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Acetate concentrations in marine and freshwater matrices were measured by an enzymatic technique which
coupled the synthesis of acetyl coenzyme A to AMP production. The resulting AMP was assayed by a sensitive
and relatively rapid high-pressure liquid chromatography method, using an aqueous, isocratic mobile phase for
elution. The method was insensitive to the presence of seawater salts and required no sample prepurification
or distillation. Propionate caused a minor, but statistically insignificant, interference when equimolar with
acetate; butyrate caused no interference, even at relatively high concentrations. Detection limits for acetate
were approximately 100 nM with a precision of about 5%. Pore waters from two intertidal sediments contained
approximately 1 to 12 pM acetate; the concentrations were linearly but inversely correlated with porewater

sulfate.

Acetate is a key intermediate during anaerobic degrada-
tion of organic matter (34). In mixed cultures as well as
natural systems, acetate is produced during the fermentation
of saccharides, amino acids, nucleic acids, and lipids, par-
ticularly when interspecies hydrogen transfer to either meth-
anogenic or sulfidogenic bacteria results in low hydrogen
partial pressures (e.g., see references 17, 20, and 34). The
significanct of acetate as a fermentation end product and as
a carbon source for sulfate reduction and methanogenesis
has been documented for sludge digestors and various fresh-
water and marine sediments among other systems (e.g., see
references 18-20, 29, 30, and 35).

However, while the significance of acetate is undisputed,
the analysis of its concentrations remains problematic. The
low micromolar concentrations in surface waters and sedi-
ments are particularly troublesome. Gas chromatographic
(GC) methods have been applied successfully to samples
with relatively high concentrations, even in difficult matrices
such as sludge (e.g., see references 10 and 12). For saline
samples with low acetate concentrations, GC procedures are
more difficult, often requiring time-consuming purification
and concentration steps (1, 8, 27). Even then, analytical
precision can be less than desirable. High-pressure liquid
chromatographic (HPLC) methods provide alternative ap-
proaches, particularly when coupled with conductivity de-
tection. Relatively high sensitivity and improved precision
facilitate the analysis of low concentrations, although pre-
purification steps are still recommended (24, 29).

I report here an alternative, enzymatic method for deter-
mining acetate concentrations in both marine pore waters
and freshwater samples. The method is based on the reaction
of acetate with acetyl coenzyme A (CoA) synthase according
to the following stoichiometry:

acetyl CoA synthase
acetate + ATP + CoA acetyl CoA + AMP + PP,

The reaction produces AMP, which can be determined by
HPLC with a high degree of precision and low detection
limits. Since enzymes that form AMP instead of ADP from
ATP are relatively uncommon, problems with nonspecific
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interferences are minimized. The method is simple, requiring
no sample purification or concentration, and works equally
well in ionic and nonionic matrices, thus eliminating the
distillations used for other methods and the necessity for
modifying sample matrix composition (8, 24). Precision is
very good, and detection limits are submicromolar. In addi-
tion, the enzyme reaction goes to completion rapidly (=1 h),
while the subsequent HPLC procedure is rapid, using only
an aqueous mobile phase, isocratic elution, and detection of

Aseo.

MATERIALS AND METHODS

Sample collection. Pore waters for acetate analysis were
collected from two sites, Lowes Cove and Cod Cove, Maine.
The organic-poor sediments of the former have been de-
scribed in detail elsewhere (e.g., see references 15, 18, and
22). The latter site, characterized by a high sedimentation
rate, an extensive salt marsh, and organic-rich, sulfidic
sediments (unpublished observations), was formerly an open
mudflat that has become a mixed marsh-mudflat system (see
Belknap et al. [4] for a description of the recent sedimento-
logical and geological history). Sediments from both sites
were collected with 6.2-cm-inner-diameter acrylic core
tubes. At Cod Cove, sediments were collected from an open
area within the marsh; these sediments and those from
Lowes Cove were devoid of plant roots. Cores were re-
turned to the laboratory and sectioned at approximately
2-cm intervals. The sections were placed into centrifuge
tubes that were capped afterward. Pore water was obtained
after centrifugation at a maximum of about 12,000 x g for 10
min at 4°C (see Shaw and McIntosh [29] for a discussion of
possible uncertainties due to methods of porewater collec-
tion). No precautions were taken to limit exposure to the
atmosphere. The pore waters were subsequently filtered
through glass fiber filters (Whatman GF/C) that had been
incubated in a muffle oven for >3 h at 550°C. Triplicate
samples for each depth interval were stored frozen in dis-
posable polypropylene screw-cap vials until further process-
ing.

