Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin

Wenhua Liu*, Eunice Y. Yuen*, Patrick B. Allen[†], Jian Feng*, Paul Greengard[‡], and Zhen Yan*[§]

*Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214; [†]Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508; and [‡]Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021

Edited by Richard L. Huganir, Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 6, 2006 (received for review June 2, 2006)

The noradrenergic system in the prefrontal cortex (PFC) is involved in many physiological and psychological processes, including working memory and mood control. To understand the functions of the noradrenergic system, we examined the regulation of NMDA receptors (NMDARs), key players in cognition and emotion, by α 1and α 2-adrenergic receptors (α 1-ARs, α 2-ARs) in PFC pyramidal neurons. Applying norepinephrine or a norepinephrine transporter inhibitor reduced the amplitude but not paired-pulse ratio of NMDAR-mediated excitatory postsynaptic currents (EPSC) in PFC slices. Specific α 1-AR or α 2-AR agonists also decreased NMDAR-EPSC amplitude and whole-cell NMDAR current amplitude in dissociated PFC neurons. The α 1-AR effect depended on the phospholipase C-inositol 1,4,5-trisphosphate-Ca2+ pathway, whereas the α 2-AR effect depended on protein kinase A and the microtubule-based transport of NMDARs that is regulated by ERK signaling. Furthermore, two members of the RGS family, RGS2 and RGS4, were found to down-regulate the effect of α 1-AR on NMDAR currents, whereas only RGS4 was involved in inhibiting α 2-AR regulation of NMDAR currents. The regulating effects of RGS2/4 on α 1-AR signaling were lost in mutant mice lacking spinophilin, which binds several RGS members and G protein-coupled receptors, whereas the effect of RGS4 on α 2-AR signaling was not altered in spinophilin-knockout mice. Our work suggests that activation of α 1-ARs or α 2-ARs suppresses NMDAR currents in PFC neurons by distinct mechanisms. The effect of α 1-ARs is modified by RGS2/4 that are recruited to the receptor complex by spinophilin, whereas the effect of α 2-ARs is modified by RGS4 independent of spinophilin.

adrenergic receptor | RGS4 | neuropsychiatric diseases | G protein-coupled receptor | microtubule

drenergic receptors (ARs) can be divided into three main A types: $\alpha 1$ (α_{1A-D}), $\alpha 2$ (α_{2A-C}), and β (1-3), based on sequence information, receptor pharmacology, and signaling mechanisms. Although β -ARs are located mainly in the cardiovascular system, most α 1- and α 2-AR subtypes (except α_{1C} and α_{2B}) are highly expressed in CNS regions, e.g., prefrontal cortex (PFC), hippocampus, and brainstem. Norepinephrine, through the action of α 1-ARs and α 2-ARs, has been implicated in many key functions of PFC, including working memory and emotional control (1-3). An aberrant noradrenergic system, complementing altered serotonergic or dopaminergic signaling, contributes significantly to the pathophysiology of a variety of neuropsychiatric diseases associated with PFC dysfunction, such as depression, anxiety, schizophrenia, and attention-deficit hyperactivity disorder (4-7). Therefore, modifying noradrenergic signaling has been considered one of the key therapeutic actions of many antidepressants, anxiolytic drugs, and antipsychotics (8, 9). To understand the functional role of α 1- and α 2-ARs, we need to know their cellular targets that are important for cognition and emotion. The NMDAR channel has been implicated in normal cognitive processes and mental disorders (10-12), which makes it a potentially important target by which α 1- and α 2-ARs may regulate PFC functioning.

Results

Activation of α 1-ARs or α 2-ARs Reduces NMDAR-Mediated Currents in PFC Pyramidal Neurons. We first examined the effect of the noradrenergic system on NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSC) evoked by stimulation of synaptic NMDARs in PFC slices. As shown in Fig. 1A, application of 100 μ M natural neurotransmitter norepinephrine induced a strong and persistent reduction in the amplitude of NMDAR-EPSC, whereas in parallel control measurements where no norepinephrine was administered, NMDAR-EPSC remained stable throughout the recording. Application of 20 μ M desipramine, a norepinephrine transporter inhibitor, to activate endogenous noradrenergic receptors also caused a potent and longlasting reduction of the NMDAR-EPSC amplitude (Fig. 1B). The specific α 1-AR agonist cirazoline (40 μ M) produced a similar reducing effect, which was blocked by 40 μ M prazosin, a specific α 1-AR antagonist (Fig. 1*C*). In a sample of neurons we tested, norepinephrine, norepinephrine transporter inhibitors, and α 1-AR agonist all significantly suppressed synaptic NMDAR-mediated responses (norepinephrine: $31.5 \pm 8.5\%$, n = 4; desipramine: 34.2 \pm 2.7%, n = 6; nisoxetine (an norepinephrine transporter inhibitor, 50 μ M): 36.3 \pm 5.3%, n =3; cirazoline: $36.2 \pm 3.3\%$, n = 4). We further examined the noradrenergic effect on NMDAR-EPSC evoked by paired pulses, a measure that is sensitive to changes in the probability of transmitter release (13). As shown in Fig. 1D, application of desipramine reduced the amplitudes of NMDAR-EPSC triggered by both pulses, but it did not cause a significant change in the ratio of the paired-pulse facilitation (control: 1.72 ± 0.1 ; desipramine: 1.73 ± 0.1 , n = 5). This observation suggests that activation of noradrenergic receptors in PFC pyramidal neurons is likely to induce a change in postsynaptic NMDARs rather than glutamate release.

