
Middleware for Reliable Mobile Medical Workflow
Support in Disaster Settings

Steven W. Brown, MS1 William G. Griswold, PhD1,2
Barry Demchak, BA2 Leslie A. Lenert, MD1,3

1California Institute for Telecommunications and Information Technology and
2Computer Science and Engineering

University of California, San Diego, La Jolla, CA
3Veterans Affairs San Diego Healthcare System, San Diego, CA

Mobile information technology can help first
responders assist patients more quickly, reliably,
and safely, while focusing resources on those most in
need. Yet the disaster setting complicates reliable
networked computing. The WIISARD system
provides mobile IT support for medical response in
disasters. Cached remote objects (CROs) are shared
via publish/subscribe, enabling disconnected
operation when out of network range and ensuring
data consistency across clients with rollback/replay.
CROs also provide a flexible, familiar, and
performant programming model for client
programmers. A drill with the San Diego MMST
showed that a basic CRO-based client-server
architecture is insufficient, because prolonged
network failures—to be expected in disaster
reponse—inhibit group work. We describe an
extension of the CRO model to clusters of computers
that supports group work during network failures.

INTRODUCTION

The standard top-down command-and-control
hierarchy used for medical response in disasters
(MRiD) provides for reliable and safe on-site
diagnosis, treatment, and transport of patients to
hospitals. As motivated below, it is also slow and
information poor, putting some patients at risk.

Mobile information technology holds the promise
to ease communication and information
management, enabling first responders to reliably
and safely treat more patients and focus resources on
those most in need. Yet, the use of IT in a disaster
setting is fraught with challenges, and a failure that
requires responders to revert to their old methods is
unacceptable.

This paper describes the WIISARD client-server
architecture and middleware for mobile IT support
for MRiD. It employs remote objects to resolve many
of the problems that arise in IT for MRiD. Remote
objects (1, Ch. 5), with local caching provide a
flexible, convenient, and familiar programming

model for application programmers, hiding the
complexities of remote data access, disconnected
operation, and data consistency management.

The WIISARD system (see wiisard.org) was tested
in a disaster drill performed by the San Diego
Metropolitan Medical Response System teams at the
Del Mar Fairgrounds on Nov. 15, 2005. 100 patients
were triaged and tracked with WIISARD. The ability
to monitor patient status at a distance was welcomed
by responders and the medical command. Yet,
support for work groups was compromised during
network partitions, pointing to an improved design.

This paper contributes a feasibility study for
supporting coordinated teams with a client-server
architecture in the harsh conditions of a disaster. We
further identify system requirements and methods for
successful mobile IT support for coordinated teams.

BACKGROUND AND REQUIREMENTS

The initial response to a disaster at a site secures the
scene. Medical teams then move in, establishing
areas for triaging patients, decontamination (if
necessary), subsequent treatment, and transport to
area hospitals. The basic workflow is a pipeline, with
patients moving through the stages in succession.

The standard information tools of response in-
clude: Simple Triage Rapid Treatment (START)

Figure 1. The WIISARD system architecture. T =
Tablet PC, P = PDA, and S = server.

AMIA 2006 Symposium Proceedings Page - 309

tags that record each patient’s condition and any
critical treatments (such as Mark I kits for nerve
agents); clipboards for supervisors to track informa-
tion such as transport logistics; and whiteboards and
easels for commanders to track the status of the
response. Information is moved among these tools by
word of mouth, often by radio. This system of infor-
mation management is mature, but slow and infor-
mation-poor. Patients in need of immediate help may
be just out of sight, dangers are not apparent, and
key trends may be invisible to the command.

Mobile IT in the disaster setting can automatically
propagate information among responders and con-
struct information displays appropriate to each
responder’s role (e.g., triage provider, triage supervi-
sor, medical command, etc.). With the WIISARD
system (2), providers carry wireless personal digital
assistants (PDAs) with integrated barcode scanners,
supervisors carry Tablet PCs, and medical command
employs large-display devices. Patients are tagged
with a wireless smart tag (3) or a traditional paper
START tag. Network communication is supported by
a portable 802.11b mesh network (4).

