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In the last few years a growing interest has been 
devoted to disease diagnosis based on proteomic  
profiles of body fluids generated by mass 
spectrometry. In this work, we will present a new 
approach for their analysis for biomarker discovery. 
In particular, we will describe a new strategy for the 
analysis of SELDI/MALDI-TOF serum data based on 
the following three steps: i) data-preprocessing, ii) 
feature (mass/charge ratio, m/z) reduction and 
selection, iii) association of the selected features to a 
list of compatible known proteins. The method is 
applied to an ovarian cancer dataset.  

Introduction 

The recent developments in sample 
preparation and mass spectrometry allow to measure 
simultaneously the expression level of thousands of 
proteins.1,2 Moreover it has been recently discovered 
that a part of the protein fragments contained in body 
fluids, like serum, may provide very useful diagnostic 
information.3-5 For these reasons, in the last few years 
an increasing interest has been devoted to the analysis 
of the serum proteome, mainly for diagnostic 
purposes. In particular the SELDI/MALDI-TOF 
techniques represent promising tools for the 
discovery of biomarkers, i.e. protein signatures 
associated to a particular disease.6,7 

However, the biomarker identification is not 
straightforward due to the presence of several sources 
of technical and biological complexity. A well-
established procedure for data analysis is not yet 
available, although many studies for disease 
diagnosis have been recently published.8 In fact, the 
data analysis procedures applied in those studies 
significantly differ from each other.9-12 Moreover, the 
emphasis of many papers has been typically devoted 
to achieve a high diagnostic accuracy, a task which 
may be rather easy thanks to the abundance of 
available features (i.e. the m/z values) with respect to 
the number of analysed patients. In contrast, we 
believe that the most critical aspect that should be 
carefully investigated is understanding the results 
from a biological/clinical point of view, i.e. the 
interpretation of the classification results and the their 
use to discover of biomarkers which can be used in 
clinical practice.  

In the present work, we first provide a 
schematic summary about the issues of the SELDI-
TOF mass spectrum acquisition from serum. Then we 
will propose a new approach for the analysis of 
SELDI-TOF serum data based on the following three 
steps: i) data-preprocessing, ii) feature (mass/charge 
ratio, m/z) reduction and selection and iii) association 
of the selected features to a list of known compatible 
proteins (feature interpretation) which are possible  
biomarkers. 

Background 

In order to better clarify the issues related to 
analysis of mass spectrometry data, we present here a 
schematic view of the process that leads to the 
SELDI-TOF mass spectra from serum, emphasizing 
the fact that the low molecular weight (LMW) 
components of serum contain information about the 
cellular mechanisms under study.3-6 

1) Some of the proteins produced by a cell go out 
from the cell itself. 

2) A large quantity of these proteins are digested by 
proteases, generating fragments (polypeptides). 

3) A portion of these polypeptides (fragments or 
whole proteins) reach the near blood vessels. 
Due to their small dimensions, the LMW 
polypeptides have high probability of passively 
permeating through endothelial cell wall barrier 
and trickling into the circulation. 

4) Here, the polypeptides that are immediately 
bound with circulating high-abundance carrier 
proteins, such as albumin, are protected from 
kidney clearance. The resulting amplification of 
the polypeptides enables these low-abundance 
entities to be seen by MS-based detection and 
profiling.  

5) SELDI analysis of LMW serum is based on two 
steps: 
• the polypeptides are captured with the 

selected SELDI chips;  
• the polypeptides under a certain mass 

(which depends on the energy absorbing 
matrix used) are then ionized (usually with 
H+). 

6) The mass-charge ratio of each ionized 
polypeptide is calculated by a TOF analyzer:  
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m/z = ( m1 + m2 ) / z 
m1 is the mass of polypeptide, m2 is the mass of 
the ionizing charge and z is the value of the 
charge. 

 

Figure 1. Schematic summary of the  
measurement process. 

To interpret the whole serum spectrum (a 
mixture of polypeptides) it’s necessary to better 
understand which are the main components of 
the spectrum generated by a single polypeptide 
with mass M: 
A. the main peak produced by the polypeptide 

ionized with one charge, m/z=(M+1)/1 
(Figure 1-1A); 

B. a lower peak produced by polypeptide 
ionized with two charges, m/z = (M+2)/2 
(Figure 1-1B); 

C. some peaks, principally close to the main 
peak, produced by post-translational 
modifications (PTMs) of the polypeptide  
(Figure 1-1C). 

7) Every peak presents an isotopic distribution that 
consists in many isotopic sub-peaks which 
differs of 1 Dalton, due to the fact that the atoms 
of a polypeptide can be isotopes of different 
kinds. The highest sub-peak (the most likely sub-
peak) corresponds to the most likely isotope 
combination, whereas the most left sub-peak is 
called monoisotopic peak (Figure 1-2). 

8) In a real spectrum every isotopic peak is 
represented by a bell with width that depends on 
the routine resolution of the spectrometer. These 
bells may overlap (Figure 1-3). 

9) The measured SELDI-TOF spectrum consists in 
the sum of the spectra generated by all the 
polypeptides contained in serum (Figure 1-4). 

