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Abstract Images (i.e., figures) are important 
experimental evidence that are typically reported in 
bioscience full-text articles. Biologists need to access 
images to validate research facts and to formulate or to 
test novel research hypotheses. We propose to build a 
biological question answering system that provides 
experimental evidences as answers in response to 
biological questions. As a first step, we develop natural 
language processing techniques to identify sentences that 
summarize image content.  
 
1. Introduction 
 
Images (i.e., figures) are important experimental evidence 
that are typically reported in bioscience full-text articles. 
Biologists need to access images to validate research 
facts, and to formulate or to test novel research 
hypotheses. On the other hand, biologists live in an age of 
information explosion. As thousands of biomedical 
articles are published every day, systems that help 
biologists access efficiently images in literature would 
greatly facilitate biomedical research. Information 
retrieval systems (e.g., PubMed) typically return a list of 
documents in response to a user’s query. However, 
hundreds, thousands or even a larger number of 
documents can be retrieved; few biologists have time to 
read all of the retrieved documents. Additionally, many of 
the retrieved documents might not contain specific 
information that biologists need. For example, a biologist 
may specifically want to know the evidence of “X 
interacting with Y”, and he/she might have to navigate a 
large number of articles to identify the piece of 
information he/she needs. We are developing question 
answering techniques to automatically analyze thousands 
of documents and to extract answers in response to 
questions1-3. In the biology domain, we believe the first 
step to build a useful question answering system is to 
identify the text that summarize images that appear in 
full-text articles.   

The motivations of this study come after our manual 
examination of more than one hundred questions posed 
by twelve experimental biologists. We found that many 
biological questions require experimental evidences as 
answers. In the following we listed five biological 
questions that require experimental evidences as answers:  
1) Show me the evidences that the phosphatase 

domain and the C2 domain are responsible for 
membrane recruitment of PTEN. 

2) Does bysl coexpress with myc? 
3) Does ascorbic acid inhibit nitrosamines? 
4) Give me all structures of E cahderin. 
5) Show me ompa expression. 

It is well-known that significant amount of 
experimental evidences are presented in the full-text 
body as images, including figures or tables, embedded 
within associated text. Because images are important 
experimental evidences, a question answering system 
may provide images as answers in response to 
biological questions.  

However, images alone are frequently meaningless 
without their associated text (e.g. captions and other 
associated text). On the other hand, text alone without 
the images would deprive of the actual supporting 
experimental evidences.  

To answer biological questions that require images 
as the answers, we propose to provide a short text that 
summarizes the content of the target images. Biologists 
can then access the actual images through the text. For 
example, to answer the question (1), we will provide 
the textual statement “Subcellular localization studies 
of PTEN transfected into HEK293T and HeLa cells 
indicated that targeting of PTEN to the plasma 
membrane is coupled with rapid degradation and that 
the phosphatase domain and the C2 domain are both 
necessary and sufficient for its membrane recruitment.” 
The corresponding image (i.e., image “C” in Figure 1) 
can be accessed directly from the preceding sentence 
with a hyperlink. To build such a question answering 
system, it is essential to develop natural language 
processing systems that automatically identify text that 
summarize images. We report natural language 
processing techniques to achieve such a mapping. 
 
2. Text that Summarize Image Content 
 
We randomly selected a total of ten Proceedings of the 
National Academy of Sciences (PNAS) full-text 
articles; we manually examined the associated text 
(e.g., abstract sentences, and image captions and other 
associated text that appear in the full-text body). As an 
example, the following shows the associated text of 
“Table 1” in Figure 1.  

 
Abstract sentences: Our in vitro surface plasmon 
resonance measurements using immobilized 
vesicles showed that both the phosphatase 
domain and the C2 domain, but not the C-
terminal tail, are involved in electrostatic 
membrane binding of PTEN. Furthermore, the 
phosphorylation-mimicking mutation on the C-
terminal tail of PTEN caused an 80-fold 
reduction in its membrane affinity, mainly by 
slowing the membrane-association step.  
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Image caption: Binding parameters for PTEN 
constructs determined from SPR analysis.        

