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ABSTRACT

We study the adaptation dynamics of an initially maladapted asexual population with genotypes repre-
sented by binary sequences of length L. The population evolves in a maximally rugged fitness landscape with
a large number of local optima. We find that whether the evolutionary trajectory is deterministic or stochastic
depends on the effective mutational distance deff up to which the population can spread in genotype space.
For deff ¼ L, the deterministic quasi-species theory operates while for deff , 1, the evolution is completely
stochastic. Between these two limiting cases, the dynamics are described by a local quasi-species theory below
a crossover time T3 while above T3 the population gets trapped at a local fitness peak and manages to find a
better peak via either stochastic tunneling or double mutations. In the stochastic regime deff , 1, we identify
two subregimes associated with clonal interference and uphill adaptive walks, respectively. We argue that our
findings are relevant to the interpretation of evolution experiments with microbial populations.

THE question of whether the course of evolution
is predetermined—and if yes, to what extent and

under what conditions this might be so—has recently
attracted the attention of many researchers (Wahl and
Krakauer 2000; Rouzine et al. 2001; Yedid and Bell

2002). The answer to this question, particularly for
large populations, is not obvious since the trajectories
traced out during evolution are shaped by the interplay
of the (deterministic) selective forces encoded in the
fitness landscape and the stochasticity of the mutational
process, which limits the ability of the population to
find and maintain favorable genotypes.

We address this question for an asexual population
of size N and binary genotype sequences of length L
evolving on a fitness landscape. As there is considerable
evidence (Whitlock et al. 1995) for interactions among
gene loci (or epistasis), it is important to consider the
evolutionary process on a landscape that includes them.
Such interactions may (Wright 1932; Gavrilets 2004;
Weinreich et al. 2005) or may not (Lunzer et al. 2005;
Weinreich et al. 2006) give rise to multiple peaks in the
fitness landscape ( Jain and Krug 2007). But at least on
a qualitative level, recent experiments on microbial pop-
ulations (Elena and Lenski 2003) support the notion
that the fitness landscape underlying the adaptive pro-
cess has multiple peaks (Korona et al. 1994; Lenski and
Travisano 1994; Burch and Chao 1999, 2000; Elena

and Sanjuan 2003). Motivated by this, we consider the
dynamics of the evolutionary process on maximally rug-
ged landscapes (Kauffman and Levin 1987; Flyvbjerg

and Lautrup 1992) that have high epistasis and a large
number of adaptive peaks separated by valleys.

A detailed theoretical description of the evolution of
a population subject to the combined effects of selec-
tion, mutation, and stochastic drift in a complex fitness
landscape constitutes a formidable problem, and pre-
vious studies have usually considered two limiting cases
on the basis of the size N of the population and the
mutation probability m per generation per base (or gene
locus). When the total number of mutants produced
in a generation, NLm, is small, the population consists
of a single genotype at most times. Occasionally a muta-
tion occurs in a single individual, which may become
fixed in the population with a probability depending on
the fitness advantage of the mutant. The population
thus performs an adaptive walk along a set of genotypes
connected by single point mutations, which is biased
toward high fitnesses and terminates at a local fitness
maximum (Gillespie 1984; Kauffman and Levin 1987;
Macken and Perelson 1989; Macken et al. 1991;
Flyvbjerg and Lautrup 1992; Orr 2002). Clearly,
the trajectory traced out by the population in this case
is determined stochastically. In the other extreme limit
of N /‘ applicable to enormously large populations,
each (relevant) genotype is populated by many indi-
viduals and the stochasticity inherent in the selection
of individuals for reproduction can be neglected. This is
the regime of deterministic mutation–selection dynamics
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described by the quasi-species model, which was origi-
nally introduced in the context of prebiotic molecular
evolution (Eigen 1971; Eigen et al. 1989; Baake and
Gabriel 2000; Jain and Krug 2007).