A triage provider, for example, places a tag on the
patient, scans the tag’s barcode, and then, assessing
the patient, clicks several items on a screen that
looks like a START tag. (If just setting the patient’s
status, then triage can be performed using buttons on
the smart tag.) The patient’s information is auto-
matically distributed, for example to the triage su-
pervisor’s patient list and the medical command’s
graphs and map display. No pause for human con-
versation is necessary, and the communication is
essentially instantaneous. START triage can be
completed in about 30 seconds, roughly half the time
of the traditional way. The smart patient tag con-
tinuously updates the patient’s location, and if con-
nected to a pulse/oximiter, continuously monitors
patient status.

Because of the harsh dynamics of the disaster
scene, devices will fail (even if deployed in housings
or as ruggedized variants), networking will be inter-
rupted, and providers or patients will walk out of the
network’s range. For responders to depend on this
infrastructure, it cannot fail, but rather must degrade
services gracefully in response to underlying failures.

RELATED WORK

Others have explored the use of handheld computers
in triage situations. To cope with difficult communi-
cation issues in battlefield, the Army’s Battlefield
Medical Information System Telemedicine-Joint
(BMIST-J) forgoes network connectivity in the field,
relying on a memory cache on the patient (in a
“smart” dog tag) to carry limited field data (5).

IRIVE is a triage and medical data collection system
that fields asimple client-server architecture (6). The
Automated Remote Triage and Emergency Man-
agement Information System (ARTEMIS) transmits
START data to a central repository, using pub-
lish/subscribe (discussed later) and local caching to
distribute and manage data (7). It is like the WIIS-
ARD system in structure and could take advantage of
the contributions of this paper.

THE WIISARD DESIGN

WIISARD employs a client-server architecture and
supporting middleware substrate. We envisioned a
scenario where a single provider would use a hand-
held device to collect and transmit START data to a
central server for access by others. Because the
server resides in a support vehicle, is connected by a
wire to a mesh network node, and can be replicated,
data loss is rendered unlikely (See Figure 1). (The
support vehicle also stores spare field devices, pro-
vides power generation for the recharging of spare
batteries, etc.) So that a client can tolerate its own
loss of network, we decided that each client would
hold a local copy of the data it uses (in essence, a
write-through cache). Should a client become dis-
connected, the provider might be alerted, but could
continue working uninterrupted on the client’s copy
of the data. When the network connection is re-
stored, modified local data is pushed up to the server,
and modified remote data is pushed down to the
client.

This simple design creates two challenges. First,
while a client is disconnected and modifying its data,
other clients may be modifying the same data, unbe-
knownst to each other. When the network connection
is re-established, a single “true” copy of the modified
data must be produced and pushed to each client.
Simply locking all devices that are sharing data until
a change can be committed would be slow and could
freeze the system indefinitely. Second, the details of
managing network connections, object transport,
caching, and automated reconciliation of the con-
flicting updates are daunting and subtle, so they
should be solved once in the middleware and be
largely transparent to client application program-
mers.

Our solution employs four elements: remote ob-
jects, publish/subscribe (8), rollback/replay conflict
resolution, and an object abstraction middleware
layer that hides details from clients (See Figure 2).

Cached Remote Objects (CROs)
A central data definition (schema) at the server con-
stitutes the definition of object types (classes) that
comprise the data (objects) of the system. The home
for objects is the server; the objects present on a

AMIA 2006 Symposium Proceedings Page - 310

client device are merely copies, perhaps out of date
or locally modified. The server represents and en-
forces the data truth of the entire system. Each object
type is given modification semantics. For each
method defined on the type that modifies its object’s
state, a command determines what actions are to
occur to reflect the state change back to the server.
Each command has precondition checks for commit-
ting its state change back to the server.

A trivial CRO class can be automatically gener-
ated such that each object field is accessible through
generated getter/setter methods. The default com-
mand for the setters is discussed in the next subsec-
tion; the default precondition check is discussed in
the following subsection on rollback/replay.

