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Summary
The distribution of looping patterns of laminin in uveal melanomas and other tumours has been
associated with adverse outcome. Moreover, these patterns are generated by highly invasive tumour
cells through the process of vasculogenic mimicry and are not therefore blood vessels. Nevertheless,
these extravascular matrix patterns conduct plasma. The three-dimensional (3D) configuration of
these laminin-rich patterns compared with blood vessels has been the subject of speculation and
intensive investigation. We have developed a method for the 3D reconstruction of volume for these
extravascular matrix proteins from serial paraffin sections cut at 4 μm thicknesses and stained with
a fluorescently labelled antibody to laminin (Maniotis et al., 2002). Each section was examined via
confocal laser-scanning focal microscopy (CLSM) and 13 images were recorded in the Z-dimension
for each slide. The input CLSM imagery is composed of a set of 3D subvolumes (stacks of 2D images)
acquired at multiple confocal depths, from a sequence of consecutive slides. Steps for automated
reconstruction included (1) unsupervised methods for selecting an image frame from a subvolume
based on entropy and contrast criteria, (2) a fully automated registration technique for image
alignment and (3) an improved histogram equalization method that compensates for spatially varying
image intensities in CLSM imagery due to photo-bleaching. We compared image alignment accuracy
of a fully automated method with registration accuracy achieved by human subjects using a manual
method. Automated 3D volume reconstruction was found to provide significant improvement in
accuracy, consistency of results and performance time for CLSM images acquired from serial paraffin
sections.
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1. Introduction
Manual three-dimensional (3D) volume reconstruction from stacks of laser scanning confocal
microscopy images obtained from the study of serial histological sections is a time-consuming
process. Reconstruction is complicated by potentially significant variations in intensity and
shape of corresponding structures, unpredictable and frequently inhomogeneous geometrical
warping during specimen preparation, and an absence of internal fiduciary markers for
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alignment. One approach is to introduce semi-automated methods to 3D volume reconstruction
that improve accuracy in comparison with manual methods (Lee & Bajcsy, 2005). However,
a long-term goal in multiple application domains, including medicine, mineralogy or surface
materials science, is to automate 3D volume reconstruction while achieving at least the
accuracy of a human operator. Through automation, it may be possible to save time and to
achieve consistency in 3D reconstructions not possible with human-assisted reconstruction
methods.

We have developed methods to automate the 3D volume reconstruction of blood vessels and
vasculogenic mimicry patterns in uveal melanoma from serial fluorescently labelled paraffin
sections labelled with antibodies to CD34 and laminin and studied by confocal laser scanning
microscopy (CLSM). In uveal melanomas and other tumours, the detection of looping patterns
that stain positive with the periodic acid-Schiff (PAS) in histological sections is associated
with adverse outcome. These patterns, rich in laminin, are generated by highly invasive tumour
cells and the patterns – although not blood vessels – conduct plasma outside of the conventional
vascular microcirculation (Folberg & Maniotis, 2004). It is important to compare the 3D
structure of these non-endothelial cell-lined laminin-positive patterns with endothelial cell-
lined blood vessels in order to appreciate the flow of blood and plasma through these tumours.

The 3D reconstruction of vasculogenic mimicry patterns is a registration problem (Maintz &
Viergever, 1998) requiring image pre- and post-processing steps to permit 3D visualization
and quantification of these geometrical structures (Wu et al., 2003). There are numerous papers
overviewing the registration technique (e.g. Brown, 1992; Hill et al., 2001; Zitova & Flusser,
2003). In the medical domain, several 3D volume reconstruction techniques have been
developed based on specialized image acquisition procedures, e.g. using a linear differential
transformer (Alkemper & Voorhees, 2001) or truncated pyramid representation (Papadimitriou
et al., 2004). There also exist many commercial tools from multiple vendors that could be used
for manual registration. For instance, an overview of 3D registration tools for magnetic
resonance imaging, compter tomography, confocal and serial-section data for medical/life
sciences imaging is provided at the Stanford1 and NIH2 websites. Most of these tools use
manual registration methods because automation of 3D volume reconstruction is very difficult.
Some software packages include semiautomated or fully automated 3D volume reconstruction
for specific imaging modalities under the assumption that visually salient markers have been
inserted artificially in imaged specimens.

We have developed a multistep process for alignment that does not require the insertion of
fiduciary markers into tissue that might distort the features of interest. It is based on (1) selecting
a frame from within each 3D subvolume to be used for alignment of the subvolumes; (2)
segmenting out closed or partially opened regions for matching; (3) computing features of
segmented regions, e.g. centroids and areas; (4) finding pairs of matching features; (5) selecting
the best subset of matched feature pairs; (6) computing alignment transformation parameters
and transforming 3D subvolumes into the final 3D volume; (7) refining alignment based on
normalized correlation; (8) transforming subvolumes using optimal transformation; and (9)
enhancing image intensities for visual inspection purposes as summarized in Fig. 1. Our
proposed solution for a 3D volume reconstruction process includes (1) unsupervised methods
for selecting the stack frame based on entropy and contrast criteria, (2) fully automated
registration techniques for image alignment and (3) an improved histogram equalization
method for image enhancement to compensate for the effects of photo-bleaching.

