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ABSTRACT 
 

In this work, we are measuring the performance of 
Propbank-based Machine Learning (ML) for 
automatically annotating abstracts of Randomized 
Controlled Trials (RCTs) with semantically 
meaningful tags. Propbank is a resource of annotated 
sentences from the Wall Street Journal (WSJ) corpus, 
and we were interested in assessing performance 
issues when porting this resource to the medical 
domain. We compare intra-domain (WSJ/WSJ) with 
cross-domain (WSJ/medical abstracts) performance. 
Although the intra-domain performance is superior, 
we found a reasonable cross-domain performance.  

 
INTRODUCTION 

 

We are interested in semantically annotating abstracts 
of Randomized Controlled Trials (RCTs). Such 
reports contain valuable information on medical 
treatments, their efficacy, side effects and patient 
population. In order to capture structured information 
from such reports, it is necessary to annotate the free 
text with semantically meaningful tags. In this work, 
we opted for an approach called ‘shallow semantic 
parsing’, which is able to dissect sentences into simple 
WHAT did WHAT TO WHOM, WHEN, WHERE, 
WHY and HOW. In the case of RCT abstracts, we are 
interested in extracting results from clinical studies, 
such as drug trials, where drugs (WHATDRUG) have 
been tested on some patient population (TO 
WHOMPATIENT) for some specific drug effects 
(WHATEFFECT).  Shallow semantic parsing is usually 
performed by using machine learning on a 
semantically annotated training corpus, such as a 
Propbank, an adjunct to the Penn Treebank [1, 2]. 
Propbank provides semantic annotation of sentences 
of the Wall Street Journal Corpus (WSJ), by labeling 
Penn Treebank constituents with predicate arguments 
and the roles played by their arguments (see below).  
In this work, we used Propbank to train classifiers for 
semantically annotating sentences from medical RCT 
abstracts. The obvious problem of this approach, the 

shift from one domain for training (WSJ) to another 
domain for testing (medical abstracts) has been 
previously addressed by our group [3]. We found that 
there is a considerable overlap of verbs, and usages of 
verbs, between the WSJ/Propbank corpus and 
abstracts of medical case reports. These findings 
supported the notion that it is feasible to re-use 
Propbank (or at least part of it) in the medical domain, 
enabling the construction of a medical IE system using 
an existing (albeit non-medical) corpus. In this work, 
we are trying to quantify the performance of 
Propbank-based shallow semantic parsing on 
sentences from medical abstracts. Here, we are 
focusing our efforts on sentences from the 
“Conclusion” section of RCT abstracts. However, the 
approach can be easily extended to other types of 
medical abstracts.  

 

METHODS 
 

Overview: The goal is to automatically label medical 
sentences with semantic labels corresponding to 
predicate roles. For example, in a sentence  
 
[A seven week course of pulmonary rehabilitation]Arg0 
provides [greater benefits] Arg1 [to patients] Arg2-to 
 
semantic role labeling recognizes the argument (Arg) 
positions of the first three roles of the predicate to 
provide,  the provider (Arg0), the thing provided 
(Arg1) and the entity provided for (Arg2), 
respectively. We are using an existing semantically 
annotated corpus, called Propbank, to train semantic 
role classifiers for automating the recognition of the 
predicate arguments and roles in medical abstracts (for 
a more detailed description of Propbank, see [1, 2]).  
 
Identification of Predicates: We first explored the 
types of predicates found in RCT abstracts, and 
examined the overlap of those predicates with 
predicates from the WSJ/Propbank corpus. We 
extracted 10,000 random RCT abstracts that contained 
an explicit “Conclusion” section. We identified 
sentences within that section (using the Perl module 
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Lingua::EN::Sentence), and extracted the sentence 
predicates by performing a syntax parse –using the 
Charniak parser [4]- and extracting terminals with 
VB* POS tags. A final normalization step (using the 
program morpha [5]) resulted in a list of all 
normalized verbs, and their frequencies, in the 
conclusion section of our random abstracts (see Table 
1 for the top 10 verbs).  
 
