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Mobile information technology can help first 
responders assist patients more quickly, reliably, 
and safely, while focusing resources on those most in 
need. Yet the disaster setting complicates reliable 
networked computing. The WIISARD system 
provides mobile IT support for medical response in 
disasters. Cached remote objects (CROs) are shared 
via publish/subscribe, enabling disconnected 
operation when out of network range and ensuring 
data consistency across clients with rollback/replay. 
CROs also provide a flexible, familiar, and 
performant programming model for client 
programmers. A drill with the San Diego MMST 
showed that a basic CRO-based client-server 
architecture is insufficient, because prolonged 
network failures—to be expected in disaster 
reponse—inhibit group work. We describe an 
extension of the CRO model to clusters of computers 
that supports group work during network failures. 

INTRODUCTION 

The standard top-down command-and-control 
hierarchy used for medical response in disasters 
(MRiD) provides for reliable and safe on-site 
diagnosis, treatment, and transport of patients to 
hospitals. As motivated below, it is also slow and 
information poor, putting some patients at risk. 

Mobile information technology holds the promise 
to ease communication and information 
management, enabling first responders to reliably 
and safely treat more patients and focus resources on 
those most in need. Yet, the use of IT in a disaster 
setting is fraught with challenges, and a failure that 
requires responders to revert to their old methods is 
unacceptable. 

This paper describes the WIISARD client-server 
architecture and middleware for mobile IT support 
for MRiD. It employs remote objects to resolve many 
of the problems that arise in IT for MRiD. Remote 
objects (1, Ch. 5), with local caching provide a 
flexible, convenient, and familiar programming 

model for application programmers, hiding the 
complexities of remote data access, disconnected 
operation, and data consistency management. 

The WIISARD system (see wiisard.org) was tested 
in a disaster drill performed by the San Diego 
Metropolitan Medical Response System teams at the 
Del Mar Fairgrounds on Nov. 15, 2005. 100 patients 
were triaged and tracked with WIISARD. The ability 
to monitor patient status at a distance was welcomed 
by responders and the medical command. Yet, 
support for work groups was compromised during 
network partitions, pointing to an improved design. 

This paper contributes a feasibility study for 
supporting coordinated teams with a client-server 
architecture in the harsh conditions of a disaster. We 
further identify system requirements and methods for 
successful mobile IT support for coordinated teams. 

BACKGROUND AND REQUIREMENTS 

The initial response to a disaster at a site secures the 
scene. Medical teams then move in, establishing 
areas for triaging patients, decontamination (if 
necessary), subsequent treatment, and transport to 
area hospitals. The basic workflow is a pipeline, with 
patients moving through the stages in succession.  

The standard information tools of response in-
clude: Simple Triage Rapid Treatment (START) 

 
Figure 1. The WIISARD system architecture. T = 
Tablet PC, P = PDA, and S = server. 
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tags that record each patient’s condition and any 
critical treatments (such as Mark I kits for nerve 
agents); clipboards for supervisors to track informa-
tion such as transport logistics; and whiteboards and 
easels for commanders to track the status of the 
response. Information is moved among these tools by 
word of mouth, often by radio. This system of infor-
mation management is mature, but slow and infor-
mation-poor. Patients in need of immediate help may 
be just out of sight, dangers are not apparent, and 
key trends may be invisible to the command. 

Mobile IT in the disaster setting can automatically 
propagate information among responders and con-
struct information displays appropriate to each 
responder’s role (e.g., triage provider, triage supervi-
sor, medical command, etc.). With the WIISARD 
system (2), providers carry wireless personal digital 
assistants (PDAs) with integrated barcode scanners, 
supervisors carry Tablet PCs, and medical command 
employs large-display devices. Patients are tagged 
with a wireless smart tag (3) or a traditional paper 
START tag. Network communication is supported by 
a portable 802.11b mesh network (4). 

A triage provider, for example, places a tag on the 
patient, scans the tag’s barcode, and then, assessing 
the patient, clicks several items on a screen that 
looks like a START tag. (If just setting the patient’s 
status, then triage can be performed using buttons on 
the smart tag.) The patient’s information is auto-
matically distributed, for example to the triage su-
pervisor’s patient list and the medical command’s 
graphs and map display. No pause for human con-
versation is necessary, and the communication is 
essentially instantaneous. START triage can be 
completed in about 30 seconds, roughly half the time 
of the traditional way. The smart patient tag con-
tinuously updates the patient’s location, and if con-
nected to a pulse/oximiter, continuously monitors 
patient status. 