Other associated text: 
• The sample cell contains the sensor surface 
coated with the vesicles indicated in Table 1.          

• Further measurements using mixed vesicles of 
POPC/POPS (8:2), which roughly approximate the 
lipid composition of the inner plasma membrane 
of mammalian cells to which PTEN is targeted, 
showed that both the full-length PTEN and the 
C2 domain had higher affinity (in terms of Kd) 

for these anionic vesicles (see Table 1). 
• The affinity for anionic vesicles was mainly 
attributed to nonspecific electrostatic 
interactions, because they did not distinguish 
POPC/POPS (8:2) from POPC/1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoglycerol (POPG) 
(8:2) vesicles (Table 1) and the affinity was 
reduced greatly by 0.5 M KCl [Kd = (2.2 ± 0.4) 
x 10–7 M; ka = (9.5 ± 1.2) x 103 M–1·s–1; kd = 
(2.1 ± 0.3) x 10–3·s–1]. 

• As shown in Table 1, 1–185 and 353–403 had 31- 

and 1.5-fold lower affinity for POPC/POPS 
(8:2) vesicles than WT, respectively. This 
suggests that the phosphatase domain is 
important for the membrane binding of PTEN, 
whereas the C-terminal tail plays practically 
no role in membrane binding. 

• As shown in Table 1, PTEN had 2-fold higher 
affinity for the plasma membrane mimic than 
for POPC/POPS (8:2) vesicles, presumably 

because the former has a higher anionic lipid 
content. 
 

As shown in the example above, the abstract sentences 
are the best to summarize image content. Other associated 
text typically describe only experimental procedures and 
do not include indications and conclusions of an 
experiment. Additionally, image content are typically 
scattered across other associated text, and therefore, it is 
difficult to identify a succinct summary from the other 
associated text.   
 
3. An Annotated Corpus in Which Abstract Sentences 
Link to Images that Appear in the Full-Text 
Documents 
 
We hypothesize that images reported in a full-text article 
can be summarized by sentences in the abstract. To test 
this hypothesis, we randomly selected a total of 329 
biological articles that are recently published in leading 
biological journals Cell (104), EMBO (72), Journal of 
Biological Chemistry (92), and Proceedings of the 
National Academy of Sciences (PNAS) (61). For each 
article, we emailed the corresponding author to ask him 
or her to identify abstract sentences that summarize the 
image content in that article. 

A total of 119 biologists from 19 countries 
participated voluntarily the annotation to identify abstract 
sentences that summarize figures or tables in their 114 
articles (39 Cells, 29 EMBO, 30 Journal of Biological 
Chemistry, and 16 PNAS), a collection that is 34.7% of 

the total articles we requested. The responding 
biologists included the corresponding authors to whom 
we had sent emails, as well as the first authors of the 
articles to whom the corresponding authors had 
forwarded our emails. None of the biologists were 
compensated.  

This collection of 114 full-text articles 
incorporates 742 images and 826 abstract sentences. 
The average number of images per document is 6.5±1.5 
and the average number of sentences per abstract is 
7.2±1.9. Our data show that 87.9% images correspond 
to abstract sentences and 66.5% abstract sentences 
correspond to images; those statistics have empirically 
validated our hypothesis that image content can be 
summarized by abstract sentences. This collection of 
114 annotated articles was then used as the corpus to 
evaluate our natural language processing approaches 
that automatically identify abstract sentences that 
summarize image content in the full-text articles.  

 
4. NLP Approaches that Link Abstract Sentences to 
Images 
 
Linking abstract sentences to images is a task of 
linking the abstract sentences to other associated text of 
the images. Our study is built upon two assumptions. 
The first is that image content consistently corresponds 
to its associated text. The second is that there are strong 
lexical similarities between the text associated with 
each image and the corresponding sentence(s) in the 
abstract. We empirically evaluated both assumptions. 

We deployed hierarchical clustering techniques4 to 
cluster abstract sentences and images based on the 
lexical similarities. The details of the study are reported 
elsewhere5. In the following sections, we describe a 
few systems we explored including the clustering 
algorithms and feature selections.  

