standard errors are given in parentheses.
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for the largest samples (East Anglians and South Africans) is
0.48, which implies that mutations resulting in the gain of a
repeat unit are approximately 2.8 times more frequent than
those resulting in the loss of a repeat unit. The effect of varying
the number of loci used to estimate v is shown in Fig. 2. As

expected from the increasing sample size, the SD of the estimate
of v decreases as more loci are added. Adding more loci results
in an asymptotic convergence of v toward a point close to the
estimate based on all five loci. This convergence suggests that the
extra constraints imposed by considering multilocus haplotypes
uncover information that is not resolved when individual loci are
treated separately.

Rate of Mutations in Coalescent (mN). MCMC ancestry computa-
tions were performed on the individual loci of the two largest
data sets (East Anglian and South African) (Table 1), and
posterior probability distributions were plotted (Fig. 3). The
values of mN generated are similar to the average value of 1.65
obtained by simulation of the evolution of individual loci (4).
However, the MCMC-generated values of mN are greater than
those estimated by the classical method (i.e., from the variance
of the allele frequency distributions; ref. 12), with the single
exception of locus DYS390 in South Africans, although these
differences are not significant because of the large variance in
the classical estimates. The distributions for bias and mN are
uncorrelated, therefore our estimates of mN are very similar to
those of Wilson and Balding (10), who analyzed the East Anglian
data set with zero bias.

Our estimate for mN based on five-loci haplotypes is larger
than for any of the loci individually in the East Anglian data set
(significant for DYS391, DYS19, and DYS389A, all at P , 0.01).
The effect of varying the number of loci used in the MCMC
analysis is shown in Fig. 4. The SD of the estimates of mN
decreases as more loci are added because more data are con-
tributing to the estimate. However, as more loci are considered
the behavior of mN differs between the two populations. In the
East Anglians, as more loci are added mN increases, with no sign
of approaching an asymptote after five loci. By contrast, in the
South Africans, mean mN changes little as the number of loci
considered increases.

The discrepancy in the behavior of the single and multilocus
estimates between the East Anglians and Africans can be
attributed to differences in population history. Relative to the
constant population size assumed by our Bayesian analysis, an
expanding population will carry allele frequency distributions
that are more leptokurtic, with longer tails and more counts in
the center. With only one locus, the rare edge alleles lying in the
tails of a leptokurtic distribution can be attributed to stochastic
noise and the Bayesian posterior distributions will concentrate
mainly on the common, central alleles. The result is an under-
estimate of mN. However, when additional loci are considered,
generating multilocus haplotypes, the edges of the distribution
will become better defined. Because the breadth of the distri-
bution also defines its depth, this has the effect of forcing the
estimate of mN upward toward its true value. Thus, the general
agreement between single-locus and multilocus estimates for the
African data suggest that the underlying assumption of constant

Fig. 2. Effect of the number of loci used on the estimate of bias. The average
across all possible combinations is shown displaced to the right, with 1 SD
(average of the variances).

Table 2. Estimates of number of mutations (mN), bias (v), and coalescence time (mT) for each of our five
population samples and based on a run of 2 3 105 steps

East
Anglians

South
Africans Nigerians Japanese Sardinians

Sample size 174 104 23 22 15
mN 5.03 (0.77) 3.29 (0.61) 3.25 (0.98) 2.71 (0.86) 1.87 (0.73)
95% CI 3.66–6.62 2.16–4.51 1.60–5.20 1.25–4.42 0.73–3.39
v 0.43 (0.14) 0.53 (0.19) 0.70 (0.20) 0.27 (0.41) 0.37 (0.40)
95% CI 0.16 to 0.69 0.15 to 0.89 .0.33 20.58 to 0.96 .20.39
mT 2.19 (0.68) 3.19 (1.34) 2.34 (1.00) 2.00 (0.89) 1.52 (0.68)
95% CI 1.24–3.34 1.77–4.25 1.28–4.20 1.07–2.99 0.78–2.76

Standard errors are given in parentheses.
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population size has been met. In contrast, the disagreement seen
in the East Anglian data set suggests historical population
expansion, a possibility consistent with the expansion that would
have followed the colonization of Europe.

