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Abstract 
Automated document classification can be a valuable 
tool for biomedical tasks that involve large amounts 
of text. However, in biomedicine, documents that 
have the desired properties are often rare, and special 
methods are usually required to address this issue. 
We propose and evaluate a method of classifying 
biomedical text documents, optimizing for utility 
when misclassification costs are highly asymmetric 
between the positive and negative classes. The 
method uses chi-square feature selection and several 
iterations of cost proportionate rejection sampling 
followed by application of a support vector machine 
(SVM), combining the resulting classifier results with 
voting. It is straightforward, fast, and achieves 
competitive performance on a set of standardized 
biomedical text classification evaluation tasks. The 
method is a good general purpose approach for 
classifying biomedical text. 
 
Introduction 
Text classification is the process of using automated 
techniques to assign text samples into one or more of 
a set of predefined classes. The text samples may be 
of any length including abstracts, titles, sentences, 
and full text documents. The techniques used to 
accomplish this are based on machine-learning 
algorithms, and typically require a set of training data 
having known classifications on which to fit a model, 
which is then used to classify previously unseen data. 
This simple approach has many potential uses in 
biomedicine including automated document triage for 
genomics database annotation1, pre-filtering of search 
results for identification of high quality articles for 
evidence-based medicine2, identification of biological 
entities in free text3, and reduction in human labor 
needed to conduct systematic drug reviews4. 

While biomedical document classification benefits 
from many of the existing developments in more 
general machine learning and text classification 
research, biomedical document classification does 
present its own unique challenges. Much of the 
computer science research focuses on evaluating 
effectiveness by measuring algorithm accuracy, the 
fraction of correct predictions. For biomedical text 
classification many problems have only two classes: 
the positive class of documents that has the desired 
characteristics, and the negative class that does not. 
In biomedical document classification the percentage 
of positive documents tends to be low. Clearly, 

measuring classification accuracy is not useful when 
99% of documents are negative. 

Furthermore, biomedical tasks typically assign 
unequal costs to missing a positive document versus 
mistakenly assigning a negative document as a 
positive. In these scenarios, the positive documents 
tend to be rare, and mistakenly classifying any of 
them as negative is undesirable. Often, utility is the 
metric of performance, which is defined as: 

positivesfalseupositivestrueuU nrr __ ×+×=  (1) 

where ur is the value of correctly predicting a positive 
document, and unr is the (usually negative) value of 
incorrectly predicting a negative document. 

Finally, there are many text classification 
algorithms and approaches, and it is not always 
feasible to study and compare a large selection of 
algorithms to determine the best one to use. Tuning 
an algorithm’s parameters for a given task may be 
costly in terms of time and training data. Clearly 
what is needed is a uniform, easily applied approach 
that takes into account the disparate costs of positive 
and negative classification mistakes and works well 
on a wide variety of tasks. 

Here we present our general approach to 
biomedical text classification. We show that this 
approach can be applied in a uniform manner, with 
minimal customization for the individual task. We 
then compare the performance of our method to 
previous methods used on the same test collection.  
 
Methods 
Our classification system uses word-based feature 
generation and chi-square feature selection, followed 
by a support vector machine (SVM) classifier 
wrapped with cost-sensitive resampling. We then 
apply and test our method on the four document 
triage tasks from the TREC 2005 Genomics track 
data. This collection consists of training and test sets 
of full text documents. Each document has been 
assigned positive or negative in four document triage 
tasks performed by the Mouse Genome Informatics 
group (MGI at http://www.informatics.jax.org/) when 
reviewing journal articles for information about 
mouse gene alleles, embryological expression, GO 
annotation, and tumor biology. 
 
Classification system: For each document in the 
training and test collections, the classification system 
generates a binary feature vector. For each document 
in the data set used here, the features we included 

AMIA 2006 Symposium Proceedings Page - 161



were: 1) every word from the title and abstract  with 
common English word stop list removal and Porter 
stemming, 2) all assigned MeSH terms, and 3)  MGI 
mouse gene identifiers assigned to the documents by 
an automated process.5 We also removed any 
document from the process that did not include the 
MeSH term Mice. This is not an essential step in our 
general method, but is useful and easy to apply for 
organism specific classification tasks such as we are 
studying here.1 When classifying documents in the 
test collection, a document without the MeSH term 
Mice was predicted a negative. 