4.1. Clustering Algorithms 

Hierarchical clustering algorithms are widely used in 
many other areas including biological sequence 
alignment6, gene expression analysis7, and topic 
detection8. The algorithm starts with the set of text that 
includes abstract sentences or image captions. Each 
sentence or image caption represents a document that 
needs to be clustered. The algorithm identifies pair-
wise document similarities based on the TF*IDF 
weighted cosine similarity. It then merges the two 
documents with the highest similarity into one cluster. 
It then re-evaluates pairs of documents/clusters; two 
clusters can be merged if the average similarity across 
all pairs of documents within the two clusters exceeds a 
predefined threshold. When multiple clusters can be 
merged at any time, the pair of clusters with the highest 
similarity is always preferred.  
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(A) “Schematic representation of structures of PTEN and 
its mutants. PTEN has a N-terminal phosphatase domain, 
a C2 domain, and a C-terminal tail that contains multiple 
phosphorylation sites and a PDZ domain-binding 
sequence. Numbering is based on the X-ray structure of 
PTEN.” 

 
 

(B) “Binding parameters for PTEN constructs 
determined from SPR analysis” 

 

 

(C) “Subcellular localization of PTEN and its mutants in 
HEK293T and HeLa cells. PTEN and its mutants tagged 
with EGFP at their C termini were transiently transfected 
into HEK293T (A–G) and HeLa (H–J) cells, and their 
subcellular localization was monitored by confocal 
microscopy. (A) C2 domain. (B) 353–403/C124A. (C) 1–185. 
(D) 353–403/C124A/R161A/K163A/R164A. (E) 
Phosphatase domain (C124A). (F) C124A–PTEN. (G) 
C124A/S380E/T382E/T383E. (H) 
C124A/S380A/T382A/T382A. (I) C124A/ 400–403. (J) 
C124A/S380A/T382A/T383A/ 400–403. (K) C124A (HeLa). 
(L) C124A/S380A/T382A/T382A (HeLa). (M) 400–

403/C124A/S380A/T382A/T383A (HeLa).”  

 

(D) “Phosphorylation of PTEN and mutants 
in HEK293T cells. (A) Immunostaining of 
PTEN-transfected cell extracts with the 
S380/T382/T383-phospho-specific antibody. 
Lane 1, cells transfected with PTEN–EGFP; 
lane 2, cells transfected with 
S380A/T382A/T383A–EGFP. (B) 
Immunostaining of the same cell extracts 
with the anti-PTEN antibody shows that total 
PTEN amounts are comparable for the two 
lanes.” 

Figure 1: An example of a full-text biological article (pmid=12808147) in which the abstract sentences 
summarize the corresponding images (Arrows indicate the correspondences).  
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4.2. Features, Weights, Clustering Strategies  
 
We explored bag-of-words as the learning features. We 
explored three different methods to obtain the IDF 
value for each word feature: 1) IDF(abstract+caption): 
the IDF values were calculated from the pool of 
abstract sentences and image captions; 2) IDF(full-
text): the IDF values were calculated from all 
sentences in the full-text article; and 3) 
IDF(abstract)::IDF(caption): we obtained two sets of 
IDF values. For word features that appear in abstracts, 
the IDF values were calculated from the abstract 
sentences; for words that appear in image captions, the 
IDF values were calculated from the image captions.  

We also explored the position features. The 
positions of abstract sentences that correspond to 
images seem to have a “neighboring effect”. The 
chance that two abstract sentences link to an image 
decreases when the distance between two abstract 
sentences increases.  

To integrate “neighboring effect” into our existing 
hierarchical clustering algorithms, we modified the 
TF*IDF weighted cosine similarity with neighboring 
weights. Assuming that we consider an abstract 
sentence or an image caption as a document, the 
TF*IDF weighted cosine similarity for a pair of 
document i and j is Sim(i,j), we integrated the 
“neighboring effect” and the final similarity W(i,j) is: 

( ) ))//(1(*),(, jjii TPTPabsjiSimjiW −−=                                  

1) If i and j are both abstract sentences, Ti=Tj=total 
number of abstract sentences; and Pi and Pj 
represents the positions of sentences i and j in the 
abstract.   