Methods 

Let us consider a typical mass spectrometry 
(MS) dataset. It consists in N spectra, usually 
collected in two different conditions (e.g. normal and 
pathological subjects); every spectra contains the 
absolute intensity of all the different m/z detected. 

The proposed procedure for the analysis of the 
mass spectrometry data consists of three steps. 

 

First step: Data  preprocessing 

Since the measured m/z can be different in 
each spectrum, we align the mass spectra according 
to the sorted union of the m/z ratios. Zero value of 
intensity is assigned to the m/z that are not detected 
in a profile. We then build a matrix, containing the 
data, that is used for the analysis. 

Many algorithms are available for data 
preprocessing. For choosing the most appropriate 
sequence of the preprocessing algorithms, we have 
developed an iterative search method. The method 
maximizes the classification accuracy calculated by a 
simple classifier: after the computation of a score 
based on the sum of the intensities of the m/z most 
differentially expressed between the conditions, a one 
rule classifier is applied.  

The search strategy follows a stepwise 
approach. In fact at every step of the method we 
select as best algorithm the preprocessing algorithm 
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that allows the classifier to achieve the highest 
accuracy. The method ends when no further 
preprocessing is selected as the best algorithm. In 
order to avoid overfitting, the preprocessing and 
feature steps should be performed on a training set 
separated from the test set from the very beginning of 
the analysis. 

Second step: Feature reduction and selection  

In order to decrease the data complexity and to 
increase the information associated to each feature, in 
the second step the original m/z data (e.g. about 
300000 in SELDI/TOF high resolution data) are 
reduced by grouping together the m/z values 
corresponding to the same protein. 

Our algorithm exploits the available 
knowledge on the mass spectrometry technique (e.g. 
routine resolution) and the chemical properties of 
proteins (e.g., isotopic distribution).  

First we assume, for simplicity, that all the 
measured ions are single charged, and therefore that 
every m/z represents the mass m. Second, we 
calculate the positions of all the possible isotopic sub-
peaks in the median spectrum, i.e. the spectrum 
obtained by considering for each m/z the median 
value of the dataset, as follows: 
• we consider a moving window centred in each of 

the  m/z’s. The width of the window depends on 
the routine resolution (R(m/z)) of the 
spectrometer for the m/z at the i-th centre; 

• we build a new curve, called envelope curve, by 
considering for each m/z the maximum value of 
the intensities in that window; 

• we consider, as isotopic peaks, the local maxima 
of the envelope curve; 

Given such peaks, it is then crucial to define a 
suitable binning of the original spectrum. Since each 
peak found may correspond to a sub-peak of an 
isotopic distribution of a polypeptide, an optimal 
binning may be obtained by aggregating the portion 
of the spectrum corresponding to the same 
polypeptide.  

The iterative algorithm for binning performs 
the following steps: � select the peak with the highest intensity from 

the list of the available peaks; � characterize the corresponding isotopic 
distribution. The location of the peak is 
considered as the position of the most likely sub-
peak. The sub-peaks of the isotopic distribution 
are determined by using a regression model of 
the location of the monoisotopic sub-peaka; 

                                                
a. The regression model takes the mass of the most likely 
isotopic sub-peak and gives the location of the monoisotopic sub-
peak and the spread of the isotopic spectrum. The regression model 

� sum the intensities corresponding to each 
isotopic sub-peak, considering the routine 
resolution. The sum is the value associated to the 
new feature calculated after binning; � all the peaks already grouped in the same bin are 
removed from the list of available peaks. 

 

Figure 2. Binning: the feature associated to an 
isotopic distribution is calculated grouping the 

intensities around each isotopic sub-peak. 

At the end of feature reduction phase, every 
new feature found is normalized assigning 1 to the 
maximum value among the N spectra, 0 to the 
minimum one and scaling the remaining values. 

In this way, we obtain a reduced number of 
features that can be used for further analysis. In 
particular, it is then possible to apply any of the 
available algorithms to select the most differentially 
expressed features between a number of conditions of 
interest and to build a classifier for diagnostic 
purposes applying any of the available algorithms. 

Third step: Feature interpretation 

In the third step, we deal with the problem of 
the identification of the protein associated to an 
isotopic distribution. Usually this identification 
requires a further mass spectrometer experiment 
(PMF or MS/MS)12. Conversely, in this paper, we 
propose a bioinformatic approach: every feature 
computed and selected in the second step is 
associated to a list of proteins that could generate the 
isotopic distribution.  

To this aim, a local database composed of 
281707 different aminoacidic sequences annotated in 
the Entrez protein database among 700 and 11000 Da 
has been created. We have calculated the 
monoisotopic molecular weight of every sequence. 

A given feature corresponds to an isotopic 
distribution about which we known the location of 
the most likely sub-peak. Observing on the median 
spectrum the distance between the waves generated 

                                                                       
was built using data coming form the tool “Isotopident” available 
on the Web  (http://haven.isb-sib.ch/tools/isotopident/htdocs/). 
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by the isotopic peaks, we can infer the number of 
ionizing charges and so the effective mass of the 
polypeptide (e.g. 1 Da =>1 charge, 0.5 Da =>2 
charges). 

