

Model Driven Laboratory Information Management Systems
Hao Li1, John H. Gennari1, James F. Brinkley1,2,3

Structural Informatics Group
1Biomedical and Health Informatics, 2Computer Science and Engineering, 3Biological Structure

University of Washington, Seattle, WA

Abstract
Scientists in small research labs need more robust
tools than spreadsheets to manage their data.
However, no suitable laboratory information
management systems (LIMS) are readily available;
they are either too costly or too complex. We have
therefore developed Seedpod, a model driven LIMS
that allows users to create an integrated model of a
LIMS without programming. Seedpod then automati-
cally produces a relational database from the model,
and dynamically generates a web-based graphical
user interface. Our goal is to make LIMS easier to
use by decreasing development time and cost, thereby
allowing researchers to focus on producing and
collecting data.

1. Introduction
Effective data management continues to be a

bottleneck in the life sciences research process [1].
Most of today’s scientific and clinical researchers in
small-sized labs use spreadsheets to manage their
data. Spreadsheets are easy to use, readily available,
and allow users to start collecting data quickly.
Scientists like spreadsheets for data management
because they can focus on what data to store in the
cells of the grids without knowing how to store the
data. They can organize data in whatever manner
they want, and can perform calculations on the fly, all
without the aid of a programmer. However, spread-
sheets are inadequate for dealing with increasingly
large datasets, complex data relationships, multime-
dia data, and collaborative research groups. Thus,
scientists need more robust solutions, in the form of
laboratory information management systems (LIMS).

Although LIMS are effective in the pharmaceuti-
cal and biotech industries [2], most are too costly and
not readily available for small research labs. Many
labs across the country develop and use their own
lab-specific LIMS, but building a custom LIMS for
each lab generally requires considerable program-
ming in order to specify how the data are stored and
accessed.

Our long-term goal is to create a LIMS-building
toolkit that retains the ease-of-use of the spreadsheet
while gaining the robustness of a LIMS. As one step
towards that goal we have developed Seedpod, a
model driven LIMS building toolkit that allows a
user to create a model that specifies not only what the

types of data and their relationships are, but also what
the behavior of the application should be, all with
minimal or no programming. Thus, by eliminating or
greatly reducing the time needed to program how the
system stores and accesses data, the model driven-
approach provides a foundation on which to build
the tools that will let individual users create their
own LIMS through the graphical specification of
models.

In the current Seedpod implementation, the
model is created by an informaticist using the frame-
based Protégé knowledge representation system [3]
(Section 2.2). Even though there is a learning curve
for using Protégé, but the reduced need for custom
programming greatly reduces the overall develop-
ment time over a non-model based approach. We
developed a formal method that automatically
generates a relational database schema from the
Protégé model (Section 2.3). The Seedpod server
then interprets the model and dynamically generates a
web-based user interface (Section 2.4). Scientists can
browse and manage their data stored in the relational
database through this web-based user interface. The
following sections describe these steps in more detail.

2. Seedpod System Description

The driving application for the development of
Seedpod is an information management system to
help our Human Brain Project collaborator at the
University of Washington, Dr. George Ojemann. Dr.
Ojemann’s lab studies the functional anatomy of
speech and speech memory. In some of his studies a
technique called single unit recording (SUR) is used
to record a large amount of high temporal resolution
neuronal signal data during open brain surgery.
Scientists in the lab correlate the electrical signal data
with behavioral and other data in order to find the
meaning behind neural activities.

The Ojemann lab is a small one, and has used
spreadsheets to record data because of their ease of
use. The lab stores numeric or string data in spread-
sheets, but manages multimedia data, such as the
neuronal firing patterns, in a separate file system. The
file system uses a complicated naming convention,
which is managed manually. Data version control,
coordinated data entry, and data sharing are challeng-
ing due to the lack of a centralized management
system that can be accessed through the Internet. In

AMIA 2006 Symposium Proceedings Page - 484

addition, searching the data requires meticulous hand
trimming and picking of datasets from multiple Excel
sheets. Such searches are becoming increasingly
untenable as the number of SUR studies increase. We
have built Seedpod partly in response to these
problems.