To verify the potential influence of α 1-ARs on NMDARs, we examined the effect of α 1-ARs on NMDAR-mediated wholecell currents in dissociated PFC pyramidal neurons. As shown in Fig. 1*E*, application of 40 μ M cirazoline caused a reversible reduction in the amplitude of currents evoked by 100 μ M NMDA

Author contributions: J.F. and Z.Y. designed research; W.L. and E.Y.Y. performed research; P.B.A. and P.G. contributed new reagents/analytic tools; W.L. analyzed data; and Z.Y. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS direct submission.

Abbreviations: 2APB, 2-aminoethoxydiphenyl borane; AR, adrenergic receptor; EPSC, excitatory postsynaptic currents; GPCR, G protein-coupled receptor; IP₃, inositol 1,4,5trisphosphate; NMDAR, NMDA receptor; NR2B, NMDAR 2B; PFC, prefrontal cortex; PLC, phospholipase C; RGS, regulators of G protein signaling.

[§]To whom correspondence should be addressed. E-mail: zhenyan@buffalo.edu.

^{© 2006} by The National Academy of Sciences of the USA

Fia. 1. Activation of α 1-ARs reduces the amplitude of NMDAR-FPSC and whole-cell NMDAR currents. (A-C) Plot of peak NMDAR-EPSC in PFC slices showing the effect of 100 μ M norepinephrine (A), 20 μ M norepinephrine transporter inhibitor desipramine (B), or 40 μ M α 1-AR agonist cirazoline in the absence or presence of 40 μ M α 1-AR antagonist prazosin (C). (D) Plot of peak NMDAR-EPSC evoked by double pulses (interstimuli interval, 100 ms) as a function of time and 20 μ M designamine application. (Insets A, B, and D) Representative current traces (average of three trials) at time points denoted by #. (Scale bars: 100 pA, 0.1 s.) (E and F) Plot of peak 100 μ M NMDA-evoked currents in dissociated PFC pyramidal neurons showing the effect of 40 μ M cirazoline (E) and its blockade by 40 µM prazosin (F). (Inset E) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 1 s.) (Inset F) Cumulative data (mean \pm SEM) summarizing the percentage reduction of NMDAR currents by cirazoline in the absence or presence of prazosin. *, P <0.01. ANOVA.

 $(18.2 \pm 0.5\%, n = 130)$. This effect was significantly attenuated by 40 μ M prazosin (Fig. 1*F*; 5.5 \pm 0.9%, n = 10), confirming that α 1-AR activation suppresses NMDAR currents.

We also examined the effect of α 2-ARs on NMDARmediated synaptic and whole-cell currents. As shown in Fig. 2*A*, application of 100 μ M specific α 2-AR agonist clonidine potently reduced the amplitude of NMDAR-EPSC (38.3 ± 3.2%, *n* = 5), which was diminished by 40 μ M specific α 2-AR antagonist idazoxan (9.0 ± 2.3%, *n* = 5). The effect of the norepinephrine transporter inhibitor designamine on NMDAR-EPSC was partially reduced by prazosin or idazoxan alone, but it was almost abolished by coapplication of the two antagonists (Fig. 2 *B* and *C*), suggesting the involvement of both α 1-ARs and α 2-ARs.