1Stanford web page with references to three-dimensional volume reconstruction software packages. URL: http://biocomp.stanford.edu/
3dreconstruction/refs/index.html and http://biocomp.stanford.edu/3dreconstruction/software/
2NIH website. URL: http://www.mwrn.com/guide/image/analysis.htm
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2. Materials and methods
2.1. Histological materials and methods

Formalin-fixed, paraffin-embedded uveal melanoma tissue samples were sectioned at 4 μm
thickness. The use of archival human tissue in this study was approved by the Institutional
Review Board of the University of Illinois at Chicago. Slides were deparaffinized in xylene
and rehydrated through a decreasing ethanol gradient. Slides were rinsed in distilled water
followed by antigen unmasking using Target Retrieval Solution 10× Concentrated (DAKO,
Carpenteria, CA, U.S.A.) according to the manufacturer's instructions and then rinsed in
phosphate-buffered saline (PBS) for 5 min. Slides were incubated with monoclonal mouse anti-
laminin antibody Sigma L8271, clone LAM 89 (Sigma, St Louis, MO, U.S.A.) at a dilution
titre of 1 : 200 for 30 min at room temperature. Slides were rinsed in protein blocking solution
(DAKO) for 10 min followed by detection with Alexa Fluor 488 goat anti-mouse IgG
(Molecular Probes, Eugene, OR, U.S.A.) for 30 min at a dilution of 1 : 400. Slides were rinsed
in buffer then mounted in Faramount Aqueous Mounting Medium (DAKO). For all staining
procedures, secondary antibody was omitted in negative controls.

2.2. Confocal laser scanning microscopy
All histological serial sections were examined with a Leica SP2 laser scanning confocal
microscope (Leica, Heidelberg, Germany) using the 40× objective. Images were stored in
tagged iamge file format (TIFF). To reconstruct extravascular matrix patterns in primary
human uveal melanoma tissue from 4-μm sections stained with laminin with signal detection
by immunofluorescence as described above, we evaluated three 3D volumes experimentally.
One 3D volume was formed from four consecutive subvolumes consisting of 96 image frames,
another one from six subvolumes consisting of 48 image frames, and the third was formed
from four subvolumes consisting of 13 frames.

2.3. Identifying an internal fiduciary marker
It is difficult to align serial paraffin-embedded sections using fiduciary markers artificially
inserted into the tissues or blocks (Spacek, 1971). For example, the introduction of markers
internally may distort tissue and its areas of interest. By contrast, markers placed outside the
tissue may migrate during sectioning or expansion of the paraffin. The composition of the
marker also poses challenges. Rigid material, such as suture, may fragment or distort the tissue
when sections are cut. In addition to attempting to locate fiduciary markers into tissues using
the aforementioned techniques, we also attempted to insert small cylindrical segments of
‘donor tissue’ from paraffin-embedded tissues according to the techniques used to construct
tissue microarrays (Nocito et al., 2001). The structures of interest in this study – blood vessels
and vasculogenic mimicry patterns – both contain laminin. In order to develop strategies for
the automated alignment of tissue sections, we first aligned serial CLSM stacks of human tonsil
tissue stained for laminin. The epithelial basement membrane of the tonsil is a highly irregular
surface against which alignment algorithms can be developed. In addition, the tonsil stroma
contains blood vessels that can be used to align tissue sections according to strategies described
below. Thus, laminin-positive structures function as internal fiduciary markers in this study.

Based on the material preparation and laminin-positive structures function imaged by
fluorescence CLSM, the automated 3D reconstruction process is based on the following two
assumptions. First, at least one frame from each 3D subvolume contains a set of closed or
partially opened visually salient contours representing laminin-positive structures (presence of
registration features). Second, certain shape characteristics of these salient contours, e.g.
centroid or area, remain invariant under translation and rotation transformations (shape
invariance of registration features across two 4-μm sections).
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2.4. Automated 3D volume reconstruction
We automated a 3D volume reconstruction process according to the overview schema
presented in Fig. 1. For simplicity, we outline a 3D volume reconstruction process for two
depth-adjacent subvolumes in the next subsections. We denote the two subvolumes as VS and
VT, and their image frames as Ia

S ∈ V S  and Ib
T ∈ V T . We address the 3D volume

reconstruction steps, such as (1) selection of frames from 3D subvolumes for alignment
analysis, (2) segmentation of closed or partially opened regions for matching, (3) feature
selection and extraction from segmented regions, (4) search for matching feature pairs, (5)
computation of alignment transformation parameters from a selected subset of matched feature
pairs followed by transformation of 3D subvolumes into the final 3D volume, (6) optional
refinement of alignment by normalized correlation and (7) image enhancement for visual
inspection purposes.

2.5. Frame selection
It is preferable to align two 3D subvolumes based on two depth-adjacent frames because any
structural discontinuity would be minimal. Unfortunately, the end frames of a sub-volume
acquired by CLSM are usually characterized by much smaller fluorescence intensities than
other frames inside a subvolume owing to the physical constraints of fluorescence confocal
imaging. For these end frames with small signal-to-noise ratios (SNRs), alignment is difficult.
Because the typical depth of each subvolume is small in comparison with the rate of structural
deformation, we selected a pair of frames from two depth-adjacent subvolumes automatically.
This selection is performed in such a way that the pair of frames would provide high confidence
in any features found. In general, high confidence in image features is related to their level of
visual saliency (image intensity amplitude, contrast, spatial variation and distribution). From
this viewpoint, we select an optimal pair of image frames that provides maximum saliency of
image features and is defined as:

(Iopt_a
S , Iopt_b

T ) = arg max

Ia
S,Ib

T {ENTROPY(IaS) × CONTRAST(IaS)

+ENTROPY(IbT ) × CONTRAST(IbT )}
(1)

where ENTROPY is the information entropy-based score, and CONTRAST is the contrast-based
score as described below.

Information entropy—This saliency score is based on evaluating each image frame
separately using the information entropy measure (Russ, 1999) defined below:

ENTROPY(IkΩ) = − ∑
i=1

m
pi(IkΩ)ln pi(IkΩ). (2)

ENTROPY is the entropy measure, pi(IkΩ) is the probability density of a fluorescent intensity

value i of an image frame Ik
Ω, m is the number of distinct intensity values and Ω = {S, T}. The

probabilities are estimated by computing a histogram of intensity values. Generally, if the
entropy value is high then the amount of information in the data is large and a frame is suitable
for further processing.