2.1. Seedpod’s General Architecture
There are two major components in Seedpod: the
model and the LIMS application engine. The model is
an integrated representation of a LIMS (Figure 1). It
includes a domain-specific data model describing the

entities and relationships that the scientist wants to
manage. It also includes an application model
describing properties that allow the scientist to
customize the look and feel of the LIMS web-based
user interface.

The LIMS application engine has a server appli-
cation, a backend relational database, and a web-
based graphical user interface (GUI). Seedpod
automatically transforms the Protégé model into a
relational schema for the relational database. The
database stores the experiment data and the model.
The server application queries the database regarding
the model, retrieves and stores the experiment data,
and creates dynamic web pages for users based on the
look and feel specified in the application model. The
Protégé model and LIMS application are not linked
in real time (i.e., they can change and evolve
independent of each other).

2.2 LIMS Model

The first step in implementing a Seedpod-based
project is to create a LIMS model using Protégé.
Protégé is a frame-based knowledge management
tool (http://protege.stanford.edu/). We choose to use
Protégé primarily because of its expressivity in model

Figure 1 Seedpod architecture: the Protégé model
(top) and the web-based LIMS application (bottom).

Figure 2 Sample screen of a Protégé
model for a single unit recording
experiment. In the upper left panel
template-slots listed to the
right are slots for the highlighted
class, Trial_Protocol. The output
database schema for this class is
shown in Listing 1. Details of the
template-slot, electrode, are
shown in the lower right panel.

AMIA 2006 Symposium Proceedings Page - 485

Listing 1 A sample relational schema output shows
SQL statements from the transformation for
table Trial_Protocol, and a view for its
superclass Ordered_Set.

CREATE TABLE Trial_Protocol (
 ID INTEGER PRIMARY KEY,
 Protocol_Description VARCHAR (255),
 Protocol_Name VARCHAR (100),
 stimulus_onset_timestamp INTEGER,
 patient_response_timestamp INTEGER);

CREATE TABLE electrodes (
 FK_trial_protocol INTEGER
 DEFAULT NOT NULL

 REFERENCES Trial_Protocol,
 FK_electrode INTEGER DEFAULT NOT NULL
 REFERENCES Electrode);

CREATE TABLE Electrode (
 ID INTEGER PRIMARY KEY,
 electrode_depth NUMERIC,
 electrode_site_name VARCHAR(100),
 electrode_site_number INTEGER,
 distance_from_temporal_tip INTEGER);

ALTER TABLE Trial_Protocol
 ADD CONSTRAINT FK10
 FOREIGN KEY (stimuus_onset_timestamp)
 REFERENCES File
 ON DELETE SET NULL;

CREATE VIEW Ordered_Set
 AS SELECT * FROM Trial_Protocol;

representation [3].
A Protégé model consists of a set of named

classes. Figure 2 shows a Protégé screen shot of class
Trial_Protocol in the Ojemann SUR model. The
class hierarchy of the model is shown on the left.
Each class instance is associated with a set of
template-slots, which are properties that are
propagated to its instances and children classes. The
value of a template-slot can be a primitive type
such as String, Integer, Boolean, etc. Proto-
col_Description in Figure 2 is an example of a slot
with a String type value. A template-slot can
also be a relationship type, which has class instances
as its values. The template-slot electrodes in
Figure 2 is such a relationship slot. This slot de-
scribes a one-to-many relationship from a
Trial_Protocol instance to multiple Electrode
instances. The valid values for the slot are class
instances of the Electrode class.