Fig. 2. Activation of a2-ARs reduces the amplitude of NMDAR-EPSC and whole-cell NMDAR currents. (A) Plot of peak NMDAR-EPSC in PFC slices showing the effect of 100 μ M α 2-AR agonist clonidine in the absence or presence 40 μ M idazoxan, a specific α 2-AR antagonist. (*Inset*) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 0.1 s.) (B) Plot of peak NMDAR-EPSC showing that blocking both $\alpha 1$ and $\alpha 2$ receptors with prazosin and idazoxan prevented the effect of norepinephrine transporter inhibitor designamine. (C) Cumulative data (mean \pm SEM) summarizing the percentage reduction of NMDAR-EPSC by desipramine in the absence or presence of different antagonists. *, P < 0.01, ANOVA. (D and E) Plot of peak NMDAR currents showing the effect of 100 μ M clonidine (D) and its blockade by 60 μ M yohimbine (E), a specific α 2-AR antagonist. (Insets D and E) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 1 s.) (F) Cumulative data (mean \pm SEM) summarizing the percentage reduction of NMDAR currents by different α2-AR agonists (clonidine or guanfacine at 100 μ M) in the absence or presence of different α 2-AR antagonists (yohimbine or idazoxan). *, P < 0.01, ANOVA.

Clonidine also decreased NMDA-evoked currents in dissociated PFC neurons (Fig. 2D; 15.6 \pm 0.8%, n = 30), which was abolished by 60 μ M yohimbine (4.9 \pm 0.3%, n = 7), another specific α 2-AR antagonist (Fig. 2*E*). As summarized in Fig. 2*F*, the effects of different α 2-AR agonists on NMDAR currents were all diminished by various α 2-AR antagonists, confirming that α 2-AR activation also suppresses NMDAR currents.

Because both α 1-AR and α 2-AR reduce NMDAR currents, we also examined whether their effects were additive to determine whether these processes had common targets at the NMDAR level. As shown in Fig. 8*A*, which is published as supporting information on the PNAS web site, in the presence of 100 μ M α 2-AR agonist clonidine, 40 μ M α 1-AR agonist cirazoline caused further suppression of NMDAR currents (cirazoline: 18.5 ± 1.2%; clonidine:

 $15.3 \pm 0.6\%$; cirazoline + clonidine: $32.0 \pm 2.7\%$, n = 6), indicating that the effects of α 1-AR and α 2-AR are additive. Moreover, the effect of clonidine, but not cirazoline, was blocked by 3 μ M selective NMDAR 2B (NR2B) antagonist ifenprodil (Fig. 8 *B* and *C*), suggesting that α 1-AR and α 2-AR target different pools of NMDARs.

We further examined whether α 1-AR and α 2-AR agonists may have direct effects on NMDARs. As shown in Fig. 9, which is published as supporting information on the PNAS web site, both cirazoline and clonidine produced similar effects on NMDAR currents at different voltages (-60 mV, -40 mV, -20 mV), suggesting that these compounds do not cause a voltagedependent block of NMDAR channels. Moreover, both cirazoline and clonidine produced similar effects on NMDAR currents in the presence of saturating (20μ M) or subsaturating (1μ M) concentrations of glycine, suggesting that these compounds do not reduce affinity of the NMDARs for glycine.

The α 1- and α 2-AR of NMDAR Currents Depend on Different Signaling Pathways and Cellular Mechanisms. Next, we examined the signaling mechanisms underlying the reduction of NMDAR currents by α 1-ARs and α 2-ARs, which are coupled to G_q and G_{i/o} proteins, respectively (14). As shown in Fig. 3A, application of the 1 μ M phospholipase C (PLC) inhibitor U73122 significantly blocked the cirazoline-induced decrease of NMDAR currents $(6.6 \pm 0.9\%, n = 7, \text{Fig. 3C})$, suggesting the involvement of the PLC pathway in α 1-AR signaling. PLC activation catalyzes the hydrolysis of membrane phosphoinositol lipids, leading to the release of inositol 1,4,5-trisphosphate (IP₃) and diacylglycerol. 2-Aminoethoxydiphenyl borane (2APB; 15 μ M), a membrane-permeable IP₃ receptor antagonist, substantially blocked the reduction of NMDAR currents by cirazoline (Fig. 3B; 6.1 \pm 0.8%, n = 7; Fig. 3C). Dialysis with 10 mM 1,2-bis(2aminophenoxy)ethane-N, N, N', N'-tetraacetate (BAPTA), a Ca^{2+} chelator, also diminished the effect of cirazoline (4.3 \pm 0.7%, n = 6; Fig. 3C), whereas 1 μ M selective PKC inhibitor bisindolylmaleimide I failed to do so $(16.2 \pm 1.0\%, n = 6;$ Fig. 3C). On the other hand, clonidine lost the capability to suppress NMDAR currents in the presence of 50 μ M PKA activator cpt-cAMP (Fig. 3D; $4.4 \pm 1.1\%$, n = 7; Fig. 3F), and 10 μ M PKA inhibitor H89 reduced NMDAR currents and occluded the effect of clonidine (Fig. 3E; $2.7 \pm 1.5\%$, n = 5; Fig. 3F). These results suggest that the PLC-IP₃-Ca²⁺ pathway is involved in α 1-AR regulation of NMDAR currents, whereas inhibition of PKA signaling is required for α 2-ARs to regulate NMDAR currents.