Comparisons Across Loci. Although our analysis does not detect
any differences in the bias between the loci, there is evidence for
heterogeneity between the mutation rates of the individual loci.
On the basis of the estimates of mN, the mutation rate of locus
DYS391 differs significantly from locus DYS390 (P , 0.05, both
East Anglian and South African data sets), from loci DYS19,
DYS389A and DYS389B (P , 0.01, South African data set) and
from the joint five-locus haplotype estimate (P , 0.001 for both
populations). However, removing locus DYS391 only weakly
affects our estimates of the bias and of mN. The remaining four
loci are consistent with each other, although as discussed above
the five-locus haplotype estimate for mN is significantly larger
than loci DYS19 (P 5 0.008) and DYS389A (P 5 0.01) on the
East Anglian data set, possibly as a result of population expan-
sion. In contrast, for the South Africans no such differences

between the five-locus haplotypes and the individual loci was
observed (P . 0.3), except for locus DYS391.

Ancestral HaplotypesyCoalescence. The fact that microsatellite
data do not contain a strong signal of the ancestry tree is clear
from the very low frequency with which specific trees are
observed. For example, in the East Anglian data (174 people),
in 40,000 samples one tree was observed three times, another 100
trees were observed twice, and the rest were unique trees. This
low repeatability is a reflection of the large number of possible
trees (approximately n! with n people) and poor signal. The
ancestral states of our two largest population samples predicted
by MCMC are shown in Table 3, with current states for
comparison. For each locus-population combination, the mean
allele size in the sample is greater than for the ancestral state
calculated from the MCMC coalescence algorithm, which is
consistent with the biased mutation process indicated by v. The
estimated coalescence time of the East Anglian population (2.19
mutations since coalescent, SD 5 0.98) is approximately two-
thirds that of the Africans (3.19 mutations since coalescent,
SD 5 1.34), but the difference between these estimates is not

Fig. 3. Estimated probability density distribution of mN for individual loci and
the five-locus haplotype.

Fig. 4. Effect of the number of loci used on the estimate of mN. The average
across all possible combinations is shown displaced to the right, with 1 SD
(average of the variances).
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significant. Interestingly, this relationship is reversed for mN,
where the value for East Anglians is larger than for South
Africans. By implication, the South African population is smaller
but older than the East Anglian population, which appears
recently expanded.

This pattern of older African and recently expanded European
populations fits well with the ‘‘out of Africa” hypothesis of
human evolution (13–15) and other Y-chromosome studies and
microsatellite studies (16, 17) and suggests that our MCMC
algorithm has successfully recognized important complexities in
the histories of these two populations. Such an ability could play
a vital role in distinguishing between alternative models for the
origins of modern human populations (18). In particular, our
data suggest that African and non-African populations retain
radically different historical size signatures, and this would seem
incompatible with models that require continuous gene flow in
and out of Africa (18). With larger sample sizes and the
incorporation of new MCMC methods for treating population
expansion and migration (11, 19), we are hopeful that estimates
can soon be made for the magnitudes and timing of historical
gene flow and population size fluctuation.

Conclusions
We show that MCMC implementation of Bayesian posterior
probability density analysis offers a powerful method for esti-
mating population genetic parameters from Y-microsatellite
haplotypes, extracting evolutionary signals that are not apparent
through classical analysis of individual microsatellite allele fre-
quency distributions. Most importantly, we provide strong evi-
dence that Y-microsatellites are prone to mutation bias favoring
expansion, in just the same way that autosomal loci appear to be.
Although estimates of the key parameter mN, the product of the
effective population size and the mutation rate, appear con-
founded by population history, this problem is partly resolved by
considering the way in which the estimate of mN varies with the
number of loci considered. In our African sample, little variation
is noted, implying a population at or near equilibrium. Among
East Anglians, multilocus haplotypes yield significantly higher
estimates of mN, implying a recent population expansion. This
pattern is supported by the contrasting mN and mT estimates,
which imply phylogenies that are relatively deep and narrow for
South Africans and shallow but wide for East Anglian. Obtaining
a more precise description of these population histories should
be the focus of future work, which would incorporate variation
in population size as a variable in the MCMC algorithm,

potentially allowing an estimation of both the extent and the
timing of this expansion.

Appendix
Our MCMC program impliments the neutral evolution (single-
step) model allowing for biased mutations. The underlying
Markov Chain is based on the coalescence of the observed
microsatellites back to the common ancestor. The likelihood of
the observed data D and ancestry tree S for N individuals is given
by

P~S, Duv. a! 5 Pprior sa
N21e2a(i

1
2 i~i11!Ti

3 P
L

e22TL ~~1 1 v!TL!Z1
L

Z1
L!

