
Implementing GermWatcherTM, an Enterprise Infection Control Application

Joshua Dohertya, BS, Laura A. Noirota, BS, Jennie Mayfieldc, BSN, MPH, CIC, Sridhar
Ramiaha, MS, Christine Huanga, MS, Wm. Claiborne Dunagana, b, MD, and Thomas C.

Baileya, b, MD

aBJC Healthcare, St Louis, MO, USA, bWashington University School of Medicine,
St. Louis, MO, USA, cBarnes Jewish Hospital, St. Louis, MO, USA

Abstract
Automated surveillance tools can provide significant
advantages to infection control practitioners. When
stored in a relational database, the data collected
can also be used to support numerous research and
quality improvement opportunities. A previously
described electronic infection control surveillance
system was remodeled to provide multi-hospital
support, an XML based rule set, and interoperability
with an enterprise terminology server. This paper
describes the new architecture being used at
hospitals across BJC HealthCare.

Introduction

Manual review of microbiology cultures is a time-
consuming process and can leave little time for other
responsibilities. Automated surveillance tools have
been shown to improve sensitivity over more
traditional techniques and reduce the amount of time
needed to track infections.1 The infection control data
collected for surveillance can also be stored in a
clinical data warehouse and used for numerous
research and quality initiatives. 2

Barnes Jewish Hospital in St. Louis has been using
the GermWatcherTM electronic microbiology
surveillance application since 1993.3 Using fixed
length text reports, the existing C++ application
parsed data from a single facility and classified
organisms by applying two sets of hard-coded rules.
Data were presented to the users via a client
application developed using PowerBuilderTM. While
effective at one hospital, the original GermWatcherTM
design was difficult to migrate to new facilities.

Errors were common when parsing the text reports
due to frequent changes in the lab systems. These
errors would have been compounded in a multi-
hospital deployment. Applying facility specific rules
presented another challenge because the rules were
hard-coded in the application.

The existing application also lacked the ability to
standardize codes from multiple facilities. This was

an important consideration to ensure that rules
written for one hospital could be applied seamlessly
to cultures from other hospitals. Finally, the existing
user interface could not provide facility specific
content and would have been a challenge to support
across multiple hospitals.

Increased interest in the application from other
hospitals at BJC HealthCare led to a redesign in 2004
with an enterprise view in mind. The goal was to
develop an application that would be flexible enough
to meet the needs of all the hospitals in the network.

To accomplish this, we focused on improving several
key aspects of the application. First, we replaced the
text reports with a generic eXtensible Markup
Language (XML) report that could be processed with
less risk of failure. We also moved the rules out of
the application and into an XML based rule set that
could be configured for the needs of an individual
facility. By interfacing the new application with the
enterprise terminology server, we were able to map
individual facility codes to a standard set of
enterprise codes. A web-based user interface
minimized support issues.

Methods

Figure 1 shows the general architecture of the
GermWatcherTM application. The key aspects of this
architecture will be presented individually.

Data Acquisition: The first step in re-engineering
GermWatcherTM was developing a process to extract
microbiology data from different laboratory systems
across the enterprise. The original application parsed
a fixed length text report and was difficult to
maintain. Small changes in the report format caused
the application to fail or store faulty data.

Initially we considered using Health Level 7 (HL7)
messages, but found that several laboratory systems
at BJC could not support HL7 without purchasing
additional components from the vendor. Other lab
systems that could generate HL7 imbedded

AMIA 2006 Symposium Proceedings Page - 209

descriptive text reports in the messages rather than
discrete data.

To leverage work done for the original application,
we used each laboratory system’s report writing
capabilities to produce a generic XML message that
could be parsed more reliably. The XML message
schema is more streamlined than HL7 and contains
only the information relevant to GermWatcherTM.
Figure 2 shows the list of fields and attributes
available within the body of the microbiology XML
messages.

Figure 1: General Architecture

Micro Lab 1 Micro Lab 2 Micro Lab 3

Interface
Engine

Event
Handler Terminology

Server

Java Rule
Engine

Data Acquisition

Clinical
Information

System
Germwatcher

Web Page

Standardized
Coding

Rules

Rule Engine

User Interface

 Key

External
Internal
Database
Data Flow

XML messages generated by the laboratory software
are captured by an interface engine and placed in a
queue (IBM MQSeries®) for processing. Messages
are generated based on a schedule, and each hospital
can define their own schedule according the
workflow of the microbiology lab and the needs of
the infection control staff. The GermWatcherTM event
handler continually monitors the queue, so real-time
or near real-time data acquisition is possible. If an
error occurs in the parsing process, the event handler
automatically routes the invalid message to a separate
error queue monitored by the support team.