Recent studies have shown that NMDAR function can be regulated through a mechanism dependent on microtubule/ motor protein-based dendritic transport of NMDARs that is regulated by ERK signaling (15–17). Therefore, we examined the role of ERK and microtubules in adrenergic regulation of NMDAR currents. As shown in Fig. 4A, in the presence of 20 μ M U0126, a specific inhibitor of MEK (the kinase upstream of ERK), the cirazoline-induced decrease of NMDAR currents was not affected (17.3 \pm 1.2%, n = 5, Fig. 4C), whereas the effect of clonidine was largely blocked by U0126 (Fig. 4D; $5.7 \pm 1.3\%$, n =6; Fig. 4F). Application of 30 μ M microtubule-depolarizing agent colchicine did not prevent cirazoline from reducing NMDAR currents (Fig. 4B; $17.5 \pm 1.0\%$, n = 5; Fig. 4C), but it occluded the effect of subsequently applied clonidine (Fig. 4E; $3.5 \pm 1.3\%$, n = 6; Fig. 4F). The actin-depolarizing agent latrunculin B (5 μ M) or 50 μ M dynamin-inhibitory peptide failed to affect either α 1- or α 2-adrenergic regulation of NMDAR currents (Fig. 4 C and F), suggesting the lack of involvement of actin cytoskeleton or clathrin-mediated endocytosis in the process. Taken together, these results suggest that α 2-AR but not α 1-AR regulation of NMDAR currents is through a mechanism dependent on microtubule stability.

Fig. 3. The PLC–IP₃–Ca²⁺ or PKA pathway is involved in α 1- or α 2-adrenergic regulation of NMDAR currents, respectively. (*A* and *B*) Plot of peak NMDAR currents showing the effect of 40 μ M cirazoline in the absence or presence of 1 μ M PLC inhibitor U73122 (*A*) or 15 μ M IP₃ receptor antagonist 2APB (*B*). (*D* and *E*) Plot of peak NMDAR currents showing the effect of 100 μ M clonidine in the absence or presence of 50 μ M PKA activator cpt-cAMP (*D*) or 10 μ M PKA inhibitor H89 (*E*). (*Insets A*, *B*, *D*, and *E*) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 1 s.) (C and *F*) Cumulative data (mean \pm SEM) showing the percentage reduction of NMDAR currents by cirazoline (*C*) or clonidine (*F*) under various treatments. *, *P* < 0.01, ANOVA.

To confirm further that α 2-AR affects microtubule-based NMDAR trafficking, we carried out a quantitative surface immunostaining assay in PFC cultures transfected with GFP-NR2B (GFP tag is placed at NR2B extracellular N terminus). The surface distribution of recombinant NR2B was assessed by immunostaining with anti-GFP primary antibody followed by rhodamine-conjugated secondary antibody in nonpermeabilized conditions (16, 17). As shown in Fig. 10, which is published as supporting information on the PNAS web site, in neurons treated with 100 μ M α 2-AR agonist clonidine for 10 min, the fluorescent GFP-NR2B surface clusters on dendrites were significantly reduced in both the density (control: 38.2 ± 1.6 clusters per 50 μ m, n = 14; clonidine-treated neurons: 19.8 \pm 0.95 clusters per 50 μ m, n = 9; P < 0.01, ANOVA) and the size (control: $0.3 \pm 0.03 \ \mu m^2$, n = 14; clonidine-treated neurons: $0.18 \pm 0.02 \ \mu \text{m}^2$; P < 0.01, ANOVA), which was blocked by 10 μ M microtubule stabilizer taxol (cluster density: 37.2 \pm 3.1 clusters per 50 μ m; cluster size: 0.3 \pm 0.02 μ m², n = 6). In contrast, treatment with 100 μ M α 1-AR agonist cirazoline for 10 min caused little change on surface NR2B clusters. These results suggest the involvement of a microtubule-dependent mechanism in α 2-AR regulation of NMDARs.