This Protégé model differs from an entity-
relational (ER) model because it is object-oriented. It
does not require the user to understand normalization
in data modeling. It allows users to easily describe
common yet complex biological data structures such
as inheritance, object relationships, and many-to-
many relationships. The model designer does not

need to be relational database experts.
Additionally, the Protégé model in Seedpod in-

cludes the application model as well as the data
model. For example, we can extend the standard
template-slot definition to allow users to
customize the look and feel of the LIMS application.
The expanded window of the electrodes slot in
Figure 2 shows a slot definition that we have
extended to include “Database Type,” user interface
“View Widget,” “Form Widget,” etc. Protégé makes
this extension possible by allowing the modeler to
extend the standard slot definition.

2.3 Model Transformation and Data Storage

As described in Section 2.1, each Seedpod appli-
cation stores its experiment data in a relational
database for efficient storage and retrieval. It is
important to note that Seedpod does not use a generic
database schema to handle all labs. Any given lab
will have its own specific Protégé model, which is
transformed into a specific relational schema. Instead
of transforming Protégé models to schema manually
(ad hoc), we developed a generalized method that
performs this transformation automatically [4].

The formal definitions of the relational and
frame-based models provided the inspiration for the
following rules:

Class transformations: A class, C, is transformed
to a relational table or a view (or both):

• T1 If C is a concrete class, then create a table
with name C_table and add a primary key at-
tribute ID.

• T2 If C has subclasses, (is non-leaf) then
create a view, C_union, that is defined by se-
lecting the union of C_table and all of its
subclasses’ tables.

Slot transformations: A slot, S, of a class, C, is
transformed depending on the slot's value type and
cardinality.

• T3 If the range of S is primitive (i.e., String,
Integer, Float, Boolean or Symbol), and has
cardinality of 1, then create an attribute
Attr_S for table C_table, and give it the cor-
responding relational database primitive type.

• T4 If the range of S is instances of class B,
and has cardinality 1, then create a foreign
key attribute, FK_S (in table C_table) that
references the ID attribute in table B_table.

• T5 If S has cardinality multiple, create a new
association table, Assoc_S. Add a foreign
key, FK_S (in table Assoc_S) that references
the ID attribute in table C_table. Create an at-

AMIA 2006 Symposium Proceedings Page - 486

tribute Attr_S for S in Assoc_S according to
single cardinality rules T3 or T4.

Additional rules dealing with multiple cardinality
slots, relational slots, class inheritance, etc. are
beyond the scope of this paper (see [4] and [5]).

The transformation method is implemented in a
JAVA program. It takes a Protégé model file as input,
and outputs the relational schema in SQL statements
in a text file. Listing 1 shows the result of transform-
ing class Trial_Protocol from the SUR model
(described in Section 2.2 and Figure 2) to its database
schema. The LIMS developer loads the SQL
command file (e.g., Listing 1) into a relational
database engine to create the database. We use a
PostgreSQL database in the Seedpod prototype.

In addition to the data tables (like those shown in
Listing 1) the database also stores the LIMS model in
two tables, one table for classes (Figure 3 top) and
the other for slots (Figure 3 bottom). Figure 3 shows
screenshots of the tables with our previous examples,
class Trial_Protocol and slot electrodes, highlighted.
The Seedpod engine queries these two tables for
information about the model while dynamically
generating the web application.

2.4 Seedpod Application

The Seedpod server application is generic; it is
not specific for any model. After a LIMS model is
completed and loaded into the database, the Seedpod
server connects to the database server to deploy the
web application and start collecting data. The server
application queries the model in the database (Figure
3) to dynamically generate the web-based user
interface for the scientists.

The scientist can browse and manage data in the
relational database through this user interface. For
example, the web page for an instance of a Protégé
class in the SUR model, Trial_Protocol, displays the
template-slots and their values (Figure 4). The

display name of the instance is specified in the model
as the slot value of Protocol_Name (also visible in
Figure 3 (top) as Slot(Protocol_Name) under the
“browser_key” column). The application renders the
slot values using information from the model such as
slot layout sequences and form field widgets. Figure
3b (bottom) shows that slot electrodes uses widget
OBJECT_LINK. In Figure 4, the values for electrodes
slot are rendered as two URL links. Clicking on one
of the links takes users to the corresponding web
page displaying Electrode instances. See [5] for a live
demo of Seedpod.