Contrast measure—This score is based on the assumption that a suitable frame for
registration would demonstrate high intensity value discrimination (image contrast) from the
background. Thus, we evaluate contrast at all spatial locations and compute a contrast score
according to the formula shown below:
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CONTRAST(IkΩ) = ∑
i=1

m
hi(IkΩ) − E(h (IkΩ)) × hi(IkΩ) (3)

where h(·) is the histogram (estimated probability density function) of all contrast values
computed across one band by using the Sobel edge detector (Russ, 1999, chapter 4), and
E(h (IkΩ)) is the sample mean of the histogram h (IkΩ). The equation includes the contrast
magnitude term and the term with the likelihood of contrast occurrence. In general, image
frames characterized by a large value of CONTRAST are more suitable for further processing
than frames with a small value of CONTRAST.

2.6. Segmentation
The goal of this step is to segment out structural features that could be matched in two selected
image frames. A simple intensity thresholding followed by connectivity analysis (Duda et al.,
2001) would lead to segments that are enclosed by fluorescent pixels above a threshold value.
Nonetheless, it is not always the case that all pixels along a segment circumference are lit up
above the threshold that separates background (no fluorescence) and foreground (fluorescent
signal) because of specimen preparation imperfections and limitations of fluorescent imaging.
Disregarding partially open/closed contours of lit up pixels could lead to an insufficient number
of segments necessary for computing registration transformation parameters.

We therefore developed a segmentation algorithm that labels segments (regions) with partially
closed high-intensity contours. The algorithm is based on connectivity analysis of a thresholded
image with a disc of a finite diameter, as is illustrated in Fig. 2. A disc is placed at every
background pixel location that has not yet been labelled. A segment (region) is formed as a
connected set of pixels covered by a disc while the disc moves within the fluorescent boundary.
The diameter of the disc determines what contours would lead to a detected segment that
represents closed contours with a few permissible gaps.

Selection of a disc diameter might affect interpretations of a contour depending on gap size.
For example, Fig. 3 shows multiple contour interpretations as a function of disc diameter
resulting in a line or to one closed contour or two touching contours. These interpretations are
consistent with methods used by human investigators to select regions of interest from a
partially closed contour.

In order to automate the segmentation process, the threshold value and disc diameter parameters
must be chosen. The threshold value is usually based on the SNR of a specific instrument. It
is possible to optimize the threshold value by analysing the histogram of labelled region areas
as a function of the threshold value because a large number of small areas (occurring due to
speckle noise) disappear at a certain range of threshold values. The choice of disc diameter for
connectivity analysis is much harder to automate because it is linked to the medical meaning
of each closed or partially closed contour that would be selected by an expert. We automated
the choice of a disc diameter by imposing lower and upper bounds on the number of segmented
regions and evaluating multiple segmentation outcomes.

2.7. Feature extraction
In this step, we identify most descriptive features of segments that can be extracted from images
after transformation matched across a pair of selected image frames and used for computing
image registration parameters. Ideally, these descriptive features include parameters describing
each segment shape so that homologous segments can be identified in a pair of images.

Image registration and transformation model—The homology of a pair of segments
is closely related to an image transformation model defined usually a priori. The transformation
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model is selected based on expected deformations during specimen preparation and image
acquisition. Depending on a selected transformation, one finds representative invariant features
under the selected transformation (e.g. area remains invariant under the rigid transformation).
We used a rigid transformation model (translation and rotation; thtee parameters) and an affine
transformation model (translation, rotation, scale and shear; six parameters). After inspecting
multiple sets of experimental data, it was apparent that the amount of scale and shear due to
specimen preparation was relatively small. We next developed simulation tools to understand
better deformations due to rigid and affine transformation models as observed in the measured
data. The simulation tool is also available via http://i2k.ncsa.uiuc.edu/MedVolume
(registration decision no. 1). Third, we investigated methods for establishing segment
correspondences and their assumptions about registration transformations (as known as the
Procrustes problem). We concluded that in order to develop a robust automated method for
establishing segment correspondences one is constrained to rigid transformation models
(Dorst, 2005). To our knowledge, the correspondence problem for more complex
transformation models using topological descriptors has not yet been solved in general.

Based on our considerations, we assumed a rigid transformation model (rotation and
translation) when establishing segment correspondences. After finding the correspondences,
we recovered the most accurate alignment mapping and therefore we chose the next higher
order transformation model, such as the affine model. The assumptions imposed while
establishing segment correspondences constrained the range of possible scale and shear values.
Nevertheless, the use of the affine model for image transformation accommodates small
amounts of scale and shear that are inevitable during material preparation. The limited range
of shear and scale values can be verified by scrutinizing entries in the affine transformation
matrix (see Eq. 6; a01 and a10 entries for shear, and a00 and a11 matrix entries for scale). The
approach enabled us to apply the affine transformation carefully in order to avoid any
unreasonable registration artefacts. As in any experimental setting, the registration decision
about transformation models is critical to automating 3D volume reconstruction. If other data
sets have to be modelled with more complex deformations (transformation models), then the
steps of feature selection, matching and registration parameter estimation should be re-visited.

Feature selection—Based on our choice of the image transformation model for finding
segment correspondences that consist of rotation and translation, we selected segment centroids
and areas as the primary shape features. It is known that the segment areas, as well as the mutual
distances between any two centroids of segments, are invariant under rotation and translation.
Thus, we utilized the invariance of these two shape features during feature matching and
registration parameter estimation.

Feature extraction—Both of the selected segment features were extracted after performing
a connectivity analysis by simple pixel count (areas) and average (centroid) operations.