Fig. 4. The suppression of NMDAR currents by α 2-AR but not α 1-AR is through a mechanism involving ERK-regulated microtubule stability. (*A*, *B*, *D*, and *E*) Plot of peak NMDAR currents showing that the effect of 40 μ M cirazoline or 100 μ M clonidine on NMDAR currents was affected differentially by 20 μ M MEK/ERK inhibitor U0126 (*A* and *D*) or 30 μ M microtubule depolymerizing agent colchicine (*B* and *E*). (*Insets*) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 1 s.) (*C* and *F*) Cumulative data (mean \pm SEM) showing the percentage reduction of NMDAR currents by cirazoline (*C*) or clonidine (*F*) in the absence or presence of various agents. *, *P* < 0.01, ANOVA.

The α 1-AR and α 2-AR Effects on NMDAR Currents Are Modulated by Different Regulators of G Protein Signaling (RGS) Proteins in PFC Pyramidal Neurons. Because RGS proteins play an important role in modulating G protein-coupled receptor (GPCR) signaling (18), we examined their influence on α 1-AR and α 2-AR regulation of NMDARs. To do so, we infused antibodies against specific RGS family members into neurons through the recording pipette to achieve an effective inhibition of endogenous RGS function (19, 20), and then we tested whether these antibodies could affect α 1 or α 2 regulation of NMDAR currents. We focused on two RGS family members, RGS2 and RGS4, because RGS2 is dynamically responsive to neuronal activity in a unique fashion (21), whereas RGS4, which exhibits the highest expression in PFC (22), has recently been identified as a schizophreniasusceptibility gene (23–26).

As shown in Fig. 5A and B, bath application of 40 μ M cirazoline reduced the amplitude of NMDAR currents, whereas in neurons dialyzed with the anti-RGS2 (19) or anti-RGS4 (20) antibody (4 μ g/ml), the reduction of NMDAR currents by cirazoline was strongly augmented. In a sample of neurons we

Fig. 5. Different RGS proteins modulate the effect of α 1-ARs or α 2-ARs on NMDAR currents. (*A* and *D*) Plot of normalized peak NMDAR currents showing the effect of cirazoline (*A*) or clonidine (*D*) in neurons dialyzed with 4 μ g/ml anti-RGS2 or anti-RGS4 antibody. (*B* and *E*) Representative current traces (at time points denoted by #). (Scale bars: 100 pA, 1 s.) (*C* and *F*) Cumulative data (mean \pm SEM) showing the percentage reduction of NMDAR currents by cirazoline (*C*) or clonidine (*F*) in the absence or presence of different RGS antibodies. *, *P* < 0.01, ANOVA.

tested (Fig. 5*C*), both RGS2 and RGS4 antibodies caused a significant potentiation (\approx 37% increase and \approx 26% increase, respectively) in the effect of cirazoline on NMDAR currents [control (-): 18.7 ± 0.4%, *n* = 14; anti-RGS2: 25.6 ± 0.7%, *n* = 8; anti-RGS4: 23.6 ± 0.8%, *n* = 11], whereas the heat-inactivated RGS2 antibody failed to do so (18.8 ± 0.6%, *n* = 6).

The role of RGS2 and RGS4 in α 2-AR signaling was also examined. As shown in Fig. 5 *D* and *E*, the reduction of NMDAR currents by clonidine was strongly potentiated (\approx 43% increase) by dialysis with the anti-RGS4 antibody [control (-): 15.2 ± 0.9%, *n* = 9; anti-RGS4: 21.7 ± 0.5%, *n* = 9; Fig. 5*F*], but not the anti-RGS2 antibody (15.5 ± 0.6%, *n* = 8; Fig. 5*F*). These results suggest that both RGS2 and RGS4 are involved in inhibiting α 1-AR signaling, whereas only RGS4 participates in dampening α 2-AR regulation of NMDAR currents.

The Scaffold Protein Spinophilin Is Differentially Involved in RGS Modulation of the α 1- or α 2-AR Effect on NMDAR Currents. It has been shown that the multidomain scaffolding protein spinophilin binds several GPCRs (27, 28) and RGS proteins (29), suggesting that spinophilin may actively regulate GPCR signaling by recruiting RGS proteins to the receptor complex. To test whether spinophilin is involved in adrenergic regulation of NMDARs, we examined the RGS modulation of α 1-AR and α 2-AR effects on NMDAR currents in spinophilin-knockout mice (30).