Publish/Subscribe Communication Protocol
The server makes the system’s data available by pub-
lishing objects on the network. For a client device to
get a copy of an object from the server, say a Patient
object, it subscribes to the object using a reference
(pointer or id) to the object, Subscribe(ref(X)). To
bootstrap this process—prior to the client having any
object references—the client can subscribe to an
object type itself: Subscribe(“Patient”). This gives
the client access to an array of references to all ob-
jects of the given type. The client can then subscribe
to the individual objects through these references.

Publish/subscribe (pub/sub) is event-based. A cli-
ent and server communicate via non-blocking asyn-
chronous messages rather than synchronous, block-
ing procedure calls. Consider a client modifying the
Status field of a Patient object through its setStatus
setter method. The default command for the setter
transparently sends an asynchronous message (event)
PatientSetStatus(ref(X), newStatus) to the server.
Meanwhile, the client continues computing on the
modified object. The server formally accepts this
modification by sending a matching success message
back to the originating client, and all subscribers to
that object receive a PatientModified(X’) event
containing a copy of the modified object, causing the
local copy of the object to be updated and an internal

modified(ref(X)) event to be sent to the client appli-
cation. Normally, the client will have registered an
action for such an event, say for redrawing active
displays of the object. This registration is just a local
subscription for performing a local action rather than
data movement across the network.

The non-blocking nature of this protocol enables
responders to continue working even as others access
the same data. Also, when a client is disconnected
from the network, server-bound events are queued,
and the client continues operation on the locally
modified objects. Upon reconnection, the queued
events are sent out, and queued-up modification
events from the server arrive, updating local copies
of objects. The architecture is thus naturally tolerant
of contention, high latency, and network loss.

Conflict Resolution via Rollback/Replay
There is always the chance for modification con-
flicts, especially after a lost connection is restored:
two clients each contemporaneously modify the
Status field of their local copy of the same Patient
object, and the setter sends a PatientSetStatus event
back to the server. It is likely that one of these modi-
fication events will be applied to the object and the
other will be rejected. For example, the default
precondition for committing a field modification is
that it can be applied only if the server and client
agree on the field’s old value—in other words, that
the client is modifying what it thinks it’s modifying.

To handle failures, each client’s event queue holds
not only outgoing events, but also events as yet
unacknowledged by the server (called pending).
Each queued event holds a reference to the modified
object (called the predicted object), the new values
for the modified fields (for updating on the server),
as well as a copy of the previous values of the modi-
fied fields (for local roll back). When a failure mes-
sage is returned for a pending PatientSetStatus
event, its modifications and that of all subsequent
pending modified events are “rolled back”—
undone—using the reference and the saved previous
values. Then the effect of the arriving PatientModi-
fied(X’) event generated from the “winning” client’s
PatientSetStatus event is applied. Finally, the rolled-
back events are “replayed”—their modifications are
re-applied and the events re-queued. It is possible
that some or all of the replay will fail, as a replayed
event could depend on the value produced by the
failed event. In this case, the replay is stopped at the
failed event and a pop-up window is raised to the
client’s user, asking whether to proceed with the
replay anyway, abort the remainder of the replay, or
substitute a value for the failed event and then con-
tinue replay. This approach closely matches work by

Figure 2. The WIISARD client-server architecture.

AMIA 2006 Symposium Proceedings Page - 311

Chang and Curtis on mobile access to object data-
bases (9).

Cached Object Abstraction Layer (COAL)
These complexities are best hidden to ease the devel-
opment of client applications. Most of the unique
behaviors of CROs are hidden in their private
method bodies and the underlying COAL middle-
ware runtime library, constituting a reusable, trans-
parent abstraction layer. Only subscription to objects
is unusual. The client application’s registration of
actions that respond to object updates is not unusual.
In practice, this is similar to the handling of modifi-
cations performed locally, say via the user interface.

The COAL middleware concept is flexible. Since
the WIISARD patient tags have limited memory, a
“tag adapter” was developed as an intermediary. It
links to the COAL and maintains CROs for all the
tags, using a simple data protocol to communicate
with the tags. The tag adapter runs on the server
machine as a standalone program, although it looks
like any other COAL client to the server software.