2.8. Search for matching feature pairs
We established an automated correspondence between two sets of segment features. The
problem is a variant of the Procrustes problem (Dorst, 2005), where one estimates
transformation parameters based on centroid and area characteristics of segments (segment
feature). Our developed solution to the correspondence problem consisted of two phases. First,
we estimated a coarse rigid transformation by (a) matching Euclidian distances between pairs
of centroids (denoted as distance-based matching) and (b) comparing segment areas. Although
this type of correspondence estimation is robust to partial mismatches, it is insensitive to
angular differences (see Fig. 4). Second, we rotated and translated segments from the set T to
the coordinate system of the set S according to the parameters computed in the first phase, as
shown in Fig. 5. Finally, we found correspondences by matching vector distances, as opposed
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to Euclidean distances used in the first phase (denoted as vector-based matching). This
computation is appropriate for correcting incorrect correspondences from the first phase, but
would not be robust on its own for highly rotated segments.

The developed solution to the correspondence is presented here. Let us suppose that we
extracted two sets of shape features Sa(a = 1, … , NS) and Tb(b = 1, … , NT) from two selected
image frames Ia

S  and Ib
T  such as Si = {c→ iS, ai

S } and T j = {c→ j
T , aj

T } , where c→ k
Ω are the 2D centroid

locations and ak
Ω are the area values. The number of features in each image is NΩ, Ω = {S, T}

and NS does not necessarily equals NT. An illustration of the correspondence problem is
presented in Fig. 5 for NS = 3 and NS = 5.

In the first phase, the computation consists of (1) calculating a matrix of mutual distances
diu

S  and djv
T (i, u = 1, …, N Sand j, v = 1, …, N T ) for each set of segment centroids (e.g. dotted

lines in Fig. 5), (2) finding a set of matching pairs of segments Mk and (3) sorting the matched
segments based on the residuals of all matched centroids with respect to the estimated rigid
transformation. To find a matching pair of segments, we first select a pair of segments Si and
Tj denoted by pivot segments, and introduce three similarity measures, such as (a) the area ratio
Aij(u, v), (b) the difference of Euclidian distances (residual) Dij(u, v) and (c) the number of
matching segments Qij.

Pivoted by a pair of segments (Si, Tj), we first compute the area ratio as
Aij(u, v) = ∣ au

S ∕ av
T − 1 ∣  for matching segments (Su, Tv). Next, the difference of Euclidian

distance is computed as Dij(u, v) = ∣ diu
S − djv

T ∣ . Finally, the number of matching pairs Qij is
calculated by counting the number of pairs that satisfy both Dij(u, v) < δ1 and Aij(u, v) < ε1,
where the value of δ1 is the dissimilarity upper bound of a pair of distances, and ε1 is the
divergence upper bound of a ratio of two segment areas from 1. We not only maximize Qij but

also remove the matches that do not satisfy the inequality Qij ∕ Min(N S, N T ) ≥ λ1, where
λ1 ∈ [0, 1] is the lower bound of the normalized number of matches for a single pivot segment.
Figure 6 shows the description of the defined similarity metrics.

To find a final match Mk, we maximize a score function f(·) by incorporating three similarity
metrics as follows:

Mk = {(i, j) ∣ (i, j) = arg max
i, j { f (Qij,

1

D
−
ij

, A
−
ij)}} (4)

where D ̄
ij and Āij are, respectively, the average error distance and area ratio pivoted by (Si,

Tj) for all matching pairs of (u, v), 0 ≤ k ≤ NST and NST is the number of matching pairs of
segments (pivots). The function f(·) may be defined as an energy function or, more simply, a
weighted product of all components. In our implementation, we used a weighted product of
each component with normalization.

In the second phase, we first rotated segments from the set Tb(b = 1, … , NT) to the coordinate
system of the set Sa(a = 1, … , NS) according to the parameters computed by selecting two best
matches in the first phase. Next, vector-based matching is performed in a similar way as
distance-based matching in the first phase. The major difference is in replacing the Euclidian
distance metric Dij(u, v) with the vector distance metric Dij

∗ (u, v) defined in Eq. (5):

Dij
∗ (u, v) = (c→ iS − c→u

S) − (c→ j
T − c→v

T ) . (5)
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According to this distance metric, the vector distance incorporates both Euclidian distance and
angular constrains about a pivot segment. Therefore, the matching performance is greatly
increased compared with the first phase in terms of accuracy (mismatch) and the number of
matching segments. The second phase contains the same three parameters as the first phase,
and we denote them as ε2, δ2 and λ2. In almost all experimental cases, we have set ε1 = ε2, δ1
= δ2 and λ1 = λ2 (see Table 3).

2.9. Image transformation and selection of feature pairs
As explained above, we carefully selected an affine transformation model for the final image
transformation. Based on the material preparation procedure and the assumptions of the
correspondence problem approach developed, the affine transformation model is constrained
to only small amounts of scale and shear deformations.

Given the affine transformation model α : R2 → R2, the image alignment can be performed by
selecting at least three pairs of corresponding points and computing six affine transformation
parameters as shown in Eq. (6). The values (x′, y′) = α(x, y) in Eq. (6) are the transformed
coordinates of the original image coordinates (x, y) by affine transformation α(·). The four
parameters a00, a10, a01 and a11 represent a 2 × 2 matrix compensating for scale, rotation and
shear distortions in the final image. The two parameters tx and ty represent a 2D vector of
translation:

x ′

y ′
=

a00 a01
a10 a11

x
y

+
tx
ty

. (6)

From the viewpoint of image alignment accuracy, selected pairs of segment centroids should
be well spatially distributed in each image and should not be collinear. If points are close to
be collinear then the affine transformation parameters cannot be uniquely derived from a set
of linear equations (more unknowns than the number of equations), which leads to large
alignment errors. If points are locally clustered and do not cover an entire image spatially then
the affine transformation is very accurate only in the proximity of the selected points. However,
the affine transformation inaccuracy increases with distance from the selected points, which
leads to large alignment errors because a registration error metric takes into account errors
across the entire image area. In order to assess the pairs of matched centroid points in terms of
their distribution and collinear arrangement, we have designed a compactness measure. It is
defined as a ratio of the entire image area divided by the largest triangular area formed from
the points. The measure is defined mathematically as