By means of the same regression model used 
in the second step, we can estimate the monoisotopic 
mass. A list of proteins can be associated to this 
monoisotopic mass by simply selecting in the local 
database the entries with molecular weight around the 
mass of interest ( ±[3Da+R(m/z)] ).  

To reduce the length of such list, it is possible 
to consider only the proteins that contain at least one 
of the 12274 different peptides discovered in human 
serum by Plasma Proteome Project13. 

To shorten again the list we remove the entries 
corresponding to “variable regions” which may 
hardly reach a concentration in serum such that a 
spectrometric peak is generated. 

Results 

The proposed procedure has been applied to a 
public dataset regarding ovarian cancer 
(http://home.ccr.cancer.gov/ncifdaproteomics/ppatter
ns.asp). It consists of 216 mass spectra (121 ovarian 
cancer patients and 95 healthy women) obtained from 
serum samples by mean of the SELDI-QqTOF MS 
(routine resolution ~8000) with WCX2 ProteinChip.  

First step: Data  preprocessing 

In the first step, we have first aligned the 
spectra according to the sorted union of m/z ratios 
obtaining the matrix of the data (373401x216).  

Then, by means of our procedure, we have 
selected three algorithms for the data preprocessing 
phase. � Baseline correction: a baseline signal, which has 

to be subtracted, is generated because sometimes 
the detector overestimates the number of ions 
arriving at its surface. We estimate the baseline 
with an algorithm proposed the first time by 
Andrade et al. (Figure 3).14 

 

Figure 3. Baseline valuation. 

� Lowpass filtering: we applied lowess and 
Sawitzky-Golay filters to remove the high 
frequency components that do not have 
biological meaning; only the components 
corresponding to the true isotopic peaks remain 
(Figure 4).  

 

Figure 4. Smoothing of the isotopic distribution with 
the highest intensity. 

Second step: Feature reduction and selection 

In the second step the initial 373401 m/z were 
reduced to 3282 features, that correspond 
approximately to different isotopic distributions.  

We have then selected the most differentially 
expressed features by applying a threshold on the 
Information Gain (IG=Σf p(f) Σc p(C|f) log p(C|f)). 
The following table contains the five isotopic 
distributions which perform the better classification 
between normal subjects and ovarian cancer patients. 
In particular, the location of the most likely sub-peak, 
the kind of ion that generated the distribution, the 
monoisotopic mass and the classification accuracy 
are shown. 

Table I: Results of the feature selection  
8602.5 Ion single charged 8596.5 89.81% 
4301.6 Ion double charged 8596.5 88.43% 
4301.2 Ion double charged 8596.5 87.04% 
8624.3 PTM 8596.5 87.04% 
8618.5 PTM 8596.5 86.11% 

Third step: Feature interpretation 

In the third step, the most differentially 
expressed feature (selected at previous step) was 
associated to a short list of proteins, among which a 
possible biomarker for ovarian cancer can be found. 

8596.5  

Q13310 Polyadenylate-binding protein 4 (Poly(A)-binding protein 4) 

2AYO B Chain B, Structure Of Usp14 Bound To Ubquitin Aldehyde 
Q9H0Q3 FXY Ddomain-containing ion transport regulator 6 precursor 

The validity of this approach was preliminary 
tested with success on the interpretation problem of 
an isotopic distribution (monoisotopic mass = 
7761.3Da) experimentally identified in a previous 
study as associated to ”platelet factor 4”.15 With our 
method we were able to find the protein which 
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generate the peak, in the short list selected, only 
relying on the original mass spectrometry data.  

7761.3  

A37927 Ig kappa chain C region (allotype Inv(1,2)) - (fragment) 
AAA60066 platelet factor 4 
1F9R_A Chain A, Crystal Structure Of Platelet Factor 4 Mutant1 
CAF14860 unnamed protein product [Homo sapiens] 
AAA58876 Ig heavy chain 

Conclusion 

In the present work we have presented a data 
analysis procedure aimed at understanding and using 
for diagnostic purposes proteomic profiles of serum 
obtained by means of SELDI-TOF MS. 

The main differences in respect to the 
previously published studies are: � the sequence of the preprocessing algorithms is 

selected through an iterative sub-optimal 
method; � the feature reduction step consists of a binning 
that is based on the nature of the signal;  � an original in-silico bioinformatic method for the 
interpretation of the peaks is applied. 

In future it will be possible to improve such 
procedure working on different directions, for 
example: � testing further algorithms for data-preprocessing 

in the first step; � refining the algorithm for grouping features by 
using biological (PTMs) or statistical 
information (correlation coefficient); � enlarging the database of polypeptides created at 
the third step, improving the knowledge about 
the carrier-protein and chip-protein bonds to 
enhance the query phase, and linking the search 
to other sources of information, such as OMIM. 

Finally we think to validate furthermore the 
proposed method by applying it to other SELDI-TOF 
high-resolution datasets. 
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