Because of the harsh dynamics of the disaster 
scene, devices will fail (even if deployed in housings 
or as ruggedized variants), networking will be inter-
rupted, and providers or patients will walk out of the 
network’s range. For responders to depend on this 
infrastructure, it cannot fail, but rather must degrade 
services gracefully in response to underlying failures. 

RELATED WORK 

Others have explored the use of handheld computers 
in triage situations. To cope with difficult communi-
cation issues in battlefield, the Army’s Battlefield 
Medical Information System Telemedicine-Joint 
(BMIST-J) forgoes network connectivity in the field, 
relying on a memory cache on the patient (in a 
“smart” dog tag) to carry limited field data (5). 

IRIVE is a triage and medical data collection system 
that fields asimple client-server architecture (6). The 
Automated Remote Triage and Emergency Man-
agement Information System (ARTEMIS) transmits 
START data to a central repository, using pub-
lish/subscribe (discussed later) and local caching to 
distribute and manage data (7). It is like the WIIS-
ARD system in structure and could take advantage of 
the contributions of this paper. 

THE WIISARD DESIGN 

WIISARD employs a client-server architecture and 
supporting middleware substrate. We envisioned a 
scenario where a single provider would use a hand-
held device to collect and transmit START data to a 
central server for access by others. Because the 
server resides in a support vehicle, is connected by a 
wire to a mesh network node, and can be replicated, 
data loss is rendered unlikely (See Figure 1). (The 
support vehicle also stores spare field devices, pro-
vides power generation for the recharging of spare 
batteries, etc.) So that a client can tolerate its own 
loss of network, we decided that each client would 
hold a local copy of the data it uses (in essence, a 
write-through cache). Should a client become dis-
connected, the provider might be alerted, but could 
continue working uninterrupted on the client’s copy 
of the data. When the network connection is re-
stored, modified local data is pushed up to the server, 
and modified remote data is pushed down to the 
client. 

This simple design creates two challenges. First, 
while a client is disconnected and modifying its data, 
other clients may be modifying the same data, unbe-
knownst to each other. When the network connection 
is re-established, a single “true” copy of the modified 
data must be produced and pushed to each client. 
Simply locking all devices that are sharing data until 
a change can be committed would be slow and could 
freeze the system indefinitely. Second, the details of 
managing network connections, object transport, 
caching, and automated reconciliation of the con-
flicting updates are daunting and subtle, so they 
should be solved once in the middleware and be 
largely transparent to client application program-
mers. 

Our solution employs four elements: remote ob-
jects, publish/subscribe (8), rollback/replay conflict 
resolution, and an object abstraction middleware 
layer that hides details from clients (See Figure 2). 

Cached Remote Objects (CROs) 
A central data definition (schema) at the server con-
stitutes the definition of object types (classes) that 
comprise the data (objects) of the system. The home 
for objects is the server; the objects present on a 
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client device are merely copies, perhaps out of date 
or locally modified. The server represents and en-
forces the data truth of the entire system. Each object 
type is given modification semantics. For each 
method defined on the type that modifies its object’s 
state, a command determines what actions are to 
occur to reflect the state change back to the server. 
Each command has precondition checks for commit-
ting its state change back to the server. 

A trivial CRO class can be automatically gener-
ated such that each object field is accessible through 
generated getter/setter methods. The default com-
mand for the setters is discussed in the next subsec-
tion; the default precondition check is discussed in 
the following subsection on rollback/replay. 

Publish/Subscribe Communication Protocol 
The server makes the system’s data available by pub-
lishing objects on the network. For a client device to 
get a copy of an object from the server, say a Patient 
object, it subscribes to the object using a reference 
(pointer or id) to the object, Subscribe(ref(X)). To 
bootstrap this process—prior to the client having any 
object references—the client can subscribe to an 
object type itself: Subscribe(“Patient”). This gives 
the client access to an array of references to all ob-
jects of the given type. The client can then subscribe 
to the individual objects through these references.  

Publish/subscribe (pub/sub) is event-based. A cli-
ent and server communicate via non-blocking asyn-
chronous messages rather than synchronous, block-
ing procedure calls. Consider a client modifying the 
Status field of a Patient object through its setStatus 
setter method. The default command for the setter 
transparently sends an asynchronous message (event) 
PatientSetStatus(ref(X), newStatus) to the server. 
Meanwhile, the client continues computing on the 
modified object. The server formally accepts this 
modification by sending a matching success message 
back to the originating client, and all subscribers to 
that object receive a PatientModified(X’) event 
containing a copy of the modified object, causing the 
local copy of the object to be updated and an internal 

modified(ref(X)) event to be sent to the client appli-
cation. Normally, the client will have registered an 
action for such an event, say for redrawing active 
displays of the object. This registration is just a local 
subscription for performing a local action rather than 
data movement across the network. 