Compactness Measure =
AreaIMACE

AreaTRIANGLE
. (7)

2.10. Optional transformation refinement
In this step, there is an option to accommodate a typical visual alignment by using the
normalized correlation approach (Pratt, 1974). The morphology-based alignment performed
so far could be refined based on intensity information in the same way as a human would
incorporate morphology and intensity cues during alignment. This step is very computationally
expensive with the computational complexity of O(image size × complexity of normalized
correlation × M6), where M × M is the neighbourhood of a centroid point. One would select
only a small spatial neighbourhood of the three centroid points to refine their locations based
on the highest correlation value among all possible perturbations of centroid point locations.
In practice, the size of the centroid point neighbourhood determines the importance assigned
to morphology and intensity information during the alignment.
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2.11. Image enhancement
The purpose of this step is to enhance CLSM image appearance for visual inspection. It is
known that all fluorescent dyes bleach over time upon observation. This phenomenon, called
photobleaching, occurs in confocal microscopy due to the high intensity of the laser
illumination and the formation of oxygen radicals as a by-product of the photochemistry of
fluorescence (reaction of oxygen radicals with the fluorescent dyes destroys the dyes). To
remedy the photobleaching problem, one can use anti-fade agents (Franklin & Filion, 1985),
such as N-propyl gallate, p-phenylenediamene (PPD), sodium azide, DABCO, or Citifluor, or
apply image enhancement techniques such as contrast manipulation and histogram equalization
(Stark & Fitzgerald, 1996).

Another approach to this problem is to restore or enhance image intensities. One of the most
common techniques for image enhancement is histogram equalization (Benson et al., 1985).
The histogram equalization method treats image intensities as random variables with values
from the interval [0, 1] following a certain probability density function (PDF). By finding a
transformation of the original PDF into a uniform PDF and applying it to image intensities, a
newly formed image is characterized by lower contrast but uniform brightness.

Here, we chose to approach the problem with an image enhancement method that would be
considered as a variation of histogram equalization (Gonzalez & Woods, 2002). The improved
histogram equalization procedure involves two steps, (1) separating background pixels by
thresholding with ω, and (2) applying the histogram equalization technique to foreground
pixels. The final enhanced image values Ienhance are obtained according to:

Ienhance = HistogramEqualization (Ifg );
Ifg (x, y) = {I (x, y) : if I (x, y) > ω

ϕ : otherwise

(8)

where I(x, y) and Ifg(x, y) are the original and foreground pixel value at (x, y), respectively, and
ω is the threshold value. The symbol ϕ denotes background pixels, and the pixels labelled by
ϕ are not considered during histogram equalization.

2.12. Evaluations of image alignment accuracy
Our primary evaluation criterion with regard to image alignment is its registration accuracy.
We compare image alignment accuracy of the proposed fully automated method with
registration accuracy achieved by human subjects using a manual registration method. There
are three fundamental problems that arise during registration accuracy evaluations: (1) what
to compare any registered image with, (2) how to compare multiple image alignment results
and (3) how to evaluate accuracy of alignment (the choice of metrics).

Evaluation images—The challenge here lies in two partly conflicting objectives of our
work. The first objective is to design a 3D volume reconstruction process that (a) aligns real
data accurately and (b) is robust to many intensity and morphological deviations from a model.
The second objective is to quantify the robustness and accuracy of the proposed 3D volume
reconstruction process. If many sets of ground truth data were available then a 3D volume
reconstruction process could be designed to compensate for known deviations leading to
accurate and robust results (first objective). We could then easily quantify the accuracy and
robustness of a 3D volume reconstruction process (second objective). However, if ground truth
data are not available to meet the first objective, the design of a 3D volume reconstruction
process has to be based on assumptions derived from theoretical considerations (fluorescence
imaging and methodology of material preparation) and experimental observations (visual
inspection of data and frame selection evaluations).
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To meet the second objective, the need for evaluation (ground truth) data is even more pertinent
and the problem of obtaining the data must be resolved. Given the frame selection procedure,
the first and last frames within a subvolume are the best available type of registered data to
assess accuracy and robustness, as illustrated in Fig. 7. Selection of evaluation images to be
aligned is based on the following assumption. Presenting end frames of a real subvolume to
humans is similar to showing the middle frames of two virtual subvolumes if morphological
distortions due to preparation cut are neglected and an intensity profile is compromised. We
model inter-subvolume morphological distortion δMINTER = δMINTRA + δMPREP as a
summation of intrasubvolume morphological variation δMINTRA and the deformation
introduced during material preparation δMPREP. For evaluation purposes, we assume that the
selected frames within a subvolume (known ‘ground truth’) approximate the case of selected
frames from two spatially adjacent subvolumes (unknown ‘ground truth’). Thus, the
experimental comparisons in this work are performed with the first and last frames within a
subvolume, where the three selected pairs of frames shown in Fig. 8 came from those
subvolumes that had the highest visual saliency scores of the first and last frames with a
subvolume. This approach could be viewed as the most optimal compromise between the two
conflicting objectives.

Figure 8 shows three pairs of misaligned images with known deformations by taking the first
and last images along the z-axis within one CLSM stack (co-registered subvolume) and
applying a representative affine transformation αGT(·) to the last image with known
transformation parameters. The representative affine transformation was determined from a
set of all affine transformations obtained during manual 3D volume reconstructions. The last
image before transformation is the ground truth image with respect to which both manual and
automatic reconstructions are compared. All pixel coordinates of the transformed (ground
truth) image PGT = {p1

gt, p2
gt, …, pn

gt} are defined by the affine transformation

αGT : pi → pi
gt for every pixel location P = {p1, p2, … , pn}.