Thus, in these two extreme cases the population
either has many weighted paths available or follows a
single predetermined route to the global peak. One
would like to know: What is the nature of the dy-
namics for parameters lying between these two limits?
In models, we describe the model and introduce a
parameter deff on the basis of which various dynamical
regimes are distinguished. The effective distance deff is
basically a measure of the extent to which a finite pop-
ulation can spread in the space of genotype sequences
by mutations. For infinite populations, this distance
equals the diameter L of the entire sequence space, and
we discuss this case in quasi-species dynamics. We start
with our earlier work on quasi-species evolution (Krug

and Karl 2003; Jain and Krug 2005), which provides
in a suitably defined strong selection limit a very trans-
parent picture of the evolutionary trajectories and the
genotypes that are encountered by a population moving
toward the global fitness peak. We show that provided
the mutation probability m is sufficiently small, the
analysis of Jain and Krug (2005) holds beyond the
strong selection limit and the evolutionary trajectories
obtained at different values of m can be superimposed
by a simple rescaling of time. finite populations deals
with the two subcases 1 # deff , L and deff , 1. The basic
idea in the first case is that the finite population behaves
like a quasi-species in an effective sequence space up to
a certain timescale above which the stochastic evolution
takes over. We estimate the time at which the crossover
from deterministic to stochastic evolution occurs. For
deff , 1, the dynamics are stochastic at all times but
depending on the product NLm, the dynamics may be
characterized by the ‘‘clonal interference’’ of several
genotypes (Gerrish and Lenski 1998) or they may
follow the adaptive walk scenario described above. In
each case, we describe several individual fitness trajec-
tories in detail both as a function of time and as a
function of the system parameters. Finally, in the last
section we summarize our results and discuss the rela-
tion of this work with that of others.

MODELS

We consider a haploid, asexual population with geno-
types drawn from the space of binary sequences s¼ {s1,
. . ., sL} of length L, where si¼ 0 or 1. Depending on the
context, a genotype can be thought to represent a small
genome, a single gene, or a sequence of L biallelic
genetic loci. A fitness W(s) $ 0 proportional to the ex-
pected number of offspring produced by an individual
of genotype s is associated with each sequence. Repro-
duction occurs in discrete, nonoverlapping genera-

tions. The structure of the population is monitored
through the frequency X(s, t) of individuals of genotype
s in generation t.

To simulate the stochastic evolution, a population of
fixed size N is propagated via standard Wright–Fisher
sampling; i.e., each individual in the new population
chooses an ancestor from the old population with a
probability proportional to the fitness of the ancestor.
Subsequently, point mutations are introduced with
probability m per locus per generation. In the limit of
very large populations, this leads to a deterministic time
evolution for the average frequency Xðs; tÞ ¼ ÆX ðs; tÞæ,
where the angular brackets refer to an average over all
realizations of the sampling process. The evolution
equation reads as

Xðs; t 1 1Þ ¼
P

s9 ps)s9W ðs9ÞXðs9; tÞP
s9 W ðs9ÞXðs9; tÞ ð1Þ

( Jain and Krug 2007), where

ps)s9 ¼ mdðs;s9Þð1� mÞL�dðs;s9Þ ð2Þ
is the probability of producing s as a mutant of s9 in
one generation, and d(s, s9) denotes the Hamming
distance between the two genotypes (i.e., the number of
single point mutations in which they differ). Instead of
simulating a large (infinite) population, we numerically
iterate the above discrete-time equation. For future
reference we note that the nonlinear evolution (1) is
equivalent to the linear iteration

Zðs; t 1 1Þ ¼
X

s9

ps)s9W ðs9ÞZðs9; tÞ ð3Þ

for the unnormalized frequencyZðs; tÞ, whereXðs; tÞ ¼
Zðs; tÞ=

P
s9
Zðs9; tÞ ( Jain and Krug 2007).