Each component in the binary feature vector is a 
one or a zero, signifying the presence or absence of a 
feature.  This process may generate tens of thousands 
of features per data set, and can become 
unmanageable.  We therefore reduce the feature set 
size by using only the features statistically 
significantly different between the positive and 
negative training documents, using a chi-square test 
with an alpha significance value of 0.05. 

We then train an SVM-based classifier, SVMLight6 
on the classified training document vectors. SVM 
classifiers have become very popular because of their 
speed, accuracy, and ability to generalize well by 
maximizing the margin between positive and 
negative training data.7 However, the theory on 
which SVMs are based optimizes for accuracy, which 
can be undesirable for biomedical text classification. 
SVMLight includes a parameter to trade off the cost 
of misclassifying positive and negative documents. 
However, both ourselves and others have found this 
parameter to be ineffective for biomedical tasks.8 

 Instead, we account for asymmetric document 
misclassification costs using the document 
resampling method of Zadronzy, Langford, and Abe9, 
which we summarize below. As far as we are aware, 
this method of accounting for asymmetric costs has 
not been applied to either general text or biomedical 
document classification. In simple terms their theory 
states that an optimal error rate classifier for a 
distribution D′ is an optimal cost minimizer for 
another distribution Dtest and the two distributions are 
simply related by:  
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where Cost(c) is the cost of a misclassifying a sample 
of class c from distribution Dtest, and k is a constant. 

This means that to create an optimal cost 
minimizer, all we have to do is resample the original 
training samples appropriately and then train our 
optimal error rate classifier on these samples. For the 
two class case, to resample the training data, we must 
select the training data so that the ratio D′/Dtest 
reflects the correct relative misclassification costs for 
the positive and negative samples.  

The resampling process includes a few caveats. 
First, to avoid over-fitting we need to ensure that the 
samples remain independent and each is sampled 
with the correct probability. Standard sampling both 
with and without replacement do not meet this 
criteria. Instead cost-proportionate rejection 
sampling is applied. With this sampling method, each 
sample is independently included or not given the 
probability P of including a given sample of class c 
from the set of classes C, where that probability is 
determined by the misclassification cost Cost(c) for 
the sample, divided by the maximum sample 
misclassification cost: 
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This resampling method assumes that the class 
probability distributions are the same in the test 
collection as in the training data. This may or may 
not be the case. If the probability distribution of the 
test data is unknown, then it is assumed to be the 
same as in the training data. However, if the training 
and test class probability distributions are known to 
be different, as is the case with the TREC Genomics 
data, we have developed a means to account for this 
by readjusting the sampling probabilities. 

Given that Dtrain and Dtest are the class probability 
distributions of the training and test data,  we define 
the ratio as a function of the class: 

train

test

D

D
cF =)(

    (4) 

Substituting equation (4) into (2) and then the 
result into (3), and canceling the factor of k gives: 
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In the common two class case this reduces to a 
simple formula. Without losing generality, we set the 
cost of misclassifying a positive sample to Cost(+) 
and a negative sample to one. Given that the 
proportion of positive and negative samples in the 
training and testing sets are Ptrain(+), Ptrain(-), Ptest(+), 
and Ptest(-), then the resampling probabilities Pr(+) 
and Pr(-) are: 
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Note that if the class probability distributions in the 
training and test sets are equal, then Pr(-) equals 
1/Cost(+). Furthermore, we define the positive class 
weight wp as the simple arithmetic inverse of Pr(-). 
This is just for convenience, as it transforms the 
typically small probabilities produced by Equation 
(7) into values that are more easily compared and 
given as classifier input parameters. 
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Since we are accounting for misclassification cost 
using a resampling method, it is also advantageous to 
repeat the resampling a number of times and combine 
the results. This will diminish the chance of 
degenerate resampling and increase the consistency 
and average performance of the system. In order to 
do this, we perform several repetitions of cost-
proportionate rejection sampling followed by SVM 
classifier training, using the default SVMLight 
settings with the linear kernel. The result is a set of 
SVM vector weights which when applied to a test 
sample feature vector each produce a class prediction 
for the sample. We combine these predictions using a 
simple voting scheme, if the majority of predictions 
are positive then we classify the document positive, 
otherwise the document is classified negative. 
 