Table 1. The 10 most frequent verbs in RCT abstracts 

# Occurences Verb Cumulative 
frequency 

1 1238 reduce 0.036  
2 1163 improve 0.070  
3 1056 suggest 0.100  
4 963 increase 0.129 
5 888 use 0.155 
6 808 associate 0.178 
7 742 compare 0.200 
8 733 show 0.221 
9 718 provide 0.242 
10 593 appear 0.260 

 
Similar to the results obtained previously [3] we found 
that the top 10 verbs covered >25%, and the top 100 
verbs covered >71% of all verb occurrences in our 
sample set of RCT abstracts. Also, 99 of those 100 
verbs are annotated in Propbank. This finding 
reinforces the notion that we can re-use Propbank for 
semantic role labeling in the medical domain. 
However, we must be aware of the fact that these 99 
verbs are not used in exactly the same way in both the 
WSJ corpus and medical abstracts. In our previous 
study, we found that the usages – at least for high-
frequency verbs - seem to be quite consistent across 
domains [3], but listed important exceptions from this 
rule. For example, the predicate to diagnose exhibits a 
particular use in the medical domain, such as in 
diagnosing a symptom as a particular disease. For that 
particular example, it is important to capture the 
predicate sense for assigning the correct predicate 
roles. Some verbs may exhibit consistent domain-
dependent verb usage. For example, to discharge is a 
polysemous verb that is mostly used in the context of 
releasing a patient from the hospital in the medical 
domain. In this work, we assumed consistent verb 
usage within and across domains. We will discuss the 
implication of this assumption below. 
 
Experimental setup: We decided to train semantic role 
classifiers for the top 5 verbs in our RCT corpus 
(Table 1). We ran different experiments for evaluating 
the performance of our approach. We report on the 
following two experimental setups:  

 
1. Training and testing on the WSJ/Propbank 

corpus (within domain) 
2. Training on WSJ/Propbank corpus and 

testing on RCT abstracts (cross-domain) 
 
The first setup allows for validation of our Machine 
Learning (ML) approach, of the choice of ML features 
and algorithm. The second setup is used to assess the 
ML performance across domains. It should be noted 
that the second setup includes the use of automated 
syntax parsing (unlike the first setup, which is solely 
based on manual syntax information from Penn 
Treebank).  
The use of automated syntax parsing generally results 
in measured performance drops. This is because 
automated parsing is usually less accurate than manual 
ones. 
 
Feature Extraction for Machine Learning (ML): In the 
following paragraphs, we discuss the background and 
specifics for extracting syntactic features for semantic 
role labeling via ML. This is best approached by 
looking at the problem as a straightforward task of 
finding binary semantic labels for each word in a 
medical sentence. Let’s look at a sentence containing 
the predicate to reduce. 
 
The article discussed that [Zocor]Arg0 reduced 
[cholesterol]Arg1 [in the intervention group]ArgM-in. 
 
In Propbank, Arg0 represents the Agent (or thing that 
causes the reduction), and Arg1 represents the thing 
reduced, while ArgM represents a modifier arguments 
(where the reduction occurred). A ML classifier will 
evaluate all features of a word (such as Zocor), and 
decide whether it is Arg0 of the verb reduce or not. 
Another classifier will assess the probability that 
Zocor is Arg1 of reduce, and so forth. A final 
classifier will assess the probability that a word is not 
an argument (NULL) of the predicate (such as article 
in the sample sentence above). The final label is 
assigned according to the highest classifier 
probability. The result of the ML learning step are 
classifiers for each of the verb arguments, and the 
NULL case. These classifiers are generic, and can be 
applied to any of our five target verbs. This is made 
possible by using the names of the five predicates as 
features in the ML algorithm.   
ML classifiers make their decision based on features, 
in this case the features of the individual words in the 
medical sentences. We are using non-lexical features 
that have been previously discussed as being useful in 
semantic role labeling [6]. We are limiting ourselves 
to non-lexical features as we are operating across 
domains (WSJ and medical corpora) with quite 
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distinct lexical contents. The features can be derived 
from the syntax parse tree of the sentences: 
 
(S (NP (DT The) (NN article)) 
     (VP (VBD discussed) 
      (SBAR (IN that) 
       (S (NP (NNP Zocor)) 
        (VP (VBD reduced) 
         (NP (NN cholesterol)) 
         (PP (IN in) (NP (DT the) (NN intervention) (NN 
group))))))) 
     (. .)) 
 