Acetate analysis. The following stock solutions were pre-
pared in distilled deionized water: acetyl CoA synthase, 20
U ml~! (approximately 6 U mg of protein~?!); CoA, 10 mM
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(sodium salt, from yeast); disodium ATP, 10 mM; bovine
serum albumin (BSA), 200 pg ml~!. Acetyl CoA synthase
was used as received without further processing. All glass-
ware was washed extensively and then heated at 500°C for 3
h prior to use. Stock solutions of ATP and BSA were stored
frozen after initial preparation and were stable for months.
Acetyl CoA and acetyl CoA synthase were prepared in
volumes necessary for anticipated sample processing during
a period of about 4 weeks; the solutions were stored frozen
in 1.5-ml polypropylene centrifuge tubes and repeatedly
thawed and refrozen with no apparent loss of activity.

For routine analysis, 10 ul of each of the above solutions
was added to 1.0 ml of the desired sample matrix contained
in a disposable 7-ml screw-cap polypropylene vial, resulting
in final concentrations of 100 uM for ATP and CoA. The vial
contents were mixed by shaking and then incubated for 1 h
at 37°C. Acetyl CoA synthase activity was terminated by
immersing samples in a boiling water bath for 2 min. The
efficacy of this procedure was determined by examining the
following parameters with acetate standards (2 to 10 uM)
prepared in filtered (0.2-pwm pore size) artificial seawater
(FASW): (i) stability of ATP in the presence of acetyl CoA
synthase but no added CoA; (ii) the stability to boiling (5
min) of AMP and ATP in FASW; (iii) the stability to boiling
(1 to 5 min) of acetyl CoA synthase; (iv) the effect of
incubation time at 37°C; (v) the effect of incubation temper-
ature (23.5, 37, and 50°C); (vi) the effect of matrix pH (6.0 to
9.0) at 37°C; (vi) the effect of ionic strength (10 pM acetate
standards in distilled deionized water versus FASW); (vii)
interference from propionate and butyrate (5 and about 100
M, respectively, versus 5 nM acetate). Sample blanks were
evaluated by adding heat-inactivated acetyl CoA synthase or
by deleting CoA. In addition, the volumes of each of the
added reagents were increased from 10 ul (in 10-pl incre-
ments) to 40 ul in a factorial experiment designed to evaluate
reagent contamination. Each of these optimization assays
was run in triplicate. The precision of the method was
estimated by using the routine conditions for quadruplicate
acetate standards in FASW at 0.2 and 2.0 uM. The limit of
quantitation was calculated as three times the standard
deviation of the blank value.

Pore waters were assayed under the routine conditions
noted above and by direct injection into the HPLC system
described below. The latter analysis was necessary to deter-
mine whether AMP occurred at observable concentrations in
the sample matrix prior to addition of acetyl CoA synthase.
The relationship between AMP production and acetate con-
centration was determined by two methods: (i) pore waters
were assayed before and after addition of a known concen-
tration of acetate; (i) a standard curve (0.1 to 8 pM) was
generated by adding acetate to a batch of pore water
prepared by mixing equal volumes from all available depths.
Triplicate samples were typically analyzed for standardiza-
tion and for each interval of the sediment depth profile.

