

dTagger: A POS Tagger

Guy Divita, Allen C. Browne, Russell Loane
National Library of Medicine, Bethesda, Maryland

ABSTRACT

The Lexical Systems Group at the National Library of
Medicine (NLM) has developed a Part-of-Speech
(POS) tagger1 to be freely distributed with the
SPECIALIST NLP Tools[1]. dTagger is specifically
designed for use with the SPECIALIST lexicon [2,3]
but it can be used with an arbitrary tag set. It is
capable of single or multi-word chunking. It is
trainable with previously annotated text and in
development is a version that is tunable with
untagged text. The tagger allows users to add local
lexicon content. It can report likelihoods for each
sentence tagged. New words seen while tagging (the
unknowns) are handled by shape identification
including heuristics based on suffix statistics gleaned
during the training. The performance of the
supervised training is noted to be 95% on a modified
version of the MedPost hand annotated Medline
abstracts. Eight percent of the terms within this
corpus were multi-word entities.

BACKGROUND

POS taggers resolve Part-of-Speech ambiguities
when a lexical item such as report occurs in more
than one part of speech. Report is both a noun and
verb. POS taggers are often employed to aid in the
task of determining phrase boundaries and thus the
extraction of noun phrases. Noun phrase extraction is
essential to indexing and retrieval within many tasks
such as search engines, information extraction and
categorization.

The SPECIALIST textTools [1], a Java based, open
source suite of Natural Language Processing utilities,
initially contained only rough heuristics in lieu of a
POS Tagger. At NLM, we have used the Xerox Parc
POS tagger [7] and recently MedPost/SKR, the Java
implementation of the MedPost POS Tagger [4].
Although the MedPost/SKR POS tagger has
performed well, it is not specifically tied to the
SPECIALIST Lexicon, no trainer has yet been
published, and the tagger tokenizes at a single and
hyphenated word boundary, thus missing multi-word

1 http://SPECIALIST.nlm.nih.gov/dTagger

lexical elements (LEs) cataloged in the lexicon. The
textTools employed additional machinery to identify
LEs after tagging at the single word level.

Our motivation was to create a tagger that can be
freely distributed with the textTools as an option that
would allow users to train, customize, and, if
necessary, modify it to suit a broad range of tasks.

PROJECT FEATURES

The next sections describe the major components of
the tagging task. These include programs needed to
train and use the tagger and the major modules within
these programs.

A Hidden Markov Model
A Hidden Markov Model and Viterbi algorithm are
used, similar in spirit to the algorithms described in
Manning and Schütze[5]. Mathematical details
underlying the model that dTagger is based upon can
be found at [6]. A feature of this model is a
normalization that produces a measure of the
likelihood of the Viterbi solution (i.e., the best POS
sequence). The normalization allows us to assign a
significance metric to the tagged POS and compare
the relative merit of nearby alternatives.

Lexical Lookup
dTagger is a component of the textTools; designed to
work on its own, as well as to be employed within the
NpParser tool. It contains our lexical lookup module.
Lexical lookup is the task of segmenting the text into
units that correspond to lexical entries from the
lexicon. The important part of that task is to
determine what possible parts of speech each unit can
have. In prior versions of the textTools, lexical
lookup and tagging were separate tasks. Hidden from
view was the fact that a word based version of lexical
lookup was again performed within the tagger, not
necessarily to the same lexicon.

Many English lexical items are spelled with more
than one orthographic word, for example “Diabetes
Mellitus” or “Myocardial infarction”. The
SPECIALIST lexicon reflects this fact about natural

AMIA 2006 Symposium Proceedings Page - 200

language and includes many orthographically multi-
word items. The 2005 version of the SPECIALIST
Lexicon contains 50.3% multi-word LEs. We believe
that identifying the part of speech of these multi-
word items directly can reduce the over all level of
part of speech ambiguity. The ability of dTagger to
deal with multi-word lexical items is a major
innovation.