The parse tree contains constituents, such as noun 
phrases (NP) and verb phrases (VP), as well as 
terminals/POS tags, such as determiners (DT) or 
nouns (NN). For each word in the sentence, we are 
extracting features from the parse trees, in order to 
classify the words according to its correct semantic 
role. This approach is called W-by-W (word by word) 
semantic role labeling. However, there is another 
approach called C-by-C (constituent by constituent) 
semantic role labeling. C-by-C does not look at 
individual words in the sentences, but at the tree 
constituents corresponding to the semantic roles of the 
predicates. For example, the PP constituent 
(prepositional phrase) in the parse tree above 
corresponds to ArgM (in the intervention group) of 
the sentence predicate. The task is to decide for each 
constituent whether it represents a predicate argument 
or not. The disadvantage of the C-by-C approach is 
the possibility of conflicting constituent labeling, with 
the result of multiple role assignments to the 
corresponding terminals/words. We decided to use a 
W-by-W approach, while retaining features of the C-
by-C approach. Based on the observation in Propbank 
that most constituents corresponding to predicate 
arguments are 1 or 2 nodes above the respective 
words/terminals, we calculated word features from the 
syntactic properties of the constituents 1 and 2 levels 
above those words. Here is an illustrative example: 
For the word Zocor, we calculated features of both the 
NP and S constituent in the parse tree (1 and 2 nodes 
above the terminal). We used the following features 
(features with a * indicate static features, which are 
the same across all words in the sentence): 
 

1. *Predicate – We are using the predicate of 
the sentences as a feature 

2. Path – the syntactic path from a word to the 
sentence predicate. (For the word Zocor -
more specifically: it’s non-terminal 
constituent NP and S - the paths are 
NP�S�VP�VBD and S�VP�VBD). 

3. The Phrase Type: The syntactic category of 
the constituent (NP and S for Zocor). 

4. Position: the position of the word relative to 
the predicate. (The word Zocor is before the 
predicate) 

5. Head Word POS: The POS tag of the 
syntactic head of the constituent (NNP for the 
Zocor’s first constituent NN, and NP for the 
S constituent). 

6. *Subcategorization: The rule expanding the 
predicate’s parent node. (VP�VBD-NP for 
the predicate reduce) 

 
Training and Testing Sets: For Setups 1 and 2 (intra-
domain and cross-domain), we prepared the following 
testing and training sets:  
 
Setup 1: We extracted sentences from the 
Propbank/WSJ corpus containing our five target 
predicates [the five verbs that occurred most 
frequently in RCT abstracts, see Table 1]. Ignoring 
words that did not constitute core arguments (such as 
modifier arguments ArgMs) resulted in a corpus of 
15,424 annotated words. We used 12,500 of these as a 
training set, from which we constructed classifiers for 
core arguments Arg0, Arg1…Arg4, as well as NULL 
(i.e., words that do not constitute predicate 
arguments). As mentioned above, we did not prepare a 
training set for each of the five predicates separately, 
as the predicate is used as a feature itself. We tested 
the resulting classifiers on the remaining 2,924 words 
from our 15,424 word corpus. 
 
Setup 2: For Setup 2, we used the same argument 
classifiers as discussed above, which have been 
trained on 12,500 words from the Propbank/WSJ 
corpus. However, we tested these classifiers on a set 
of annotated medical sentences. Two medical experts 
independently looked at 250 predicate sentences from 
RCT abstracts that contained the five target verbs, and 
manually labeled each word in those sentences with 
the corresponding predicate role. This resulted in a 
(medical) testing set of  6,373 words. 
 
 
Machine Learning Architecture: We used the 
SVMTorch1 program for ML. SVMTorch is a Support 
Vector Machine (SVM) program that allows for multi-
class learning. We ran the program using the Gaussian 
kernel, with all other parameters set to the default 
values. 
 