Chromatography. AMP concentrations were determined
by injecting samples, using a Rheodyne 7125 injection valve
fitted with a 20-ul sample loop. The loop was filled com-
pletely by inserting a syringe and needle into the needle port
of the injector and pulling a volume of 100 to 200 pl through
a short length of Teflon tubing attached to port six of the
valve. After injection, a small volume of mobile phase was
used to rinse the injector according to the manufacturer’s
instructions. This procedure eliminated cross-contamination
or ghosting due to the propensity of AMP to adsorb to
stainless steel (metal-free injectors offer another solution).
AMP was eluted from an analytical column (25 cm by 4.6
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FIG. 1. Typical chromatogram of a marine pore water after the
acetyl CoA synthase reaction. Operating and sample reaction con-
ditions are given in the text. ATP and ADP peaks are not well
resolved because of the high concentration of added ATP (100 nM).
The AMP response is for a 1 uM concentration.

mm; LC-18-T; Supelco, Inc.) with a mobile phase of 0.1 M
potassium phosphate (pH 6.0) under isocratic conditions at
35°C with a flow rate of 1.0 ml min~! delivered by a solvent
pump (Rabbit HP; Rainin Instruments, Inc.). Lower temper-
atures were acceptable but resulted in longer retention times
and poorer peak geometries. The analytical column was
protected with a Brownlee guard column cartridge (RP-18, 2
cm by 4.6 mm). AMP was detected by monitoring either A,s,
or A, by using a variable-wavelength detector (Spectroflow
757; Kratos Analytical Instruments, Inc.) operated at maxi-
mum sensitivity (0.005 absorbance unit full scale). The
detector response was analyzed with a recording integrator
(HP 3390A or 3396A; Hewlett-Packard, Inc.) and calibrated
with AMP or by the addition of known concentrations of
acetate to the enzyme reaction mixture.

Other analyses. The HPLC detector output was standard-
ized by using AMP at concentrations from 0.05 to 16 pM;
precision was evaluated at 0.2, 2, and 16 pM. Sulfate,
salinity, and pH in the porewater samples were assayed by
using a turbidimetric method (31), a refractometer, and an
ion analyzer (Beckman Instruments, Inc.), respectively.
Statistical analyses were based on a microcomputer software
package, Statview SE.

All reagents used for the enzymatic reaction were pur-
chased from Sigma Chemical Co. Other chemicals and
solvents were of reagent grade quality or better and pur-
chased from various commercial sources.

RESULTS AND DISCUSSION

Preliminary observations indicated that AMP was amena-
ble to a simple and sensitive analysis based on an isocratic
elution with a buffered aqueous mobile phase (Fig. 1). AMP
was well separated from other adenylates, and no interfer-
ences were observed for natural freshwater or marine ma-
trices relative to standards. Likewise, ionic composition had
no significant effect on adenylate separation (data not
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shown). Using the operating conditions described earlier,
precision (n = 4) was 2.9, 1.0, and 0.1% at 0.2, 2, and 16 pM
concentrations, respectively. The limit of quantitation was
<0.05 pM. This limit was determined primarily by the
volume of the sample loop (20 ul) and the maximum sensi-
tivity of the detector (0.005 absorbance unit full scale), both
of which can be increased if lower detection limits are
required. Additions of organic modifiers to the mobile phase
appeared to offer little increased chromatographic resolution
or detection.

Preliminary observations also indicated that ATP was
stable in a porewater or FASW matrix in the presence of
acetyl CoA synthase but not acetyl CoA synthase plus CoA.
In addition, ATP and AMP were heat stable, with either no
or insignificant degradation during boiling for up to 5 min. In
contrast, acetyl CoA synthase activity was lost rapidly after
1-ml solutions contained in 7-ml vials were immersed in
boiling water. These results suggested that the acetyl CoA
synthase reaction provided a feasible enzymatic approach
for measuring bioavailable acetate concentrations and that
the key reactant and product, ATP and AMP, were stable
under conditions that facilitated analysis.