Standardized Coding: Parsed data from the XML
microbiology messages contain facility specific codes
for antibiotic susceptibilities, specimen types,
organisms, and other common concepts. The Medical
Entity Dictionary (MED) maps these facility codes to
a standard set of enterprise codes used in the rules for
the rules engine. The MED is a terminology server
responsible for encoding data for the enterprise.

Antibiotic and specimen strings are mapped to
concepts from the Systemized Nomenclature of
Human and Veterinary Medicine (SNOMED).
Organisms are encoded using concepts from the
Unified Medical Language System’s (UMLS)
Metathesaurus. Organism strings from each facility
are mapped to a Concept Unique Identifier (CUI)
when possible, allowing us to take advantage of the
relationship information stored in the Metathesaurus
to develop more powerful query tools in future
phases.

Figure 2: Microbiology XML Data Elements

Report Date
Patient Name
Registration Number
Medical Record Number
Hospital ID
Sending Application Id
Patient Location
Admission Date
Date of Birth
Physician Name
Collection Date
Lab Date
Final Date
Specimen (Bronchial Wash, Urine, etc)
Type of Culture (i.e. Anaerobic, Gram Stain, etc)
Site (Left Arm, Lung, etc)
Accession Number
Collection Location
Culture Comment
Smear Results (Acid Fast Bacilli seen, etc)
Organism Number
Organism Quantity (Few, Moderate, etc)
Organism Comments
Organism Name
Antibiotic Susceptibilities

After the data elements are parsed and coded, the
event handler packages them for delivery to the rules
engine. A separate object is created for each
organism in a culture, and these objects are passed to
the rule engine one at a time for processing.

Rule Engine: The GermWatcherTM rule engine was
developed within BJC HealthCare using the Java
Specification Request 000094 (JSR-000094), or
JavaTM Rule Engine Application Program Interface
(API) specification. This provides the framework for
assembling a ruleset, passing an object to the rule
engine, executing the rules, and returning an object to
the calling application.

In our implementation, each rule can be assigned to
one or more rulesets, and each facility can have one
or more active rulesets in place. A layer called the
‘rule type’ logically groups similar rules together to
aid maintenance, but rules are still added or removed
from a ruleset individually.

AMIA 2006 Symposium Proceedings Page - 210

Ruleset information is stored in a relational database,
and a single table defines which rules are active at
each hospital. Additional dictionary tables provide
descriptions of the rules, rule types, and rulesets. Any
Open Database Connectivity (ODBC) compliant tool
can be used to query and maintain the rulesets.

Figure 3: GermWatcherTM Ruleset

Reportable -
Botulism

Core Rules

High Alert -
Varicella zoster

ruleset:germwatcher/bjh

Low Alert - all
Pneumocystis jiroveci

(P. carinii)

Core Final
Rules

Figure 3 shows how three rules are grouped under a
sample ruleset. Both the botulism and Varicella
zoster rules are grouped under the “Core Rules” rule
type and apply to all cultures regardless of status
within the lab. The rule for Pneumocystis jiroveci (P.
carinii) is assigned to the “Core Final Rules” rule
type and applies only to cultures that are given a final
date by the microbiology lab.

JSR-000094 specifications defined the rule engine
interface, but did not define the syntax of the rules
themselves. After reviewing several options, we
based our final design on the reaction rule model
described by Boley and colleagues.3 In this model,
the rule body contains one or more conditions that are
validated before an action is taken. Each single
premise or condition is defined as an atom, and
multiple atoms can be evaluated using Boolean
operators. We consulted the Rule Markup Initiative
website for information on syntax and sample rules.5

Figure 4 contains the XML syntax for a Botulism
rule. The rule performs a single operation and checks
to make sure the organism field matches the
enterprise code for C. botulinum. If the check is
successful, it updates the classification in the input
object to reportable. If the organism field does not
match the criteria, rule execution is terminated and
the next rule in the sequence is processed.

After the rule engine is finished, it returns the input
object along with a list of triggered rules.
GermWatcherTM stores the triggered rule list and
classification results in a Clinical Information

System, along with the demographic, culture, and
organism data from the XML message.