Registration software—The evaluation images are presented to a human subject or to an
image alignment algorithm. For manual registration, the human–computer interface (HCI) for
selecting points or segments is identical to our web-enabled HCI interface at http://
i2k.ncsa.uiuc.edu/MedVolume. The manual and automated registration tools are part of the
I2K software library.3

Evaluation metric—We chose to compare multiple alignment results by computing an
average distance between a ground truth location and a location obtained from user-defined
transformation (Lee & Bajcsy, 2005). The average distance E becomes our evaluation metric
and is calculated over all image pixels according to:

E = 1
n ∑

i=1

n
(pixgt − pix

usr)2 + (piygt − piy
usr)2 (9)

where n is the number of transformed image pixels, and PUSR = {p1
usr, p2

usr, …, pn
usr} are

the transformed pixel coordinates according to the estimated affine transformation
αUSR : pi → pi

usr by user point selections. The set of affine parameters is obtained from
manual (human subject's point selection and matching) or fully automated registration
methods.

3I2K website, URL: http://alg.ncsa.uiuc.edu/tools/docs/i2k/manual/index.html

BAJCSY et al. Page 10

J Microsc. Author manuscript; available in PMC 2007 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Results
3.1. Frame selection results

We evaluated two 3D volumes experimentally. One 3D volume was formed from four
consecutive subvolumes consisting of 96 image frames (sample images are shown in Fig. 8),
and a second was formed from six subvolumes consisting of 48 image frames. The entropy
and contrast defined in Eqs (2) and (3) were multiplied according to Eq. (1), and the results
are shown in Fig. 9 as a function of image frame index. These graphs demonstrate the combined
entropy and contrast variations as a function of image frames from all subvolumes. The frame
with maximum visual saliency score is selected automatically within each subvolume for
alignment. For example, the frame indices 11 and 28 would be used for alignment of the first
two depth-adjacent subvolumes because they correspond to the local maxima in Fig. 9 (left).

Based on Fig. 9, one could always choose the middle frame of each physical section
(subvolume) for image alignment and skip this processing step. From an accuracy viewpoint,
this approach would lead to a suboptimal solution but with some computational savings. We
discovered that the computational savings are negligible in comparison with all registration-
related processing (less than a second per frame in comparison with several hours per frame
for other processing steps according to Fig. 1). Experimental evaluations of the suboptimal
accuracy loss led to the range of normalized correlation values in [0.59, 0.635] by computing
the correlation of the middle frame (suboptimal solution) with all other 21 image frames inside
one subvolume (potentially optimal solutions). Additional evaluations of normalized
correlations for pairs of middle frames coming from adjacent cross-sections led to the range
of values in [0.21, 0.27]. Thus, from our data, we concluded that based on the experimental
data one would expect an inaccuracy due to a suboptimal solution to be between 0 (suboptimal
and optimal solutions are identical) and 0.045/0.21 ≈ 21.43% (the worst case). Statistically,
the distribution of the introduced inaccuracy would be skewed toward smaller values and would
be data-dependent. In our experimental data shown in Fig. 9 (altogether ten subvolumes), 10%
of the middle frames coincided with the optimal solution and the middle frame was displaced
on average 2.5 frames from the optimal frame. In order to avoid these uncertainties, we
recommend performing the frame selection step.

When we investigated tradeoffs between choosing the end frames of two spatially adjacent
subvolumes (as opposed to selecting the frames closer to the middle frames within each
subvolume), we discovered that although this method could be applied only after aligning
subvolumes, it would still demonstrate the tradeoffs between intensity variations and
morphological distortions along the z-axis (frame index), and hence guide us in an optimal
frame selection. Figure 10 illustrates data that support the frame selection according to our
proposed criteria rather than choosing the end frames.

3.2. Manual alignment results
The experimental data consist of the total of 102 manual alignment trials with 20 human
subjects. The compactness measure developed for automated alignment method (see Eq. 7)
was applied to the set of points selected by human subjects, and the compactness measure
values for all alignment trials are shown in Fig. 11. In order to eliminate the worst results,
statistical analysis was applied. The elimination was based on a threshold value equal to 99.73%
statistical confidence interval from the average and standard deviation values of all
compactness measures (set to 1162.16). Figure 11 shows an alignment error as a function of
the corresponding compactness measure reported for all experiments. Table 1 summarizes the
results statistically per image pair.
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3.3. Automated alignment results
Table 2 details results obtained using automated alignment without and with the optional
optimization step. The automated alignment leads to the same result every time the algorithm
is executed with the same data, and therefore the standard deviation is equal to zero for each
image pair and equal to 2.07 and 0.47 over all three image pairs without and with optimization,
respectively. Some intermediate results for the automated alignment process are presented in
Figs 12-15. After selecting the frames for alignment, the results of segmentation are shown in
Fig. 12 (original) and Fig. 13 (segmentation) following the segmentation method described in
Section 2.6. Figure 14 illustrates the correspondences found for the segments shown in Fig. 13
by considering centroid and area segment features (see Section 2.8). In Fig. 15, the circles
denote three pairs of centroid points that were selected from the set of all pairs shown in Fig.
14 according to the proposed compactness measure defined in Eq. (7) and described in Section
2.9.

The algorithmic parameters selected for the three evaluation pairs of images are shown in Table
3. The set of parameters includes (1) threshold values for images S and T, disc diameter and
minimum acceptable segment size in the segmentation step, and (2) limiting values for centroid
distances (ε1, ε2), segment areas (δ1, δ2) and numbers of segment matches (λ1, λ2) in the
matching step. Ideally, one would like to perform general optimization of all parameters. In
our case instead, the problem was constrained (1) to the same imaging device but acquiring
data over a time period of several months, and (2) to the same class of specimens but prepared
in separate batches. The parameters shown in Table 3 illustrate the small variability in the
parameter values.