Since some applications may require that text be
tokenized into single words, the textTools will
maintain the option to analyze text into single or
multi-word lexical items as well as provide an in-
between capability of recognizing multi-word items
only when they cannot be resolved into single word
items. This option catches and correctly tags LE’s
such as “in vitro” with one tag, while analyzing
myocardial infarction into two items with their own
tags.

An arbitrary Tag Set
dTagger is designed to be used with the
SPECIALIST lexicon but it is also intended to be tag
neutral. Tags are enumerated in a file (tagset.txt).

The lexicon of possible tag assignments to be used by
the tagger is represented in a set of pipe delimited
UTF-8 relational files with the extension .lex. One of
these .lex files is a case-sensitive index of lexical
entries coupled with their parts of speech. Another
file is lowercased for case insensitivity. And a third
file is reserved for local content to provide users a
way to add items locally to the lexicon. The tagger
comes with tools to create .lex files from the
SPECIALIST lexicon. Users who wish to use tags or
tag assignments differing from those in the
SPECIALIST lexicon can record their tag set in this
local file and create a set of .lex files to act as the
tagger’s lexicon. This flexibility should also aid in
using the tagger for languages other than English.

The Specialist textTools use dTagger configured with
the SPECIALIST lexicon. It uses the 10 parts of
speech (noun, adj, adv, etc) identified in the lexicon
without inflection. These are also the categories
needed by the textTool’s noun phrase parser.
Inflectional information present in the SPECIALIST
lexicon can be discovered from the lexical entries but
is not used in the part of speech tags.

dTagger will emit only the tags allowed in it’s lexical
(.lex) files. This creates a design challenge. Words
that are lexically of one part of speech can be used in
another. The participles of verbs for example are
often used as adjectives. Gerunds are the present

participles of verbs used as nouns. In configuring the
dTagger for the textTools we have treated all present
and past participles as potential adjectives and
present participles as potential nouns. For example, in
“growth factor induced gene”, ‘induced’ is tagged as
an adjective. For this purpose, a file
(verbsAsAdjs.lex) has been created to represent these
participles and gerunds.

Tagging Text
The tagger tool takes input text, and returns tagged
text. Within the tagger API, the tag method returns
an instance of Sentence, containing instances of
LexicalElement, each having the tagger POS
instantiated. A normalized likelihood is assigned to
the sentence as a unique side effect. This likelihood
can be thought of as a level of significance that can
be compared against other sentences’ likelihoods.
This might turn out to be useful in those applications
where you have two different interpretations of what
the lexical elements are, say by means of shortest vs.
longest spanning match techniques. When both are
run through the tagger, the resulting likelihoods can
be compared.

Training with Tagged Text
dTagger is distributed with a training tool that will
train the tagger from a hand annotated corpus. The
format for the hand annotated files are aligned two
row entries, with the un-tokenized string as a third
row:

PXXXXXXXXX|word 1|word 2|word 3|…
HandTagged|tag 1 |tag 2 |tag 3 |…
String |word1 word2 word3 …

Table 1: Training Corpus Format

This format provides an easy way to edit the content.
The output of the trainer is a series of files and
indexes:

transitionProbsN.txt
emissionProbsN.txt
modelWordsN.txt
dbxN/lexicalLookupIndexes
dbxN/llIdIndexes
newTaggedTrainerWordsN.lex

Table 2: Training Output files

The following files are generated for debugging and
fine tuning purposes:

lexicalLookupIndexesN.txt
corpusInconsistanciesN.txt

Table 3: Training Debugging Files

AMIA 2006 Symposium Proceedings Page - 201

The N in each of the filenames is incremented for
version control.

There will be words within the annotated corpus that
are not yet in the lexicon. As part of the training task,
these new words are added, and reported as such
within an additional newTaggedTrainerWords.lex
file.