Evaluation
During the drill described in the introduction, 6126
modification events were generated on 100 patients,
plus medications, ambulances, and hospitals. A
typical event is 64 bytes. Non-network overhead for
sending a message was under a millisecond. Al-
though there were 70 devices deployed, there were
610 TCP connections established to the WIISARD
server during the drill. This does not count failed
attempts, which were presumably numerous, if the
network environment resulted in over 500 discon-
nects. Yet, complaints from the responders were few,
except for one long network partition, described
below. The general responder perception was instan-
taneous response, presumably due to WIISARD’s
asynchronous CROs and disconnected operation.

Event conflicts were rare at 1.3%, despite the con-
flict opportunities created by the network problems.
Most conflicts were due to data entry errors caused
by a flaw in our client UI. To compute the costs of
rollback/replay, we ran a test of 100,000 individual
rollback/replay event sequences, showing that the
rollback and replay of a single event on an iPAQ
5555 PDA running Linux takes 200 microseconds.

A prolonged network partition occurred during the
drill. (in Figure 1, suppose that the network was
partitioned between nodes 2 and 4, cutting the bot-
tom-left team off from the server.) Even though the
system performed as intended, our approach to
disconnected operation was inadequate. A triage
supervisor reported frustration that although he was
standing next to a working triage provider, the
provider's data did not immediately appear on his
device (because the provider’s events were locally

queued for transmission to the server). Thus, the
triage provider could continue to work, but the
supervisor’s work flow was interrupted, putting
patients at risk. Yet, there was little need for a triage
provider to see a transport provider’s data. Teams,
primarily, need to stay in continuous contact.

EXTENSION OF ARCHITECTURE

To address the communication needs of teams, we
extended the CRO concept to include a team-level
cache of objects. We implement this by having each
wireless node in the network host a local mirror of
the main server. Normally, a local server passes all
requests through and caches an image of the data-
base. A partition causes the local server attached to
the highest node in the mesh’s routing tree to be-
come the local server for all clients in the partition.
Thus, data continues to be shared between proximate
responders, presumably comprising one or more
teams.

The question then is how to commit changes made
on a local server back to the main server upon re-
connection. The local server cannot do it, because
resolving some conflicts requires responder judg-
ment. Thus, we chose to have clients to keep all their
events in the queue while disconnected from the
main server, permitting a full rollback/replay on the
client. We extended work on two-level commits—
locally synchronous and globally asynchronous
(10)—to support two levels of asynchronous com-
mits. Asynchronous access to the local server avoids
blocking operations over the network. This multi-
level mechanism has not yet been developed. Given
this mechanism’s similarity to the basic one, though,
we expect performance to be similar. It operates as
follows.

Modifications to the local server’s objects are only
locally committed. Unlike globally committed
events, locally committed events stay in a client’s
event queue until reconnection with the main server,
at which point they behave like pending events in
that they are sent to the main server for reconcilia-
tion. The use of local commits resolves local con-
flicts in a timely manner, and most would not re-
quire conflict resolution on the main server, since
data sharing across teams is less frequent than
within teams, and tends to be write-read sharing, not
write-write.

If a global commit fails for a client’s locally-
committed change, the resolution proceeds as de-
scribed in the previous section for a failed pending
change. The only difference is that a locally-
committed event (and its predicted object) may be
held by multiple clients, not just the client that
created the event. Each client will perform its local

AMIA 2006 Symposium Proceedings Page - 312

replay with the “winning” event, but may fail at
unique places in their local replay, depending on
their local event queues and how each depends on
the state created by the winning event. It is possible
that—unlike with the resolution of pending con-
flicts—the resolution of locally-committed conflicts
would be visible to other clients, thus causing con-
flict/replay ripples to these other clients. However,
the event generated by manually resolving a conflict
is no different than any other. In particular, these
affected clients are not blocking on this resolution
event. Each is equally able to asynchronously take up
the conflict and attempt resolve it first.