According to Table 2, the optimization step improved alignment accuracy for two out of the
three test image pairs (test image pairs 2 and 3). The optimization step was conducted by
choosing the correlation spatial neighbourhood size M = 5 to control (a) the amount of
computation required and (b) the maximum range of shear and scale. In our experiments, all
processing steps except for optimization took several seconds on a regular desktop computer.
The optimization step on its own took on average 19.66 min (16, 21 and 22 min) on a single
processor machine (3.0 GHz), for the three pairs of test images of pixel dimensions 578 × 549,
584 × 649 and 789 × 512. The offsets of the three centroids due to optimization were: (+1,+1),
(0,0), (+1,0) for image 1; (−2,2), (1,2), (1,0) for image 2; and (2,−1), (2,2), (2,2) for image 3.
The normalized correlation coefficient increased with optimization by 7.8, 21.3 and 12.4% for
test image pairs 1, 2 and 3, respectively.

3.4. Image enhancement results
The techniques of histogram equalization (Fig. 16, middle) and improved histogram
equalization (Fig. 16, right) were applied to images forming a 3D volume as described in
Section 2.11. Based on a visual inspection of the two results in Fig. 16 (there are no metrics
based on visual perception that are widely accepted in the literature), the overall intensity in
the images is well adjusted with the original histogram equalization method; however, noisy
pixels are overly highlighted and the edge intensity gradient is not preserved. By contrast, the
proposed improved histogram equalization method provides better visual enhancement of
fluorescent pixels while suppressing the image background.

4. Discussion
The design of a 3D volume reconstruction process drew from theoretical considerations
(fluorescence imaging and material preparation methodology) and experimental observations
(visual inspection of data and frame selection evaluations). Frame selection experiments were
shown to illustrate the tradeoffs between morphological distortion and intensity variations. The
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results obtained during frame selection provided additional insight into many of the registration
decisions, e.g. transformation model selection, and morphological and intensity invariance.

For the evaluation of image alignment, the underlying assumptions are that: (a) the three
evaluation images prepared (first and last frames within a stack) are realistic representatives
of slide-to-slide alignment cases, where two cross-sections might have (i) missing, (ii) new or
(iii) warped structures with a priori unknown intensity variations; (b) HCI of our software
registration tools are user-friendly; (c) 102 manual alignment trials with 20 human subjects
form a statistically significant pool of measurement samples; and (d) the global evaluation
metric to Eq. (9) is appropriate for comparing multiple alignment results. Observations of a
material preparation procedure led us to the use of the affine transformation model as modelled
by the evaluation images. To obtain better understanding of rigid vs. affine transformation
models, we implemented a web-enabled simulation tool at http://i2k.ncsa.uiuc.edu/
MedVolume. Under the above assumptions and based on the image alignment results obtained,
we concluded that manual (pixel-based) image alignment is less accurate and less consistent
(large standard deviation) than the fully automated alignment (on average, 9.4 or 15 times
larger alignment error without or with optimization, respectively, and 25.8 or 113.7 times larger
standard deviation without or with optimization, respectively, in the 99.73% confidence
interval).

The limitations of the fully automated 3D reconstruction system resulted from those inherent
to all modelling assumptions, such as (a) the presence of partially closed contours of fluorescent
pixels, (b) shape invariance along the z-axis for two depth-adjacent subvolumes, (c) satisfactory
SNR, (d) limited amount of scale and shear deformations due to specimen preparation and
imaging, and (e) a sufficient number of features detected (at least three pairs). In addition,
selection and optimization of algorithmic parameters still pose challenges for automation,
although the algorithmic parameters in Table 3 demonstrated a very negligible change from
image to image. The limitations of the manual 3D volume reconstruction are clearly
consistency, the cost of human time needed to perform image alignment and knowledge
requirements to achieve good alignment accuracy (e.g. the time for training human subjects).
In general, the time spent on each 3D volume reconstruction task is non-linearly proportional
to the resulting quality, with certain insurmountable quality limits.

As indicated in Section 2.10, the inclusion of the alignment optimization step is optional and
depends on input data. One would expect to obtain higher alignment accuracy with optimization
than without optimization. The optimization step is based on pixel-to-pixel intensity correlation
that should compensate for inaccuracies introduced by centroid point extraction (segmentation
inaccuracy) and segment representation (shape characteristics limited to centroid and segment
size), assuming correct pairs of segments were established. However, we observed that for
larger size segments these inaccuracies are larger than for smaller size segments. For example,
the average segment size of the three pairs of segments selected for computing the registration
transformation parameters was 177, 222 and 1498 pixels for test image pairs 1, 2 and 3,
respectively. Thus, we hypothesize that the optimization step will not improve alignment
accuracy (and should not be used) if the set of matched segments consists of small-sized
segments (e.g. less than 200 pixels but larger than the algorithmically defined minimum size
threshold equal to 50 pixels). This rule for inclusion of the optimization step could be explained
by the presence of larger shape variations for larger sized segments that were not captured by
the two descriptors (centroid and size) and brought larger mismatch of lit up pixels defining
segment boundaries. Intensity-based optimization therefore leads to alignment improvement.
By contrast, smaller sized segments are represented sufficiently accurately with the set of
segmented pixels and the two shape descriptors, and any additional optimization based on
intensity information might worsen the results due to intensity noise. Finally, the computational
cost of optimization should be offset by the alignment accuracy gain. In our experiments, an
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average of 19.66 min per optimization would not be considered as unreasonable. However,
significantly larger execution time could be expected for larger images because the
computational cost of optimization will increase exponentially with image size, and a tradeoff
study of feasibility vs. accuracy gain for such experiments should be conducted beforehand.

5. Conclusions
We have presented a solution to 3D volume reconstruction of blood vessels and vasculogenic
mimicry patterns in histological sections of uveal melanoma from serial fluorescently labelled
paraffin sections labelled with antibodies to CD34 and laminin and studied by CLSM. Under
the assumptions discussed above and including evaluation data, registration software, a number
of trials and evaluation metrics, our work demonstrates significant benefits of automation for
3D volume reconstruction in terms of accuracy achieved (on average, 9.4 or 15 times smaller
alignment error without or with optimization, respectively) and consistency (25.8 or 113.7
times smaller standard deviation without or with optimization, respectively) of the results and
performance time. We have also outlined the limitations of fully automated and manual 3D
volume reconstruction systems, and described related automation challenges. We have tried
to show that given computational resources and repetitive experimental data, the automated
alignment provides more accurate and consistent results than a manual alignment approach.
With the proposed approach, the automation will reduce alignment execution time and future
costs, as the price of more powerful computers decreases.