Handling Unknowns
The SPECIALIST Lexicon can never have full
coverage of any growing corpus. From time to time,
an unknown word will show up in text to be tagged.
Within training, those words not found in the
SPECIALIST Lexicon are added to the local lexicon
(.lex) file. During tagging, when an unknown word
is found, it is categorized, in part, by a morphology
unit that guesses it’s potential part of speech from
suffix information and computed likelihoods of the
POS’s of words ending with that suffix[5]. During
the training task, the last 10 characters from each
word of the corpus and lexicon are taken and added
to a reverse trie. The POS’s are kept track of at each
node. The trie is pruned, keeping only fruitful
suffixes, along with the distribution of the POS’s for
each suffix. This forms the basis for the suffix based
shape identification.

Handling Patterns
Certain patterns such as numbers should be caught
before tokens are looked up in the index. The
textTools has a number of pattern or shape
recognizers, ranging from the identification of real
numbers, percentages, fractions, to the identification
of units of measure. The initial version of the tagger
employs only punctuation, integer and real number
shape identifiers before lexical lookup. In future
releases, those shape identifiers such as the units of
measure identifier (10 mg/k), levels of significance
(P < .005), and sample counts (N=20) will be
employed to more accurately identify those elements.

Additional Considerations
It was noted in an above section that an additional
lexicon file was created to handle verbs acting as
adjectives or nouns. It was empirically seen that
these noun and adj forms were incorrectly being
assigned to cases where they truly were verbs, but
where the training had not gathered any statistics to
correctly weight them. The tagger trainer was
modified to include a penalty for those adj’s and
nouns derived from verbs, where no instance of these
words were seen in the training corpus. Since this is
a specific task based feature, it was made into an

optional flag (--weightVerbsAsAdjs), turned on by
default.

Training and Test Corpus
The training and test corpus from MedPost was used
to train the tagger. The format was altered to a pipe
delimited structure to allow for the identification of
multi-word LEs. The MedPost training corpus
contains hand annotations of 5716 sentences taken
from Medline abstracts within the Genomics domain.
In the original text, hyphenated words were
considered one token as well as a few multi-word
prepositions. Number ranges such as “1-5” were also
considered one token. Otherwise, no other multi-
word elements were identified. The SPECIALIST
lexicon was not the sole source for the part of speech
tags. Many function words were tagged with tags not
annotated as such in the SPECIALIST Lexicon, as in
the case of “both”, assigned as a conjunction in all
cases in the corpus, where as it is only considered a
det or pron in the SPECIALIST Lexicon.

The original tags were transformed to those from the
SPECIALIST tag set, multi-word LEs were identified
and conflicting tag assignments were reported.
Hyphenated forms that did not correspond to LE’s in
the lexicon were split apart into different tokens. A
series of hand reviews and alterations were also
performed by the 1st author to catch what the
programs did not, and fix what the program broke.
During the training, it was noted that this corpus
contained a total of 151,043 LE’s, 139,015 of which
were single token LE’s, and 12,028 (8%) were multi-
token LEs. There were 33,149 tokens within the set
of multi-token LEs. Within this corpus there were on
average 2.75 tokens per multi-word LE. It should be
noted that hyphens were counted as tokens for these
counts, indicating that a fair number of the multi-
token LEs were hyphenated terms. This revised test
and training corpus is distributed.

PERFORMANCE

The test corpus contained 292 sentences, and 5993
LEs. The tagger missed 291 assignments out of the
5993, or 95.1 % correctly assigned tags. While
taggers are traditionally compared using this statistic,
95.1% represents only 45.89% of the sentences
completely tagged correctly. A further analysis of
the failures made show that 64 (21%) of the failures
were due to adj/noun and noun/adj assignments – a
failure that has less consequence for the task of
phrase boundary assignment.