With an initial acetate concentration of 10 pM and an
incubation temperature of 37°C, the synthase reaction
reached completion in approximately 45 min. Thus, for
analysis of concentrations of <10 uM, 60 min was selected
as a routine incubation time. The time required for comple-
tion was, of course, a function of reactant and enzyme
concentrations. Increasing or decreasing the amount of
added enzyme provided a means for altering predictably the
desired incubation time (data not shown).

Incubation temperature was an important reaction vari-
able, with lower AMP production for a given acetate con-
centration at both 25 and 50°C. While the decrease at 25°C
was small (although statistically significant), a more substan-
tial decrease was observed at 50°C. As a consequence, all
enzymatic incubations were performed at 37°C; lower tem-
peratures were deemed suitable with increased incubation
times or if incubation at elevated temperatures was not
feasible. The pH of the reaction mixture was somewhat less
critical than incubation temperature over a range from about
7.0 to 8.5; at higher or lower values, decreased AMP
production was observed, especially at pH 6.0.

Since neither 0.01 M bicarbonate, carbonate, 2-(N-mor-
pholino)ethanesulfonic acid (MES), N-2-hydroxyethylpiper-
azine-N'-2-ethanesulfonic acid (HEPES), nor Tris appeared
to adversely affect acetyl CoA synthase activity independent
of pH (data not shown), a variety of buffers provide options
for sample pH adjustment. Fortunately, this may not be
necessary for many marine pore waters. For example, the
pore waters from both sites examined in this study varied
from approximately pH 7.0 to 7.5. This range is typical for
sediments not affected significantly by sulfide or metal
oxidation (5). Regardless, analysis of sample pH is advised
since values of less than 6.5 are not uncommon, particularly
in freshwater or salt-marsh sediments, and since significant
pH gradients occur as a function of sediment depth (see, for
example, references 11 and 16).

In contrast to the effects of pH and temperature, acetyl
CoA synthase activity was virtually insensitive to the ionic
strength of the reaction mixture. Identical AMP production
was observed from 10 pM acetate standards whether pre-
pared in distilled deionized water or FASW. As a result,
addition of ionic cofactors was unnecessary for freshwater
or marine samples. Moreover, neither deionization nor dis-
tillation was necessary to provide a suitable matrix for either
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FIG. 2. AMP production in FASW containing 5 pM acetate only
(Control, O); 5 pM acetate plus 109 uM butyrate (+Buty, [@); 5 pM
acetate plus 5 uM propionate (+Prop [5 puM], N); 5 uM acetate plus
134 uM propionate (+Prop [134 uM], B). Each value represents the
mean of triplicate determinations; error bars are not distinguishable.

the enzymatic reaction or subsequent HPLC. This is a
considerable advantage relative to the prepurification steps
recommended (or necessary) for GC analysis of low micro-
molar acetate concentrations in marine samples (e.g., see
references 8 and 25).

Although common inorganic solutes had no apparent
effect, the presence of propionate stimulated AMP produc-
tion slightly (Fig. 2). However, the molar response for
propionate was substantially lower than that for acetate: 31
wM propionate was equivalent in response to 1 uM acetate.
There was no evidence for AMP production resulting from
longer-chain fatty acids, e.g., butyrate, even at 109 pM.
When propionate and acetate were incubated at equimolar
concentrations (e.g., 5 uM), there was no statistically signif-
icant increase in AMP production relative to acetate only.

Since propionate seldom exceeds or even equals acetate
concentrations in sediments (Table 1), it is unlikely that it
will contribute to >5% uncertainty in the measured acetate
concentration. This level of uncertainty is comparable to the
standard deviations observed for replicate samples of marine
pore waters (see below). Of course, in some freshwater or
sludge matrices or circumstances in which interspecies hy-
drogen transfer is inactive, propionate could accumulate to
levels comparable to those of acetate (e.g., see references
12, 17, and 20). However, even if propionate exceeds the
acetate concentration by twofold, the resulting error will still
amount to =10%. Since propionate is less difficult to assay
by GC than acetate, the potential for interference is readily
checked. Although interference from acrylate was not ex-
amined specifically, it is not likely to cause greater interfer-
ence than propionate. However, since acrylate might occur
at high concentrations in some restricted circumstances
(e.g., during rapid hydrolysis of locally high levels of dime-
thylsulfoniopropionate), some caution is advised.