The non-blocking nature of this protocol enables 
responders to continue working even as others access 
the same data. Also, when a client is disconnected 
from the network, server-bound events are queued, 
and the client continues operation on the locally 
modified objects. Upon reconnection, the queued 
events are sent out, and queued-up modification 
events from the server arrive, updating local copies 
of objects. The architecture is thus naturally tolerant 
of contention, high latency, and network loss. 

Conflict Resolution via Rollback/Replay  
There is always the chance for modification con-
flicts, especially after a lost connection is restored: 
two clients each contemporaneously modify the 
Status field of their local copy of the same Patient 
object, and the setter sends a PatientSetStatus event 
back to the server. It is likely that one of these modi-
fication events will be applied to the object and the 
other will be rejected. For example, the default 
precondition for committing a field modification is 
that it can be applied only if the server and client 
agree on the field’s old value—in other words, that 
the client is modifying what it thinks it’s modifying. 

To handle failures, each client’s event queue holds 
not only outgoing events, but also events as yet 
unacknowledged by the server (called pending). 
Each queued event holds a reference to the modified 
object (called the predicted object), the new values 
for the modified fields (for updating on the server), 
as well as a copy of the previous values of the modi-
fied fields (for local roll back). When a failure mes-
sage is returned for a pending PatientSetStatus 
event, its modifications and that of all subsequent 
pending modified events are “rolled back”—
undone—using the reference and the saved previous 
values. Then the effect of the arriving PatientModi-
fied(X’) event generated from the “winning” client’s 
PatientSetStatus event is applied. Finally, the rolled-
back events are “replayed”—their modifications are 
re-applied and the events re-queued. It is possible 
that some or all of the replay will fail, as a replayed 
event could depend on the value produced by the 
failed event. In this case, the replay is stopped at the 
failed event and a pop-up window is raised to the 
client’s user, asking whether to proceed with the 
replay anyway, abort the remainder of the replay, or 
substitute a value for the failed event and then con-
tinue replay. This approach closely matches work by 

 
Figure 2. The WIISARD client-server architecture. 
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Chang and Curtis on mobile access to object data-
bases (9). 

Cached Object Abstraction Layer (COAL) 
These complexities are best hidden to ease the devel-
opment of client applications. Most of the unique 
behaviors of CROs are hidden in their private 
method bodies and the underlying COAL middle-
ware runtime library, constituting a reusable, trans-
parent abstraction layer. Only subscription to objects 
is unusual. The client application’s registration of 
actions that respond to object updates is not unusual. 
In practice, this is similar to the handling of modifi-
cations performed locally, say via the user interface. 

The COAL middleware concept is flexible. Since 
the WIISARD patient tags have limited memory, a 
“tag adapter” was developed as an intermediary. It 
links to the COAL and maintains CROs for all the 
tags, using a simple data protocol to communicate 
with the tags.  The tag adapter runs on the server 
machine as a standalone program, although it looks 
like any other COAL client to the server software. 

Evaluation 
During the drill described in the introduction, 6126 
modification events were generated on 100 patients, 
plus medications, ambulances, and hospitals. A 
typical event is 64 bytes. Non-network overhead for 
sending a message was under a millisecond. Al-
though there were 70 devices deployed, there were 
610 TCP connections established to the WIISARD 
server during the drill. This does not count failed 
attempts, which were presumably numerous, if the 
network environment resulted in over 500 discon-
nects. Yet, complaints from the responders were few, 
except for one long network partition, described 
below. The general responder perception was instan-
taneous response, presumably due to WIISARD’s 
asynchronous CROs and disconnected operation. 

Event conflicts were rare at 1.3%, despite the con-
flict opportunities created by the network problems. 
Most conflicts were due to data entry errors caused 
by a flaw in our client UI. To compute the costs of 
rollback/replay, we ran a test of 100,000 individual 
rollback/replay event sequences, showing that the 
rollback and replay of a single event on an iPAQ 
5555 PDA running Linux takes 200 microseconds. 