AMIA 2006 Symposium Proceedings Page - 202

DISCUSSION AND ISSUES

There were surprisingly many instances of
overlapping lexical elements – about 100 or so within
the test corpus of over 150,000 tokens. Nearly all
involved the tokens ‘beta’, ‘cell’, ‘line’, ‘protein’ and
‘binding’. The issue is that both ‘beta cell’ and ‘cell
line’ are LEs in the lexicon. The greedy lexical
lookup will always keep together the first tokens
seen, whether this is correct or not. In such an
environment, where the distinctions matter, it might
be better to use the lexical lookup algorithm that uses
shortest spanning match to avoid the conflict. All of
the instances of overlapping LE seen were in larger
conglomerations of adjective noun sequences within
the same phrase. This problem does not arise unless
the overlapping LEs have parts of speech that span
across phrase boundaries, or the proper identification
of phrase constituents is required.

The decision to exclusively hand annotate text from
tags contained in the lexicon had to be slightly
relaxed when it was observed that there were some
odd usages of words within the training and test
corpus. The corpus was from the Genomics domain,
and contained gene names such as “fixed”, and
“patched” along with “slouch”. These are words that
would normally be considered verbs, but were seen to
be used as uncount nouns. It is just such cases that
justify a local lexicon. These terms could be added
(with caution) when their usage differs drastically
from their expected usage.

Within the context of the training corpus, it has been
argued that multi-word LEs should be annotated at
the word level, with tags that indicated that this is
part of a larger constituent. The original MedPost
corpus contained such tags, indicated as such with a
+ beside the tag. The hypothesis was that more
would be learned from the training, with the added
benefit of the constituent parts tagged. Time did not
allow for such an experiment.

FUTURE WORK

Training with Untagged Text
The cost, in terms of time and money, to hand
annotate a corpus large enough to achieve good
performance is prohibitive. It has been reported that,
as an alternative, training on a small hand annotated
corpus can be supplemented with unsupervised
training on a large un-annotated corpus [7]. An
unsupervised trainer that updates the HMM by
looking at a large amount of untagged text is under
development, but was not ready as of yet. It is
assumed that the trainWithTags algorithm has

previously been run with at least a small amount of
tagged text to create an initial HMM.

More work is to be done with shape identification
beyond what was already mentioned. Additional
shape recognition patterns including a gene name
lookup should be made available as an option. Shape
patterns also under consideration include recognizing
“x-binding” and “x-induced” adj patterns where X
may or may not be a recognized word.

The task of reviewing, correcting and adding hand
annotations could have been made much easier had a
GUI tool been used that would provide potential parts
of speech from the Lexicon. Work should be done to
seek out and integrate an existing GUI based
annotation tool for this purpose.

ACKNOWLEDGEMENTS

The authors wish to thank and recognize the
contributions made by Ms. Destinee Tormey and Ms.
Ying He.

This work was supported by the Intramural Research
Program at NIH, NLM.

REFERENCES

[1] http://SPECIALIST.nlm.nih.gov/theTextTools
[2] http://SPECIALIST.nlm.nih.gov/lexicon
[3] Browne AC, McCray, AT, Srinivasan S. The

SPECIALIST Lexicon Technical Report, 6/2000,
http://specialist.nlm.nih.gov/lexicon/docs/techrpt
.pdf

[4] Smith L, Rindflesch T, Wilbur WJ. MedPost: a
part-of-speech tagger for bioMedical text
Bioinformatics. 2004 Sep 22;20(14):2320-1.

[5] Manning CD, Schütze H. Foundations of
Statistical Natural Language Processing, 2003
Massachusetts Institute of Technology, Chapter
10.

[6] http://SPECIALST.nlm.nih.gov/dtagger/
markov.html

[7] Cutting D, Kupiec J, Pedersen J, Sibun P. A
Practical Part-of-Speech Tagger, D. Cutting, J.
1992, Proceedings of the Third Conference on
Applied Natural Language Processing

Address for correspondence
Guy Divita
National Library of Medicine
8600 Rockville Pike
Bethesda, MD 20894
divita@nlm.nih.gov

AMIA 2006 Symposium Proceedings Page - 203