Seedpod’s server application is implemented
using Tomcat and JAVA. For each class in the
model, the application dispatches by reflection the
appropriate JAVA class implementation based on the
class’s identity in the model. For example, if a user
wants to view an instance of a Trial_Protocol, the
engine tries to dispatch the Trial_Protocol JAVA
class implementation to handle the request. However,
if the Trial_Protocol JAVA class does not exist, the
engine tries to find Trial_Protocol’s parent class,
Order_Set_Element’s JAVA class. It continues until
an implementation is found. Most of the classes in
the SUR model are handled by the default class. This
mechanism allows the LIMS developer to extend the
server application by implementing class plug-ins.

3. Discussion
The motivation for this work is the scientists’

need for tools beyond the spreadsheet for data
management. The model driven approach taken by
Seedpod moves in this direction by removing or
reducing the need to program how data are stored and
accessed, allowing the developer to concentrate
instead on specifying what the data look like.

The only existing LIMS toolkit we are aware of
that takes a similar model driven approach is
Teranode’s XDA, which offers an integrated
workflow data modeling environment in addition to

Figure 3 The model is stored in the relational database as two Seedpod application tables called _class (top) and
_attribute (bottom). Table _class (top) shows an example of the class Trial_Protocol. The table _attribute (bottom)
shows slot electrodes of Trial_Protocol. The Seedpod server application queries these two tables for information
about the LIMS model.

AMIA 2006 Symposium Proceedings Page - 487

laboratory process automation for data collection [6].
However, the Protégé modeling environment is richer
than that used by Teranode. Not only does Protégé
make it easier to model complex data relationships, it
also allows us the freedom to extend the modeling
constructs, capturing additional metadata about
workflow, interaction among data elements, GUI
customization, and access to controlled terminologies
that are represented as Protégé ontologies.

Currently, Seedpod requires an expert Protégé
user to create the model. In our future work, we will
develop an integrated graphical design environment,
on top of Protégé, which will make it easier for
scientists to model their data and experiment
workflow. We will also test the generalizability of
Seedpod by deploying the system in other scientific
research domains. It is our ultimate goal to allow
scientists to create and deploy their own LIMS using
Seedpod without the help of informaticists.

4. Acknowledgement

Supported by NIH Human Brain Project Grant RO1
MH/DC02310, and National Library of Medicine Training
Grant program number: T15-LM07442.

5. References

1. Lacroix Z, Critchlow T. Bioinformatics:
Managing Scientific Data. Morgan Kaufmann
(July 2003).

2. Paszko C, Turner E. Laboratory Information
Management Systems. Second ed. New York:
Marcel Dekker; 2002.

3. Gennari J, Musen MA, Fergerson RW, Grosso
WE, Crubézy M, Eriksson H, et al. The evolu-
tion of Protégé: an environment for knowledge-
based system development. International Journal
of Human-Computer Studies. 2003; 58(1):89-
123.

4. Gennari J, Mork P, Li H. Knowledge Transfor-
mations between Frame Systems and RDB Sys-
tems. In proceedings of the K-CAP05 Confer-
ence, 197-198.

5. Seedpod Project URL:
http://sig.biostr.washington.edu/projects/seedpod
; 2006.

6. Teranode. Home Page. http://teranode.com/;
2006.

Figure 4 Screenshots of Seedpod’s
web-based graphical user interface.
The page on top shows an instance
of the Trial_Protocol class. The
page displays its template-slots and
their values. Users can browse data
related to this instance through a
URL link created for its relationship
slot, electrodes.

AMIA 2006 Symposium Proceedings Page - 488