2) If i and j are both image captions, Ti=Tj=total 
number of images that appear in a full-text article; 
and Pi and Pj represents the positions of images i 
and j in the full-text article. 

3) If i and j are an abstract sentence and an image 
caption, respectively, Ti=total number of abstract 
sentences and Tj=total number of images that 

appear in a full-text article; and Pi and Pj represent 
the positions of abstract sentence i and image j.    

Finally, we have explored three clustering 
strategies; namely, per-image, per-abstract sentence, 
and mix. 

Per-image clusters each image caption with all 
abstract sentences. The image is assigned to (an) 
abstract sentence(s) if they belong to the same cluster. 
This method values features in abstract sentences more 
than image captions because the decision that an image 
belongs to (a) sentence(s) depends upon the features 
from all abstract sentences and the examined image 
caption. The features from other image captions will 
not play a role for the clustering.    

Per-abstract-sentence takes each abstract 
sentence and clusters it with all image captions that 
appear in a full-text article. Images are assigned to the 
sentence if they belong to the same cluster. This 
method values features in image captions higher than 
the features in abstract sentences because the decision 
that an abstract sentence belongs to image(s) depends 
upon the features from the image captions and the 
examined abstract sentence. The features from other 
abstract sentences will not play a role for the 
clustering.    

Mix clusters all image captions with all abstract 
sentences. This method treats features in abstract 
sentences and image captions equally. 

5. Results and Discussion 

Figure 2 shows that the “local” IDFs, or the IDFs 
calculated from the abstract sentences and image 
captions yield much better performance than the 
“global” IDFs, or the IDFs that are calculated from the 
full-text article. The results are not surprising because 
“local” IDFs reflect more on the characteristics of the 
full-text article in study than the “global” IDFs. Figure 
3 show that Per-image out-performs the other two 
strategies. The results suggest that features in abstract 
sentences are more useful than features in caption for 
the task of clustering. Figure 4 shows that “neighboring 
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weighted” approach has a significant enhancement 
over the TF*IDF weighted approach. The recall ranges 
from 0% to 88%, while precision ranges from 100% to 
8%. When the recall is 33%, the precision of 
“neighboring weighted” approach increases to 72% 
from the original 38%, which corresponds to a 34% 
absolute increase. The results strongly indicate the 
importance of “neighboring effect” or positions as 
additional features. When the precision is 100%, the 
recall is 4.6%. A high precision is the key to success 
for this application. Many successful natural language 
processing systems achieved high precisions with a 
cost of lower recall .  9

 
6. Future Work  
 
Our long term goal is to integrate the body of this work 
into our larger question answering system3. 
Additionally, we believe that we have room to enhance 
the performance for linking abstract sentences to 
images. We believe that “orderly effect”, which is that 
the position order of image pairs (i.e., one image 
appears ahead of the other image) reflects the position 
order of abstract sentences, may be a useful feature to 
further enhance the task for linking abstract sentences 
to images. To test this hypothesis, we examined the 
statistics in our data set. Excluding images that have 
not been annotated to any sentences, we found a total 
of 1,640 image pairs. Of those only 433 pairs are 
reversed, and therefore a total of 1,207 or 73.6% image 
pairs appear with the same order of their corresponding 
sentences. To integrate “ordering effect” into existing 
algorithm, we may apply first a high-precision 
clustering algorithm to identify the first match between 
abstract sentences to images, and then cluster the 
preceding sentences with preceding abstracts and the 
following sentences with following abstracts to capture 
the next matches.  
 
7. Related Work 
 
Research and systems have been developed in 
experimental data retrieval. Tulipano and colleagues10 
defined an image taxonomy (e.g., “imaging 
instruments” and “imageable probes” are two children 
concepts of “imaging entity”) and linked the image 
taxonomy to the Gene Ontology11. BioImage is a web-
based object-oriented image database12. The SLIP 
system identifies images that depict protein subcellular 
locations13. PDB is a database for biological 
macromolecules and their relationships to sequence, 
function and disease14. Captions were explored for 
image classification in newswire images15. However, 
none of the existing systems incorporates the natural 
language processing techniques (e.g., summarization 
and question answering) to map images to text. 
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