To our knowledge, there have been developed no robust and accurate fully automated 3D
volume reconstruction methods from a stack of CLSM images without artificially inserted
fiduciary markers. Our research work is also unique in terms of forming a complete system for
medical inspection of 3D volumes reconstructed from CLSM images. Our approach to
automating the reconstruction process incorporates the tradeoffs between computational
requirements and uncertainty of the resulting reconstructions introduced by each processing
step. For example, just to perform alignment refinement over a small pixel neighbourhood
requires significant computational resources (Kooper et al., 2005). Thus, the approach based
on morphology-based alignment followed by intensity-based refinement accommodates our
prior knowledge regarding the data and limitations of our computational resources. This paper
contributes to the presentation and development of a 3D volume reconstruction process with
automated methods for (a) frame selection from a pair of depth-adjacent subvolumes, (b) image
alignment and (c) visual enhancement. Our 3D volume reconstruction process is supported by
(1) conducting experiments to compare (a) optimal and suboptimal frame selection, and (b)
manual and fully automated alignment procedures, and (2) explaining the reasons behind
choosing (a) the affine transformation model as opposed to a rigid model, and (b) morphology-
based alignment followed by intensity-based refinement.
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Fig. 1.
An overview of 3D volume reconstruction steps from input fluorescent confocal laser scanning
microscope 3D subvolumes. The processing steps start with a set of subvolumes and end with
one registered 3D volume.
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Fig. 2.
Illustration of disc-based segmentation. A segment is formed as a connected set of pixels
covered by a disc while the disk moves within the fluorescent boundary. Depending on the
disc diameter and contour gaps a segment is either detected or not.
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Fig. 3.
Illustration of multiple contour interpretations. A partially closed contour could lead to three
detection outcomes depending on the disc diameter.
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Fig. 4.
Illustrations of the case when distance-based matching leads to an erroneous match of the
segments labelled as 3 (left) and as 4 (right).
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Fig. 5.
Illustration of the correspondence problem for two sets of features Si and Tj with unequal
number of features NS = 3 (left) and NT = 5 (right). Segments are shown as discs characterized
by their index i, area ai

S  and centroid location c→ i
S . Dashed lines represent the Euclidean distances

between any two centroid locations.
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Fig. 6.
Illustration of distance-based matching for two pivot segments Si = {c→ iS, ai

S } and

T j = {c→ j
T , aj

T }. In order to find the best match, distance and area ratio of pairs of segments are
compared to satisfy Dij(u, v) < δ1 and Aij(u, v) < ε1.
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Fig. 7.
Real and virtual subvolumes of a specimen show two possible cuts of a specimen.
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Fig. 8.
Illustration of the three selected pairs of evaluation images.
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Fig. 9.
Evaluation of image frame selection from within each 3D subvolume to be used for alignment
of the subvolumes. The graphs show combined visual saliency score as a function of image
frame for two 3D volumes. The frame with maximum visual saliency score within each
subvolume would be used for alignment.
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Fig. 10.
Evaluation of interframe similarity for two spatially adjacent subvolumes with 22 frames after
alignment. The similarity is measured by normalized correlation (vertical axis). The horizontal
axis refers to the pairs of frames that start with the end frames of subvolumes (21–0 ∼<Sub-
Vol#1, frame#21> – <Sub-Vol#2, frame#0>) and finish with the middle frames (11–10 ∼<Sub-
Vol#1, frame#11> – <Sub-Vol#2, frame#10>).
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Fig. 11.
Alignment error as a function of compactness measure associated with each trial. A high
compactness measure implies that the control points selected during manual alignment are
spatially dense or close to being collinear, thus leading to large alignment error. A hypothetical
linear relationship of the variables is shown.
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Fig. 12.
Two representative images that have to be aligned. The mathematical notations of these images
in the text is Ia

S ∈ V S  (left) and Ib
T ∈ V T  (right). Human tonsil tissue stained for laminin.
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Fig. 13.
Segmentation of input images shown in Fig. 12. Segmentation is performed by thresholding
followed by connectivity analysis with a disc. The two images illustrate results obtained with
different disc parameters [left image – T.S. (threshold S) = 10, right image – T.T. (threshold
T) = 8, M.R. (minimum size of a region) = 80, and D.D. (disc diameter) = 1].
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Fig. 14.
The correspondence outcome from two phases for the segments shown in Fig. 13. The left and
right images are to be aligned. Overlays illustrate established correspondences between
segments that are labelled from 1 to 17. The centroid locations of segments are sorted based
on the correspondence error from the smallest to the largest.
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Fig. 15.
The result of automated feature selection for the original images shown in Fig. 13 after they
were processed to establish segment correspondences shown in Fig. 14. The different coloured
circles represent three pairs of centroids selected automatically according to the compactness
measure defined in Eq. (7).
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Fig. 16.
Comparison of two image enhancement techniques. Original CLSM image (left) and the results
obtained by histogram equalization (middle), and by the proposed improved histogram
equalization method (right) with background subtraction (threshold valuw ω = 20).
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Table 1
A summary of manual image alignment experiments for the 99.73% confidence interval. The table provides
statistics computed from 86 human alignment trials after eliminating the worst six trials.

Error (pixels) Manual (pixel-based)

Confidence interval = 9.73%
(compactness measure
threshold = 1162.16) Image 1 Image 2 Image 3 All Images

Average 43.57 22.42 21.49 29.22
SD 77.11 33.95 36.34 53.38
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