As shown in Fig. 6A, both anti-RGS2 and anti-RGS4 anti-

Fig. 6. The RGS modulation of the α 1-AR but not α 2-AR effect on NMDAR currents is lost in spinophilin-knockout mice. (A and C) Cumulative data (mean \pm SEM) showing the percentage increase of the effect of cirazoline (A) or clonidine (C) on NMDAR currents by 4 μ g/ml anti-RGS2 or anti-RGS4 antibodies in neurons from wild-type (WT) or spinophilin-knockout (KO) mice. *, P < 0.01, ANOVA. (B) Plot of normalized peak NMDAR currents showing the effect of cirazoline in neurons dialyzed with an anti-RGS2 or anti-RGS4 antibody in PFC pyramidal neurons from spinophilin-knockout mice.

bodies significantly potentiated the effect of cirazoline on NMDAR currents in neurons from wild-type mice (anti-RGS2: $38.9 \pm 1.3\%$ increase, n = 10; anti-RGS4: $28.5 \pm 2.5\%$ increase, n = 6). However, in neurons from spinophilin^{-/-} mice, dialysis with the anti-RGS2 or anti-RGS4 antibody failed to augment the effect of cirazoline on NMDAR currents (anti-RGS2: $-4.5 \pm$ 1.1% increase, n = 11; anti-RGS4: 6.3 \pm 1.5% increase, n = 7). Representative examples from spinophilin^{-/-} mice are shown in Fig. 6B. The loss of RGS2/4-mediated attenuation of α 1-AR signaling in spinophilin-deficient cells led to a 25.7 \pm 0.5% (n = 11) enhancement in the cirazoline effect on NMDAR currents. In contrast, the effect of anti-RGS2 or anti-RGS4 on clonidine regulation of NMDAR currents remained unaltered in neurons from wild-type vs. spinophilin^{-/-} mice (Fig. 6C; anti-RGS2: wild-type, $1.3 \pm 0.5\%$ increase, n = 8; knockout, $3.3 \pm 0.3\%$ increase, n = 6; anti-RGS4: wild-type, $40.5 \pm 3.1\%$ increase, n =6; knockout, $38.7 \pm 2.9\%$ increase, n = 6). The intact RGS4 modulation of α 2-AR signaling in spinophilin-deficient cells led to little change $(2.0 \pm 0.3\%, n = 11)$ in the clonidine effect on NMDAR currents. These data suggest that the scaffold protein spinophilin functions to facilitate the ability of RGS2/4 to inhibit α 1-adrenergic regulation of NMDAR currents, but it is not involved in RGS4 modulation of the α 2-AR effect on NMDAR currents.

Discussion

In this work, we found that activating α 1-ARs or α 2-ARs inhibits NMDAR currents through distinct mechanisms in PFC pyrami-

Fig. 7. Proposed model showing the mechanisms underlying $\alpha 1$ - and $\alpha 2$ adrenergic regulation of NMDAR function in PFC pyramidal neurons. $\alpha 1$ -AR (G_q-coupled) reduces NMDAR currents via the PLC-IP₃ pathway, whereas $\alpha 2$ -AR (G_{i/o}-coupled) decreases NMDAR currents by interfering with the microtubule (MT)/motor protein-based transport of NMDARs that is regulated by the PKA–ERK cascade. RGS2 is specifically involved in dampening the $\alpha 1$ -AR signaling, whereas RGS4 is involved in both $\alpha 1$ -AR and $\alpha 2$ -AR signaling. The scaffold protein spinophilin selectively facilitates the RGS2/4 modulation of the $\alpha 1$ -AR effect on NMDAR currents.

dal neurons, with the PLC–IP₃–Ca²⁺ pathway involved in the α 1-AR effect and PKA as well as the ERK-regulated microtubule-based transport of NMDARs involved in the α 2-AR effect. Moreover, the scaffold protein spinophilin selectively facilitates the RGS2/4 modulation of the α 1-AR effect on NMDAR currents (Fig. 7). Given the critical role of NMDA signaling in controlling neuronal function, our results provide a potential molecular and cellular mechanism for adrenergic regulation of emotion and cognition subserved by PFC.

Previous studies suggested that NMDAR activity could be regulated by serine/threonine and tyrosine phosphorylation by GPCR-induced signaling pathways (31). Emerging evidence indicates that another key factor in the regulation of NMDAR channel functions is the trafficking of NMDARs, which involves exiting from ER, transporting along dendritic microtubules, delivery to actin-enriched postsynaptic density, internalization, and lateral diffusion at synaptic and extrasynaptic sites (15). Recent studies have revealed the different mechanisms underlying serotonin and dopamine receptor mediated-regulation of NMDAR trafficking and function (16, 32, 33). The present finding on adrenergic regulation of NMDARs has introduced additional players in the process, such as RGS proteins and spinophilin.