Evaluation: To evaluate our approach we applied our 
method to the four biomedical document triage tasks 
used in the TREC 2005 Genomics Track 
classification task.1 Performance on each task was 
computed using a utility measure, which assigned a 
positive value of Ur for correctly classified positive 
samples (true positives) and a penalty of minus one 
for incorrectly classified negative samples (false 
positives). Since making an error on a positive 
sample decreases the utility by Ur, this value can be 
interpreted as Cost(+). Scores were then normalized 
by the maximum possible score for each task. The 
values of Ur are shown in Table 1, along with the 
proportion of positive and negative samples in both 
the training and test collections for each task. Note 
the wide range of values for Ur, and the differences in 
class proportions between the training and test 
collections for the tumor task. Table 1 also includes 
the computed resampling probability for the negative 
classes for each task using equation (7). 
 
Results 
We first determined the correct number of 
resamplings to use for comparison with prior results 
on this data. Figure 1 shows the mean, maximum and 
minimum (shown as error bars) normalized utility 
scores for each of the four tasks using between one 
and 31 resamplings, with each set of resamplings 
repeated 10 times. Both the average performance 
increases and the variability between the maximum 
and minimum scores decrease with the number of 
resamplings. We chose to use 21 resamplings as a 
good balance between time, utility, and variability, 
achieving good performance on all four tasks. 

Table 2 presents comparative normalized utility 
scores (Un) of several classification systems applied 
to this test collection. In the table, each classifier 
system was given the same set of chi-square selected 
binary features. We compare not only the full 

approach proposed here, but also the same system 
without training set correction, SVMLight without 
resampling at various settings, and the best entry for 
each task of all entries submitted to TREC 2005. 
These last are the highest scoring entry for each task 
which consisted of up to three submissions from each 
of the 19 participating groups.1   

For all tasks it is clear that SVMLight at the default 
settings performs very poorly on these tasks. 
Furthermore, adjusting the cost-factor (-j parameter) 
helps, but not nearly enough to produce competitive 
performance.  No significant increase in performance 
is gained on any task by using the distribution 
adjusted weight wp in place of the task specified Ur. 

On the other hand, our proposed approach of SVM 
with corrected cost proportionate rejection sampling 
performs very well on all four tasks. Performance for 
the full system, using the corrected value 1.0/wp for 
downsampling the negative cases produces 
normalized utilities about equal to the best submitted 
run for each of the four tasks. In fact, for the GO task, 
the normalized utility is slightly (insignificantly) 
greater than the best submitted run. 

For three of the four tasks, the difference between 
using 1/Ur to downsample the negative class and the 
corrected Pr(-) is minimal. However for the tumor 
task, which is the task with the largest disparity 
between positive case frequency in the training and 
test collections, the difference is quite large. Without 
correction, performance on the tumor task is 
somewhat below median compared to other TREC 
2005 entries. With correction, performance is 
comparable to the best submitted run. 

Our general system includes the chi-square feature 
selection method described above. One area of debate 
with SVM-based text classification is whether the 
feature set should be reduced as we have done here, 
or the full feature set given as input to the classifier. 
Previous work has argued that the full feature set 
produces better results.7 Table 3 shows the 
performance of our system on each of the four tasks, 
selecting different numbers of features by varying the 
alpha threshold of the chi-square association test. 
While the differences between alpha values of 0.05 
and 0.10 are small, including all features produces 
inferior performance across all four tasks. 
 
Discussion 
SVM by itself did not produce good results on these 
biomedical text classification tasks. However, the 
combination of chi-square binary feature selection, 
corrected cost-proportionate rejection sampling with 
a linear SVM, repeating the resampling process and 
combining the repetitions by voting is an approach 
that uniformly produces leading edge performance 
across all four tasks. Other TREC submitted systems 
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performed at this level on only a subset of the tasks. 
The optimal number of repetitions may be 

dependent upon the problem as well as the training 
data set size. However, for the tasks studied here, 
even five repetitions results in greater and more 
stable performance than a single resampling. 
Furthermore, 21 or so repetitions were more than 
adequate for these tasks. This is a much smaller 
amount than the 100-200 resamplings Zadronzny, et 
al. used in their original paper. However, that work 
studied numeric and not text data, and the data sets 
were much larger. More work is needed to 
understand the relationship between optimal number 
of resamplings and training set size. 