A prolonged network partition occurred during the 
drill. (in Figure 1, suppose that the network was 
partitioned between nodes 2 and 4, cutting the bot-
tom-left team off from the server.) Even though the 
system performed as intended, our approach to 
disconnected operation was inadequate. A triage 
supervisor reported frustration that although he was 
standing next to a working triage provider, the 
provider's data did not immediately appear on his 
device (because the provider’s events were locally 

queued for transmission to the server). Thus, the 
triage provider could continue to work, but the 
supervisor’s work flow was interrupted, putting 
patients at risk. Yet, there was little need for a triage 
provider to see a transport provider’s data. Teams, 
primarily, need to stay in continuous contact. 

EXTENSION OF ARCHITECTURE 

To address the communication needs of teams, we 
extended the CRO concept to include a team-level 
cache of objects. We implement this by having each 
wireless node in the network host a local mirror of 
the main server. Normally, a local server passes all 
requests through and caches an image of the data-
base. A partition causes the local server attached to 
the highest node in the mesh’s routing tree to be-
come the local server for all clients in the partition. 
Thus, data continues to be shared between proximate 
responders, presumably comprising one or more 
teams. 

The question then is how to commit changes made 
on a local server back to the main server upon re-
connection. The local server cannot do it, because 
resolving some conflicts requires responder judg-
ment. Thus, we chose to have clients to keep all their 
events in the queue while disconnected from the 
main server, permitting a full rollback/replay on the 
client. We extended work on two-level commits—
locally synchronous and globally asynchronous 
(10)—to support two levels of asynchronous com-
mits. Asynchronous access to the local server avoids 
blocking operations over the network. This multi-
level mechanism has not yet been developed. Given 
this mechanism’s similarity to the basic one, though, 
we expect performance to be similar. It operates as 
follows. 

Modifications to the local server’s objects are only 
locally committed. Unlike globally committed 
events, locally committed events stay in a client’s 
event queue until reconnection with the main server, 
at which point they behave like pending events in 
that they are sent to the main server for reconcilia-
tion. The use of local commits resolves local con-
flicts in a timely manner, and most would not re-
quire conflict resolution on the main server, since 
data sharing across teams is less frequent than 
within teams, and tends to be write-read sharing, not 
write-write. 

If a global commit fails for a client’s locally-
committed change, the resolution proceeds as de-
scribed in the previous section for a failed pending 
change. The only difference is that a locally-
committed event (and its predicted object) may be 
held by multiple clients, not just the client that 
created the event. Each client will perform its local 
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replay with the “winning” event, but may fail at 
unique places in their local replay, depending on 
their local event queues and how each depends on 
the state created by the winning event. It is possible 
that—unlike with the resolution of pending con-
flicts—the resolution of locally-committed conflicts 
would be visible to other clients, thus causing con-
flict/replay ripples to these other clients. However, 
the event generated by manually resolving a conflict 
is no different than any other. In particular, these 
affected clients are not blocking on this resolution 
event. Each is equally able to asynchronously take up 
the conflict and attempt resolve it first. 

The computational demands on the client are no 
more with this approach than with our basic scheme, 
but the prospect of prolonged disconnects creates the 
possibility for costly reconnects. Time can be saved 
by submitting commits in batches rather than serial-
izing them. It is also possible to declare a command 
that modifies rapidly changing fields (e.g., location) 
as volatile. Volatile commands of the same type can 
be combined in the event queue by updating the old 
event with the new one’s data, rather than queued. A 
command can be declared volatile only if the con-
sumers of the fields in question can tolerate a lack of 
ordering. A map display may be fine if updated only 
with the last received location of a patient. Seeing 
every patient status change may be critical. 

CONCLUSION 

The demands on a mobile system for disaster re-
sponse are unremitting, but a few concepts help: 

cached remote objects distributed over pub/sub and 
kept consistent through rollback/replay. A middle-
ware layer hides these complexities with familiar 
object-oriented programming abstractions. 

For mobile IT to support team efforts under a net-
work partition, team-level object caching is required. 
A server hierarchy can be laid over the network to 
tolerate partitions—a team can still work together, 
linked through their common mesh node’s local 
server. Cost-effective rollback/replay is preserved by 
providing two levels of asynchronous commits and 
reducing replay costs through batching and custom-
ized handling of volatile objects. From our experi-
ence, we propose this principle: 

System structure principle for medical response 
in disasters: A disaster response system's structure 
should follow human organizational structure. In 
particular, system failures should behave like or-
ganizational failures, causing uncoordinated re-
sponse rather than work stoppage. 

Without such architectural accommodations, a disas-
ter response system will only be able to support 
individual provider efforts, and perhaps command 
center efforts where completely accurate data is not 
always necessary for decision making.  
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