RGS proteins are known to regulate the intensity and duration of GPCR signaling by accelerating the GTPase activity of G_{α} subunits (34, 18). However, the mechanism by which RGS proteins recognize GPCRs to confer signaling specificity remains largely unknown. *In vitro* studies have found that RGS2 shows preference for G_q class G_{α} subunits (35), whereas RGS4 attenuates both G_i - and G_q -mediated signaling (36–38). Biochemical evidence suggests that the divergent N-terminal domain of RGS proteins participates in GPCR recognition (39), and signaling specificity *in vivo* is conferred by interaction of RGS proteins with receptor complexes (40). The differential involvement of endogenous RGS2 and RGS4 in the regulation of NMDAR currents by α 1-ARs (G_q -coupled) or α 2-ARs (G_i coupled) suggests that RGS proteins act in a GPCR-specific manner in native neurons.

A recent study has revealed that the scaffolding protein spinophilin, which binds the third intracellular loop of α -ARs and the N-terminal domain of several RGS proteins, enhances the ability of RGS2 to inhibit α_{1B} -AR-evoked Ca²⁺ signaling (29). Interestingly, we found that the RGS2/4-mediated atten-

uation of the α 1-AR effect on NMDARs was lost in spinophilinknockout mice, leading to a bigger reduction of NMDAR currents by α 1-AR agonists in spinophilin-deficient neurons. In contrast, the RGS4-mediated suppression of the α 2-AR effect on NMDARs was intact in spinophilin-knockout mice, despite the potential interaction between activated α 2-AR and spinophilin (28, 41). This observation suggests that spinophilin may selectively regulate G_q-coupled receptor signaling by improving access of RGS2/4 to the receptors and facilitating the interaction of RGS2/4 with G_{α q}.

Materials and Methods

Electrophysiological Recordings in Slices. To evaluate the regulation of NMDAR-EPSC in pyramidal neurons located in deep layers (V–VI) of PFC, slices from young adult (3–5 weeks postnatal) Sprague–Dawley rats were used for recordings with the whole-cell voltage-clamp technique (16, 32). The brain slice (300 μ m) was submerged in oxygenated artificial cerebrospinal fluid (ACSF) containing 20 μ M CNQX and 10 μ M bicuculline. Cells were visualized with a water-immersion lens (magnification, ×40) and illuminated with near-IR light. A bipolar stimulating electrode was positioned ≈100 μ m from the neuron under recording. Before stimulation, cells (clamped at -70 mV) were depolarized to 60 mV for 3 s to relieve fully the voltage-dependent Mg²⁺ block of NMDAR channels. The Clampfit program (Axon Instruments, Union City, CA) was used to analyze evoked synaptic activity.

- Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF (1999) *Biol* Psychiatry 46:1266–1274.
- 2. Schramm NL, McDonald MP, Limbird LE (2001) J Neurosci 21:4875-4882.
- Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF (2002) J Neurosci 22:8771–8777.
- 4. Dubini A, Bosc M, Polin V (1997) J Psychopharmacol 11:S17-S23.
- 5. Charney DS, Redmond DE, Jr (1983) Neuropharmacology 22:1531-1536.
- 6. Arnsten AF (2004) Psychopharmacology 174:25-31.
- 7. Russell V, Allie S, Wiggins T (2000) Behav Brain Res 117:69-74.
- 8. Ninan PT (1999) J Clin Psychiatry 60(Suppl 22):12-17.
- 9. Hertel P, Fagerquist MV, Svensson TH (1999) Science 286:105-107.
- 10. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) Pharmacol Rev 51:7-61.
- 11. Jentsch JD, Roth RH (1999) Neuropsychopharmacology 20:201-225.
- 12. Tsai G, Coyle JT (2002) Annu Rev Pharmacol Toxicol 42:165-179.
- 13. Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) J Neurophysiol 70:1451–1459.
- Harrison JK, Pearson WR, Lynch KR (1991) Trends Pharmacol Sci 12:62–67.
- Harrison JK, Fearson WK, Eynen KK (1991) Trends Finantacio Sci 12:02–07.
 Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Annu Rev Pharmacol Toxicol 43:335–358.
- Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z (2005) J Neurosci 25: 5488–5501.
- 17. Yuen EY, Jiang Q, Feng J, Yan Z (2005) J Biol Chem 280:29420-29427.
- Vries LD, Zheng B, Fischer T, Elenko E, Farquhar MG (2000) Annu Rev Pharmacol Toxicol 40:235–271.
- 19. Li Y, Hashim S, Anand-Srivastava MB (2005) Cardiovasc Res 66:503-511.
- Diverse-Pierluissi MA, Fischer T, Jordan JD, Schiff M, Ortiz DF, Farquhar MG, De Vries L (1999) J Biol Chem 274:14490–14494.
- Ingi T, Krumins AM, Chidiac P, Brothers GM, Chung S, Snow BE, Barnes CA, Lanahan AA, Siderovski DP, Ross EM, et al. (1998) J Neurosci 18:7178–7188.
- Erdely HA, Lahti RA, Lopez MB, Myers CS, Roberts RC, Tamminga CA, Vogel MW (2004) *Eur J Neurosci* 19:3125–3128.
- Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, Deshpande SN, BK T, Ferrell RE, Middleton FA, et al. (2002) Hum Mol Genet 11:1373–1380.