Standard curves for acetate in FASW were linear over
about 2 orders of magnitude (Fig. 3), with a detection limit of
about 0.1 pM and a precision of 3.0 and 1.5% at 0.2 and 2.0
M, respectively (n = 4). Concentrations of >10 uM were
not analyzed, but linear responses can be expected assuming
that levels of added ATP and CoA are sufficient and that
incubation times or enzyme concentrations are increased.
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TABLE 1. Concentrations of acetate and propionate in various sediments and sludges®

Site location Acetate

Propionate

(M) (uM) Reference

Salt marsh, U.K. 53 0.5 Balba and Nedwell (2)
Flax Pond salt marsh 15-70 NR? Michelson et al. (23)
Limfjord, Denmark 0.1-6 0.1-6 Ansbak and Blackburn (1)
Santa Barbara Basin 33471 <0.1 Barcelona (3)

Skan Bay, Alaska 1-14 NR Shaw and Mclntosh (29)
Lowes Cove, Maine 1-3 NR This study

Cod Cove, Maine 5-11 NR This study

Loch Eil, Scotland 3-22 NR Parkes and Taylor (24)
Cape Lookout Bight 55-660° 1-16 Sansone and Martens (27)
Continental slope 10.7-69.0° 1.2-11.4 Sansone and Martens (27
Wintergreen Lake 100 14 Lovley and Klug (20)
Sludge digestor 400 60 Zinder (35)

Sludge digestor 33.9-56.8¢ 15.4-31.6 Henderson and Steedman (12)

“ All data with the exception of those from this study and references 24 and 29 were based on GC methods. The latter two studies were based on an ion

chromatographic technique.
# NR, not reported.

< Micromoles per liter of sediment; concentrations based on solvent extraction.

4 Millimolar.

Detection limits were determined primarily by the amount of
acetate in the reagents (no blank AMP was observed). When
all reagents were added in increasing volumes to FASW with
no acetate, the AMP peak increased linearly (Table 2);
extrapolation to zero added reagent suggested final blank
acetate levels of about 0.03 uM. Based on results from a
factorial experiment, acetyl CoA synthase was the major
source of the contamination. The amount of contaminant
acetate was probably amenable to reduction by dialysis,
although this was not specifically examined. Reduction in
the blank value would potentially lower the detection limit.
For the samples analyzed in this study, lower limits were
unnecessary.

Although detection limits and precision were comparable,
the relationship between AMP production (detector re-
sponse) and acetate concentration differed for pore water
and FASW (Fig. 3). Specifically, AMP production per mole
of acetate in pore water was about 72% of that in FASW or
distilled deionized water. This result was consistent for pore
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FIG. 3. AMP production versus acetate concentration for an
FASW matrix (@) and pore waters from Lowes Cove (O) and Cod
Cove (©). All points are based on triplicate determinations; error
bars are coincident with the symbols. For both the FASW matrix
and the pooled pore waters, the relationship between AMP produc-
tion and acetate is highly significant (for FASW, » = 1.00; P =
0.0001; for pore waters, * = 0.99; P = 0.0007). Differences among
the intercepts are due to different reagent blanks.

waters from the two sampling sites, even though there were
significant differences in pore water salinity, sulfide, and
dissolved iron (data not shown). Reasons for the lower yield
of AMP in pore water were not evident. Differences in the
kinetics of acetyl CoA synthase could have decreased the
extent of the reaction, or acetate could have formed unre-
active complexes in pore water relative to other matrices.
These possibilities were not explored since detection limits
were still much lower than necessary for porewater analyses
and standard curves were linear to at least 8 pM. The
absolute production of AMP per mole of acetate was not
optimized for a 1:1 yield for similar reasons.