Figure 4: Syntax for Botulism Rule
<rule>
 <_body>
 <atom>
 <_opr><rel>eq</rel></_opr>
 <var class="CurrentOrg">organism</var>
 <ind class="string">
 CT_CLOSTRIDIUM_BOTULINUM_C0009055
 </ind>
 </atom>
 </_body>
 <_head>
 <atom>
 <_opr><method>updateClassification</method></_opr>
 <ind class="string">REPORTABLE</ind>
 </atom>
 </_head>
</rule>

Each organism can trigger multiple rules, and the
organism classification is determined by the rule with
the highest priority classification. The organism with
the highest priority classification determines the
culture classification. Table 1 defines the seven major
classifications that can apply to both cultures and
organisms. Only the most recent version of a culture
is stored to minimize duplicate data.

Table 1: Classification Definitions
Classification Definition

Reportable
Preliminary or final lab result; Meets state
criteria for reportable disease

High Alert
Preliminary or final lab result; Critical for daily
workflow

Low Alert
Final lab result; Important for ongoing
surveillance; Not required for daily workflow

Watch
Final lab result; Common skin contaminant;
Will be monitored for confirming cultures

Pending Preliminary lab result; No rules triggered
Not Significant Final lab result; Not of interest

Negative Preliminary or final lab result; Negative result

Following the initial classification and storage of a
culture, the rule engine is called again to process a
smaller set of temporal rules. These are time-based
rules that monitor common skin contaminants (CSCs)
such as coagulase-negative Staphylococci for
confirming cultures across a registration. For
example, one temporal rule confirms a “watched”
organism from a blood culture if the same organism
is found in another blood culture within a twenty-four
hour period.

User Interface: A web-based user interface was
developed using JavaTM Server Faces and the Jakarta

AMIA 2006 Symposium Proceedings Page - 211

Project’s open source Apache Tomcat. This approach
reduces the need for on-site support to install client
side applications. A Lightweight Directory Access
Protocol (LDAP) server provides user authentication,
and patient data are secure behind our firewall.

The user interface sorts the cultures according to the
classification and displays only new cultures that
have not been reviewed by the infection control staff.
Organism classifications are identified by color,
which allows easy identification in cultures with
multiple organism results. A custom query screen
provides infection control practitioners (ICPs) with a
way to generate ad-hoc reports from a number of
different search criteria, including nursing unit,
collection date, organism name, antibiotic
susceptibility, and whether an organism is thought to
be nosocomial or community acquired.

A secondary application identifies the organisms
classified as reportable and populates an electronic
version of the Missouri state reportable form. ICPs
can manually enter additional information on the
electronic form before printing a hard copy to fax to
the appropriate destination. Currently we have been
unable to send the reportable disease information
electronically, but GermWatcherTM could support it
once the specifications are agreed upon by state and
local agencies.

Results

The new GermWatcherTM architecture was rolled out
as a production application in December 2004. It was
initially deployed at a large academic hospital in St.
Louis, MO and was installed at two community
hospitals in the second half of 2005.

As of March 1, 2006, more than 85,000 cultures with
over 106,000 discrete organisms have been screened
using live data. Each culture requires sub-second
processing times, and approximately 1,500 messages
pass through the queue each day. This includes both
new messages and those messages that are the result
of updates to an existing culture

About 110,000 historical cultures with 150,000
discrete organisms were loaded using data from the
previous GermWatcherTM application. In total, nearly
250,000 rules have been triggered; Table 2 shows
how the organisms were classified according to the
highest priority rule. The academic hospital in Table
2 is the largest facility in BJC HealthCare with
approximately 900 staffed beds. Community A and
Community B have 450 and 350 beds respectively.
The academic hospital does not currently receive

negative cultures. All organisms at the academic
hospital that were classified as negative came as part
of a positive culture with at least one positive
organism. Development is underway to capture
negative cultures for all hospitals running
GermWatcherTM.

Table 2: Organism Classification by Hospital

Academic
(Feb 2002)

Community A
 (Sep 2005)

Community B
(Nov 2005)

Reportable 2175 44 73
High Alert 44021 1535 992
Low Alert 79667 5036 1682
Watch 14709 720 284
Pending 806 150 93
Not Significant 68157 5332 2413
Negative 4348 15115 12737

Total 213883 27932 18274

Discussion

The initial development and release of the new
enterprise GermWatcherTM application was a success,
and it outperforms the previous version in terms of
processing power and maintainability. The new
architecture is more than six times faster and will
support the increased volume as we roll
GermWatcherTM out to more hospitals.

The XML messages have reduced the number of
parsing errors, and the error queue makes it easier to
identify problems when they are encountered. In the
old system, we often had to wait for the infection
control practitioners to identify data problems caused
by changes in the laboratory report. Now errors are
immediately isolated for quick resolution.