Whole-Cell Recordings in Dissociated Neurons. Acutely dissociated PFC pyramidal neurons were prepared by using procedures described in refs. 16 and 32. Spinophilin-knockout mice were produced as detailed before (30). Recordings of whole-cell ligand-gated ion channel currents used standard voltage-clamp techniques (16). The cell membrane potential was held at -60 mV. NMDA (100 μ M) was applied for 2 s every 30 s. Drugs were applied with a gravity-fed sewer-pipe system. The array of application capillaries was positioned near the cell under study. Solution changes were effected by the SF-77B fast-step solution stimulus delivery device (Warner Instrument Co., Hamden, CT).

To test the impact of RGS proteins on GPCR signaling, the antibody raised against a peptide mapping at the highly specific N terminus of RGS2 or RGS4 (Santa Cruz Biotechnology, Santa Cruz, CA) was dialyzed into neurons through the patch electrode for 10 min before electrophysiological recordings started. Data analyses were performed with AxoGraph (Axon Instruments) and Kaleidagraph (Albeck Software, Reading, PA). ANOVA tests were performed to compare the differential degrees of current modulation between groups subjected to different treatments.

We thank Xiaoqing Chen for technical support. This work was supported by National Institutes of Health Grants MH63128 and NS48911 and a National Alliance for Research on Schizophrenia and Depression Independent Investigator Award (to Z.Y.).

- Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG, Buckland P, Sharkey V, Chowdari KV, Zammit S, *et al.* (2004) *Biol Psychiatry* 55:192–195.
- Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D, Waddington JL, Gill M, Corvin AP (2004) *Am J Med Genet Neuropsychiatr Genet* 125B:50–53.
- 26. Harrison PJ, Owen MJ (2003) Lancet 361:417-419.
- 27. Smith FD, Oxford GS, Milgram SL (1999) J Biol Chem 274:19894-19900.
- Richman JG, Brady AE, Wang Q, Hensel JL, Colbran RJ, Limbird LE (2001) J Biol Chem 276:15003–15008.
- Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, Milgram SL, Penninger JM, Allen PB, Greengard P, et al. (2005) Nat Cell Biol 7:405–411.
- Feng J, Yan Z, Ferreira AB, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Proc Natl Acad Sci USA 97:9287–9292.
- 31. Gerber U (2002) Neuropharmacology 42:587-592.
- 32. Wang X, Zhong P, Gu Z, Yan Z (2003) J Neurosci 23:9852-9861.
- Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) J Neurosci 26:4690–4700.
- 34. Berman DM, Wilkie TM, Gilman AG (1996) Cell 86:445-452.
- 35. Zheng B, De Vries L, Gist Farquhar M (1999) Trends Biochem Sci 24:411-414.
- Huang C, Hepler JR, Gilman AG, Mumby SM (1997) Proc Natl Acad Sci USA 94:6159–6163.
- Hepler JR, Berman DM, Gilman AG, Kozasa T (1997) Proc Natl Acad Sci USA 94:428–432.
- 38. Yan Y, Chi PP, Bourne HR (1997) J Biol Chem 272:11924-11927.
- Zeng W, Xu X, Popov S, Mukhopadhyay S, Chidiac P, Swistok J, Danho W, Yagaloff KA, Fisher SL, Ross EM, et al. (1998) J Biol Chem 273:34687– 34690.
- Xu X, Zeng W, Popov S, Berman DM, Davignon I, Yu K, Yowe D, Offermanns S, Muallem S, Wilkie TM (1999) J Biol Chem 274:3549–3556.
- Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ, Greengard P, Limbird LE (2004) Science 304:1940–1944.