Acetate was readily detected in the porewaters from two
intertidal sediments (Fig. 4A). In pore water from Lowes
Cove, acetate concentrations were approximately uniform at
1 to 2 uM over the upper 10 cm. Over the same interval,
there was little significant sulfate depletion. In contrast,
sediments from Cod Cove contained approximately 1 to 12
uM acetate with a trend for increasing concentrations with
increasing depth (Fig. 4A). The trend for sulfate was oppo-
site, with significant depletion occurring over 18 cm. Con-
centrations of sulfate and acetate were significantly inversely
correlated (Fig. 4B; acetate [uM] = 14.90 — 0.52 (=0.043)
sulfate [mM]; > = —0.938; P = 0.0001). Increasing concen-
trations of acetate with depth have been reported for Skan
Bay, Alaska (28), while decreases were generally observed
for Danish coastal sediments (8). Reasons for the different
trends are unclear.

TABLE 2. Evaluation of acetate concentrations in the reagents
used for the acetyl CoA synthase reaction®

Total reagent
vol (nl)

Apparent acetate concn
(1M = 1 SE)

0.70 + 0.04
1.24 + 0.08
1.76 = 0.10
2.12 £ 0.02

“ Each of four separate reagents (acetyl CoA synthase, CoA, ATP, and
BSA) was added in increasing volumes to replicate samples of FASW (1 ml
per sample; triplicates for each treatment). The synthase reaction was allowed
to proceed for 1 h at 37°C and was followed by AMP analysis as described in
the text.



3480 KING

Acetate (uM)

A 0.0 20 40 6.0 80 100 120

Depth (cm)
o
T

20

12.0 =T T T T T

10.0 -

8.0

6.0

Acetate (uM)

2.0 +

D

oo 1 1 1 1 1

0.0 50 10.0 15.0 20.0 25.0 30.0
Sulfate (mM)

FIG. 4. (A) Concentrations of acetate (l,0) and sulfate (O,®) in
pore waters from Lowes Cove (H,®) and Cod Cove (0,0). All
points are means of triplicate determinations. Coefficients of varia-
tion for sulfate in Lowes Cove and Cod Cove are <1.0 and 5.0%,
respectively; error bars for acetate are *1 standard error. (B)
Correlation between acetate and sulfate concentrations for pooled
data from Lowes Cove and Cod Cove.

The relationship between acetate and sulfate in this study
is also noteworthy because sulfate reduction, the major sink
for acetate in marine sediments, is not limited at the sulfate
concentrations observed (>5 mM; Boudreau and Westrich
[6] report saturation values of about 3 mM for sediments
from Long Island Sound). Thus, the increasing acetate levels
cannot be attributed to a substrate-dependent decrease in
sulfate reduction rates. Other factors, such as decreases in
the biomass of sulfate reducers, decreases in the affinity of
sulfate-reducing bacteria for acetate, or imbalances in the
relative rates of acetate production by fermentors and con-
sumption by sulfate-reducing bacteria, must affect the depth
profile. For example, changes in the kinetics of acetate
uptake have been previously invoked to explain acetate
depth profiles in fresh water (21). The changes with depth
have been attributed to transitions from sulfate-reducing to
methanogenic systems. In Cod Cove, changes in affinity may
be linked to seasonal transitions in the depth of the sulfate-
reducing zone. During summer, intense sulfate reduction
rates driven by high concentrations of organic matter deplete
sulfate to micromolar values within 5 to 10 cm (unpublished
data). This may stabilize relatively low-affinity sulfate-reduc-
ing bacteria populations at depths below the permanent
sulfate-reducing zone.