 
 

                                                
1 
http://www.idiap.ch/machine_learning.php?content=Torch/e
n_SVMTorch.txt 
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RESULTS AND DISCUSSION 
 
In Table 2, we show the results from training and 
testing on the WSJ/Propbank corpus (Setup 1). We 
calculated the recall (R), precision (P) and F1 
measures – 2RP/(R+P) – for each argument (including 
the NULL argument) separately. We achieve F score 
measures between .52 and .81 among the 5 predicate 
arguments, and .86 for the NULL argument. 
SVMTorch also provides a multiclass 
misclassification error of .19 In other words, the ML 
classifier correctly classifies the predicate argument 
 
Table 2 Intra-domain classification performance 

Arg Recall Precision F n 

NULL 0.84 0.86 0.86 1574 

0 0.55  0.48  0.52  236 

1 0.85  0.76  0.81  936 

2 0.93  0.45  0.61  152 

3 0.00  0.00  N/A  9 

4 0.78  0.64  0.71  17 

 
for approximately 80% of the words in the testing set. 
 
Table 3  Cross-domain classification performance 

Arg Recall Precision F n 

NULL 0.81 0.70 0.75 3351 

0 0.72  0.33  0.45  745 

1 0.67  0.86  0.75  1952 

2 0.60  0.24  0.34  325 

3        0  

4       0  

 
Table 3 shows the results of training on words from 
the WSJ/Probank corpus, and testing on words from 
medical RCT abstracts (as can bee seen, we did not 
encounter predicates with more than three arguments). 
The performance is consistently below the 
performance of the intra-domain situation (Table 2). 
The multiclass misclassification error is .29. In other 
words, the Propbank-trained classifier assigns the 
correct predicate argument in approximately 70% of 
the words in medical RCT abstracts.  
 
It should be noted that our performance numbers do 
not necessarily compare to similar numbers reported 
in earlier publications on semantic role labeling. Such 
studies often include the identification of the predicate 
argument span in the calculation of precision and 
recall. In contrast, we ignored the argument span and 
looked at each word separately, which may result in 
higher performance numbers. However, the main 
purpose of our study was assessing the difference in 

intra-domain and cross-domain ML performance, and 
we believe that our experimental design is sufficient 
for this purpose. We find a reasonable cross-domain 
performance, with a 10% drop in multiclass 
classification accuracy.  
 
The lower accuracy can be explained as follows:  
First, we are using an automated syntax parse in the 
cross-domain setup. Second, our annotation strategy 
of the medical corpus may be different from the one 
used in the Propbank/WSJ corpus. This seems 
apparent in the case of Argument 2 (table 3), where 
we record a high number of false positives (low 
precision). Apparently, the markup of the medical 
corpus was rather conservative with regard to 
Argument 2. Third, we did not take into account verb 
usage differences. While this may not be a major 
problem with any of the five predicates used in our 
experiments, we are aware of verbs that are used 
differently within and cross-domain corpora (see 
discussion above). Propbank provides labels for the 
specific verb usage in the WSJ corpus. We are 
thinking of ways to include this information as an 
additional ML feature.  
 
In our experiments, we opted for exclusion of lexical 
features, as we expected them to be rather unique in 
the respective domain corpora. As a consequence, we 
achieve a rather low intra- (and cross-) domain 
performance for arguments that would normally profit 
from the availability of those features. For example, 
we achieve low F scores for Arg0, which often 
signifies the verb subject. Lexical information, such as 
the word ‘physician’, has a strong probability of being 
associated with Arg0. The importance of lexical 
features is an important reason to consider the 
construction of an annotated medical training corpus. 
However, we can envision ways to improve the ML 
performance with additional non-lexical features. For 
example, we could use semantic features that are 
consistent across the WSJ and medical domain, such 
as generic named entities (persons, location etc.).  
 
We would like to mention another challenge that we 
encountered when performing our study: the detection 
of the ‘Conclusion’ section within RCT abstracts. We 
relied on explicit mentioning of the word conclusion 
in those abstracts. However, in many instances, 
authors do not use any explicit demarcation of the 
conclusion section. In order to circumvent this 
problem, there is the possibility to use zoning of 
medical abstracts, as discussed previously [7]. 
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