The computational demands on the client are no
more with this approach than with our basic scheme,
but the prospect of prolonged disconnects creates the
possibility for costly reconnects. Time can be saved
by submitting commits in batches rather than serial-
izing them. It is also possible to declare a command
that modifies rapidly changing fields (e.g., location)
as volatile. Volatile commands of the same type can
be combined in the event queue by updating the old
event with the new one’s data, rather than queued. A
command can be declared volatile only if the con-
sumers of the fields in question can tolerate a lack of
ordering. A map display may be fine if updated only
with the last received location of a patient. Seeing
every patient status change may be critical.

CONCLUSION

The demands on a mobile system for disaster re-
sponse are unremitting, but a few concepts help:

cached remote objects distributed over pub/sub and
kept consistent through rollback/replay. A middle-
ware layer hides these complexities with familiar
object-oriented programming abstractions.

For mobile IT to support team efforts under a net-
work partition, team-level object caching is required.
A server hierarchy can be laid over the network to
tolerate partitions—a team can still work together,
linked through their common mesh node’s local
server. Cost-effective rollback/replay is preserved by
providing two levels of asynchronous commits and
reducing replay costs through batching and custom-
ized handling of volatile objects. From our experi-
ence, we propose this principle:

System structure principle for medical response
in disasters: A disaster response system's structure
should follow human organizational structure. In
particular, system failures should behave like or-
ganizational failures, causing uncoordinated re-
sponse rather than work stoppage.

Without such architectural accommodations, a disas-
ter response system will only be able to support
individual provider efforts, and perhaps command
center efforts where completely accurate data is not
always necessary for decision making.

ACKNOWLEDGEMENTS

Supported by National Library of Medicine contract
N01-LM-3-3511. We thank the WIISARD team,
expecially R. Huang and F. Liu for their client work.

REFERENCES

1. Coulouris G, Dollimore J, Kindberg J. Distributed
Systems Concepts and Design, 4th ed. Addison-
Wesley; 2005, p. 944.
2. Chan TC, Killeen J, Griswold W, Lenert L. In-
formation technology and emergency medical care
during disasters. Acad Emerg Med. 2004;
11(11):1229-36.

3. Palmer DA, Rao R, Lenert LA. “An 802.11 Wire-
less Blood Pulse-Oximetry System for Medical
Response to Disasters”, Amer. Med. Inf. Assoc. 2005
Annual Symp.; 2005.

4. Arisoylu M, Mishra R, Rao R, Lenert L. “802.11
Wirless Infrastructure To Enhance Medical
Response to Disasters”, Amer. Med. Inf. Assoc. 2005
Annual Symp.; 2005.

5. Battlefield Medical Information System Telemedi-
cine-Joint, website,
https://www.mc4.army.mil/BMIST-J.asp.

6. Gaynor M, Seltzer M, Moulton S, Freedman J. “A
Dynamic, Data-Driven, Decision Support System for
Emergency Medical Services”, Int’l Conf. on Com-
putational Sci., Springer-Verlag; 2005, p. 703-11.

7. McGrath SP, Grigg E, Wendelken S, Blike G, De Rosa M, Fiske A, Gray R. “ARTEMIS: A Vision for Remote Triage and Emergency Management Infor-mation Integration”, unpublished manuscript,
http://www.ists.dartmouth.edu/projects/frsen-
sors/artemis/papers/ARTEMIS.pdf.
8. Eugster PT, Felber PA, Guerraoui R, Kermarrec
R. “The many faces of publish/subscribe”, ACM
Comput. Surv.; 2003 Jun;35(2):114-31.

9. Chang S, Curtis D. “An Approach to Discon-
nected Operation in an Object-Oriented Database”,
3rd Int’l Conf. on Mobile Data Mgmt; 2002 Jan.

10. Pitoura E, Bhargava B. “Data Consistency in
Intermittently Connected Distributed Systems”,
IEEE Trans. on Knowledge and Data Eng.; 1999
Nov;11(6):896-915.

AMIA 2006 Symposium Proceedings Page - 313