Feature set reduction using chi-square produced 
consistently better results than using all features. 
Performance was not particularly sensitive to the 
choice of alpha, and 0.05 was a good default value. 
These results are in contrast to the recommendations 
of others such as Joachims, and may also be 
somewhat dependent upon the training set size. If the 
number of features is large as compared to the 
number of training samples, there may not be enough 
data to drive the weight of insignificant features to 
zero. For biomedical document classification, 
training sets are most commonly created by human 
review, and therefore extremely large training sets 
are unusual. Training collections on the order of 
100’s to 1000’s of documents as with the TREC 
datasets are much more common. 

It should be noted that the system trains much 
faster than the standard SVM approach, even with the 
repeated resamplings. This is because SVM 
algorithms are polynomial or greater in training time, 
and the downsampled training sets are much smaller 
than the original training set. On the tumor task, for 
example, a training set resampling consists of all 462 
positive documents, but only about 8% of the 5375 
negative samples, resulting in a resampled size of 
about 15% of the original. Even at 21 resamplings, 
this process completes much faster than training on 
the full set. Classification remains a very rapid 
process of one vector dot product per resampling and 
is slower than standard SVM by a simple constant 
factor equal to the number of resamplings. 
 
Conclusions 
The general-purpose biomedical text classification 
method that we propose here includes features based 
on document words, as well as MeSH terms and 
normalized biological entity identifies when 
available. This feature set is then reduced using a chi-
square test for significant differences between 
positive and negative samples. The reduced binary 
feature vectors of the training data are then resampled 
using corrected cost proportionate rejection sampling, 

with the resulting training data fed into a standard 
linear kernel SVM implementation. The resampling 
process is repeated a modest number of times (5 to 
31), and the results of the individual trained 
classifiers combined by voting. 

The method requires no task-specific hand-tuning 
of parameters or knowledge, and can flexibly 
incorporate available domain specific features such 
as MeSH terms and normalized named entities. 
Because of its simplicity, sensitivity to asymmetric 
error costs, speed, overall high performance, and 
ability to encompass a wide array of problems and 
feature types, we recommend this method as a 
standard, baseline approach to biomedical text 
classification problems. 
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Table 1. Comparison of sample frequency for TREC 2005 Genomics data classification tasks 

Task Corpus N N(+) N(-) P(+) P(-) Ur Pr(-) wp 
Train 5837 338 5499 0.0579 0.9421 Allele 
Test 6043 332 5711 0.0549 0.9451 

17.00 0.0622277 16.07 

Train 5837 81 5756 0.0139 0.9861 Expression 
Test 6043 105 5938 0.0174 0.9826 

64.00 0.0124371 80.42 

Train 5837 462 5375 0.0792 0.9208 GO 
Test 6043 518 5525 0.0857 0.9143 

11.00 0.0834028 11.99 

Train 5837 36 5801 0.0062 0.9938 Tumor 
Test 6043 20 6023 0.0033 0.9967 

231.00 0.0080906 123.60 

 
 

Table 2. Comparison of normalized utility scores for various classifier systems 
Task System Un 

SVMLight default 0.5863 
SVMLight -j option = Ur 0.7050 
SVMLight -j option = wp 0.7050 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/Ur 0.8464 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/wp 0.8489 

Allele 

TREC 2005 Best 0.8710 
SVMLight default 0.1423 
SVMLight -j option = Ur 0.3104 
SVMLight -j option = wp 0.3104 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/Ur 0.8403 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/wp 0.8405 

Expression 

TREC 2005 Best 0.8711 
SVMLight default 0.1478 
SVMLight -j option = Ur 0.3998 
SVMLight -j option = wp 0.3891 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/Ur 0.5891 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/wp 0.5888 

GO 

TREC 2005 Best 0.5870 
SVMLight default 0.1500 
SVMLight -j option = Ur 0.3489 
SVMLight -j option = wp 0.3489 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/Ur 0.7337 
SVM with Cost Proportionate Rejection Downsampling x21, P(-) = 1/wp 0.9229 

Tumor 

TREC 2005 Best 0.9433 
 

Table 3. Comparison of normalized utility (Un) for various levels of alpha feature selection 
alpha Task 

0.05 0.10 All features 
Allele 0.8489 0.8483 0.8310 

Expression 0.8405 0.8413 0.6294 
GO 0.5888 0.5903 0.5575 

Tumor 0.9229 0.9147 0.6645 

 
Figure 1. Normalized utility (Un) mean, maximum and minimum by task and number of resamplings 
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