~~1 2 v!TL!Z2
L

Z2
L !

.

[1]

This consists of the changes in microsatellite length (Poisson
distributed increasing and decreasing single-step events Z6) that
occur between coalescent events on the tree S. Linked coalescent
events are separated by time TL (link L), while times Ti denote
the times between consecutive coalescence events when these
are time ordered, i.e. Ti is the time to next coalescence event
when there are i 1 1 people. Coalescence is an exponential
process eith rate a, the term 1

2
i(i 1 1) arising from the 1

2
i(i 1 1)

possible coalescent events that can occur with i 1 1 people. The
mutation rate m is set to 2 by time rescaling. Therefore with bias
v the mutation rate of positiveynegative steps are 1 6 v.

The Markov Chain consists of the tree S, the number of
mutation steps between coalescence events Z6

L (on link L), the
times Ti and the bias v. The coalescence rate a is removed from
the Markov Chain through integration, updating Ti with a
single-component Metropolis-Hasting algorithm based on the
posterior distribution

p~Ti! } Pprior~Ti! S O
k

k~k 1 1!TkD2N P
Ti[TL

~TL!Z1
L

1Z2
L

e22TL,

[2]

using the proposal distribution

q~Ti! : 2~i 1 1!Ti , G~Z 1
a 1 Z 2

a 1 Z 1
b 1 Z 2

b !,

which is the leading order approximation to the posterior (Eq.
2) since Ti . Ti11 on average, and therefore only the coalescing
links (descendants a and b) give significant contributions. The
RV a is sampled by a(i

1
2
i(i 1 1)Ti ; G(N), i.e. a gamma variate.

Internal genotypes and mutations are updated by use of the
following distribution

P~k! 5
1

Iv~x!

~1
2

x!2k1v

k!~k 1 v!!
. [3]

The normalization factor Iv(x) is the modified Bessel function.
Given genotypes at either end of a link (and therefore the
difference Z1 2 Z2), the number of positive changes P(Z1uZ1

2 Z2 5 v) is given by Eq. 3. A genotype g (microsatellite length)
is determined by the conditional

p~guga, gb, g0! } S1 2 v

1 1 v
D

g
2

Ig2ga SÎ1 2 v2TLaD
3 Ig2gb SÎ1 2 v2TLbD Ig2g0 S Î1 2 v2TLoD ,

Table 3. Mean and modal allele sizes in samples and for
ancestral states arising from MCMC for East Anglians and South
Africans

DYS391 DYS19 DYS390 DYS389A DYS389B

East Anglians
Sample mean 2.529 3.310 3.402 3.190 3.891

(SD) (0.566) (0.677) (0.967) (0.602) (0.658)
Sample mode 2 3 4 3 4
Ancestral mean 1.701 2.772 2.766 2.766 2.985

(SD) (0.833) (0.874) (0.961) (0.832) (1.097)
Ancestral mode 2 3 3 3

South Africans
Sample mean 2.154 4.173 2.471 4.154 4.048

(SD) (0.388) (0.886) (1.822) (0.963) (0.874)
Sample mode 2 4 1 5 4
Ancestral mean 0.886 2.319 1.743 2.159 1.835

(SD) (1.303) (1.365) (1.441) (1.389) (1.444)
Ancestral mode 1 3 2 3 2
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where g0 is the genotype of the immediate ancestor, and ga, gb
are the genotypes of the two descendants, with times TL0, TLa

and TLb, respectively. This follows from the likelihood (Eq. 1).
We update g by normalizing this expression numerically. The
corresponding changes Z1

L then are updated under a Gibbs
sampler.

The tree geometry S is updated by using a Metropolis-
Hastings algorithm at each coalescent event, similar to ref. 10.
The proposal distribution consists of removing the branch of
a tree and placing it on any of the other links existing at that
time, retaining its genotype. This move affects only a few of the

links and hence the acceptance probability is efficient to
calculate.

Finally the bias v is updated with a Gibbs method, the conditional
being a beta variate p(v) } (1 1 v)(LZ1

L (1 1 v)(LZ2
L
.

All our priors are uninformative.
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