Regardless of the trends with depth, the acetate concen-
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trations in Lowes Cove and Cod Cove are among the lower
values reported for marine sediments (Table 1). The rela-
tively low concentrations and variability among replicates
suggest that processing problems as described by Shaw and
Mclntosh (29) were minimal. Differences among the concen-
trations in this and other studies probably reflect the meth-
ods used, with the emphasis here on bioavailable pools, as
well as true variability among sites.

The acetate concentrations reported here probably pro-
vide reasonable estimates of the bioavailable pool. Unlike
other HPLC or GC methods, the acetyl CoA synthase
technique measures only acetate that reacts enzymatically.
This would include the free, dissolved pool as well as any
adsorbed pools that equilibrate rapidly with the free pool.
Acetate fractions that are kinetically slow to equilibrate or
that require some harsh chemical conditions to desorb bound
pools are not measured. These fractions are not bioavailable
as defined by their kinetic characteristics, even though they
are detected by other methods. The distinction between the
bioavailable pool and total detectable acetate has been made
by others (e.g., see references 1, 8, 25, and 28), who indicate
that about 10 to 80% of the total detectable pool is bioavail-
able in marine pore waters. On the other hand, Michelson et
al. (23) also provided evidence for a bioavailable fraction but
cautioned that artifacts in gel chromatography could lead to
underestimates of its concentration.

The significance of the bioavailable fraction is illustrated
by the overestimation of mineralization that results from the
use of total acetate concentrations determined by typical GC
or HPLC methods. Ansbak and Blackburn (1), Christensen
and Blackburn (8), and Shaw et al. (28) have reported that
acetate mineralization exceeds rates of sulfate reduction or
other indices of carbon metabolism measured in parallel (and
expressed on a carbon basis). These results differ markedly
from those of Christensen (7), who measured acetate accu-
mulation in intact cores after inhibition of sulfate reduction
by molybdate. Although Christensen’s GC method measures
total acetate concentrations, the short-term accumulation of
acetate most likely reflected changes in the bioavailable
pool. On the basis of the observed accumulation rate,
Christensen (7) calculated that acetate oxidation supported
65% of sulfate reduction in intact cores. This is consistent
with results from other anoxic systems (e.g., see references
20, 27, and 29). However, despite the evidence supporting an
unavailable acetate pool, Shaw and Mclntosh (29) have
observed that discrepancies between rates of acetate oxida-
tion and other metabolic processes can be attributed to
problems resulting from the method used to collect pore
water without the necessity of invoking an unavailable pool
of acetate.

In addition to facilitating the analysis of acetate, the
HPLC method described here has adequate sensitivity and
resolution for determining dissolved or particulate adenylate
concentrations. In fact, ATP, ADP, and AMP have all been
observed at concentrations up to 100 nM in the pore waters
examined in this study (data not shown). Others have
previously used the concentrations and dynamics of dis-
solved ATP as an indication of heterotrophic activity in the
water column (e.g., see references 13 and 26); similar
applications may be appropriate for sediments (9). Analysis
of particulate adenylates for determining biomass is also
feasible since common extractants such as Tris and bicar-
bonate buffers (e.g., see reference 14) do not interfere with
the adenylate chromatography. Given the low adenylate
detection limits possible by monitoring A,s, to A,¢o, derivi-
tization and fluorescence detection (e.g., see reference 33)
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may be unnecessary (see also Viarengo et al. [32] for a
gradient-based absorbance method). Finally, other solutes of
ecological interest, including glucose, galactose, gluconate,
pyruvate, and succinate, are amenable to analysis by using
simple modifications (e.g., enzyme substitution, ADP anal-
ysis) of the approach described here.

In summary, porewater acetate concentrations are deter-
mined by a simple, sensitive enzymatic method subject to
few interferences. Only small volumes and minimal process-
ing are required for either freshwater or marine samples; in
particular, prepurification or distillation are unnecessary for
marine matricies. The availability of an alternative to a
bioassay (e.g., see reference 25) should promote a more
detailed understanding of acetate’s role in the carbon cycle
of marine sediments and a resolution of questions concern-
ing bioavailable versus total acetate pools.
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