From the user perspective, the single biggest gain
over the prior manual paper-based system has been
the ability to write ad-hoc queries. Similar reports
were possible in the absence of GermWatcherTM, but
relied on the availability of a report writer in each
hospital’s microbiology laboratory. There was often a
lengthy turn around time for these new reports, which
affected the performance of the infection control
staff.

The new architecture will also support multi-hospital
queries for operational and research agendas. Using
the standard enterprise codes, a single query can
gather results from several hospitals if the query
writer has the correct permissions. ICPs only have
access to results from their own facilities through the
user interface, but specially trained users will be able
to mine data across all hospitals at the request of the
corporate infection control department.

AMIA 2006 Symposium Proceedings Page - 212

During the initial development we encountered a few
problems with the design of the rule engine and the
XML rules. These were not serious, but required a
certain amount of rework to overcome.

The rule engine runs in the same JavaTM Virtual
Machine (JVM) as the parsing application and
receives a JavaTM object as input. Our goal with the
rule engine was to keep it generic, with no first hand
knowledge of the contents of the input object. This
made it difficult to perform logical operations on the
variables within the JavaTM object when the rule
engine did not know the data types of the constants
defined in the XML rules. To overcome this problem
we added a ‘class’ attribute to the XML rule that
provides the data type of a constant to the rule
engine. The same attribute also provides the object
name for XML tags that reference a variable. This
allows for more complex, nested input objects if
needed.

We also found that some operations were too
complex to code using generic relational and Boolean
operators. Others operations required database calls
to find information not contained within the input
object. A <method> tag was added to the rule schema
that identifies a custom method defined within the
input object. This allows any implementation specific
operation to be defined in the input object and passed
into the rule engine. The disadvantage of this
approach is that we departed from the RuleML model
we started with and are instead using a rule schema
that is unique to our rule engine.

As we started expanding GermWatcherTM to the
second hospital, we encountered three additional
challenges that added to the complexity of the
project. First, facilities that implemented the same
laboratory system could not share the same extraction
process because each hospital has flexibility in
coding and storing the data within the system. It can
take several weeks to customize the extraction for a
new facility and requires close cooperation with the
technical laboratory team.

Second, the primary users of GermWatcherTM at the
initial academic hospital are focused on detecting and
preventing nosocomial infections. A number of
outpatient tests, including serology based reportable
diseases, are not performed in the microbiology
laboratory and were never part of the original
GermWatcherTM interface. These out-of-scope test
results are critical to the workflow of the community
hospitals, and we are currently developing an
interface to capture and translate out-bound HL7
messages from the general laboratory system to

GermWatcherTM compatible XML messages. Tests
that are out-sourced to reference laboratories have not
been addressed.

Finally, we started the rollout with no formalized
plan for resolving differences among facilities. As we
installed the application at additional hospitals, we
received requests to modify the rules and the user
interface to accommodate differences in workflow.
Some of the requests were necessary, but others were
more superficial. Worse, some of the requests were
conflicting and could not be done without making
hospital specific user interfaces. The solution was to
organize a task force comprised of representatives
from each hospital to help set policy and resolve
disagreements.

Conclusion

We successfully converted GermWatcherTM from a
single facility application to an enterprise application.
Users have responded well to the new architecture,
and our task force has been effective in organizing
and prioritizing the enhancement requests from the
infection control practitioners. They are also working
to identify a mandatory set of rules for all BJC
hospitals. Despite the unforeseen problems
encountered during the development and roll out
phases, the project has been moving forward and
seven additional hospitals are scheduled to
implement GermWatcherTM by the end of 2007.

REFERENCES

1. Wright MO, Perencevich EN, Novak C, et al.
Preliminary assessment of an automated
surveillance system for infection control. Infect
Control Hosp Epidemiol; 2004 Apr; 25(4); 325-
32

2. Wisniewski M, Kieszkowski P, Zagorski B, et al.
Development of a clinical data warehouse for
hospital infection control. J Am Med Inform
Assoc; 2003; 10; 454-62

3. Kahn MG, Steib SA, Fraser VJ, Dunagan WC.
An expert system for culture-based infection
control surveillance. Proceedings of the 17th
Annual Symposium on Computer Applications
in Medical Care; 1993 Oct 31-Nov 3;
Washington, DC. 171-5

4. Boley H, Tabet S, Wagner G. Design rational of
RuleML: A markup language for Semantic Web
rules. Proceedings of the Semantic Web Working
Symposium; 2001 Jul 30-Aug 1; Stanford, CA.

5. The Rule Markup Initiative [homepage on the
internet] [modified 2006 Jan 31; cited 2006 Mar
10] Available from: http://www.ruleml.org/.

AMIA 2006 Symposium Proceedings Page - 213