To generate a maximally rugged fitness landscape,
the fitness values W(s) are chosen independently from
a common exponential distribution P(W )¼ e�W with unit
mean. In the language of Kauffman’s rugged landscape
models in which the fitness contribution of each of the L
loci depends randomly on K other loci, our uncorre-
lated landscape corresponds to K¼ L� 1 and hence the
limit of strong epistasis (Kauffman 1993). In particular,
sign epistasis, in the sense that a particular point muta-
tion may be beneficial or deleterious depending on the
genetic background (Weinreich et al. 2005), is com-
mon in these landscapes. We also note that the selection
coefficient for a mutant of genotype s in a background
of genotype s9 is given by

sðs; s9Þ ¼ W ðsÞ
W ðs9Þ � 1; ð4Þ

and the probability to find a genotype of fitness larger
than W is

Q ðW Þ ¼
ð‘

W
dw PðwÞ ¼ e�W : ð5Þ
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We recall some typical properties of maximally rug-
ged landscapes (Kauffman and Levin 1987; Kauffman

1993), which follow from elementary order statistics.
For S exponentially distributed random variables, the
average value of the maximum is given by ln S (David

1970; Sornette 2000), which yields the expected fitness
Wmax ¼ L ln 2 of the globally fittest among the 2L geno-
types. Correspondingly, the typical fitness of a local
maximum that is a genotype without fitter one-mutant
neighbors isW loc ¼ lnðL 1 1Þ>Wmax. Since the proba-
bility that a genotype is a local maximum is 1/(L 1 1),
there are on an average 2L/(L 1 1) local maxima in
these landscapes. For such a genotype s with fitness
W loc surrounded by typical genotypes of fitness W ¼
Oð1Þ, the selection coefficient sðs; s9Þ � ln L?1. In this
sense, we are dealing with a situation of strong selection
throughout this article.

For the purposes of illustration, we base much of the
discussion below on two reference landscapes, each of
which is a single realization of landscapes with sequence
length L ¼ 15 and 6. The starting sequence s(0) is a
randomly chosen genotype at which the population
finds itself in the beginning of the adaptation process.
For our reference landscapes, s(0) is of relatively poor
fitness with value W(s(0)) � 0.13 for both cases. This
has a rank 28,795 among 215 ¼ 32,768 genotypes and
55 among 26¼ 64 genotypes where the global maximum
is assigned the rank 0. The global peak is located
at Hamming distance 10 and 2 from s(0) with fitness
Wmax¼ 10.72 and 4.29 for L¼ 15 and L¼ 6, respectively.
In the following discussion, instead of specifying actual
fitness values for each sequence, we provide their ranks
as a subscript in the population density Xrank(s, t).

In the subsequent sections, we distinguish the dy-
namics on the basis of a parameter deff, which is a mea-
sure of the typical extension of the population in
genotype space, and for strong selection, it is given by

deff �
ln N

j ln m j : ð6Þ

Due to the quasi-species Equation 1, the average num-
ber of individuals produced in one generation at a
sequence s located at distance d(s, s(0)) from a lo-
calized population of size N is given by N mdðs;sð0ÞÞ. Thus
the maximum distance deff at which at least one in-
dividual (required for asexual reproduction) can be
detected after one generation is given by (6). However,
in the next generation, the mutants of s(0) can acquire
further mutations thus extending the spread of the
population beyond deff. We argue below that for land-
scapes with large selection coefficients as is the case
with our rugged landscapes, the above definition is nev-
ertheless a good approximation.

To see this, let us consider the evolution in a land-
scape with infinite selection coefficients for which (6)
is exact. As argued above, starting from a localized pop-

ulation at s(0), at t ¼ 1 the population spreads over a
typical distance deff. If the landscape is such that all the
sequences except the best one among the ones avail-
able within deff are lethal (i.e., with fitness zero), then in
the next generation the population will move to the
lone viable genotype (fitter than s(0)). This sequence in
turn can be treated as the new s(0) and the above argu-
ment can be applied recursively.

That (6) cannot hold for weak selection can be seen
by considering the flat fitness landscape (with selec-
tion coefficients zero) for which it is known that the
average Hamming distance over which the population
spreads is

d flat �
L

2

4mN

1 1 4mN

� �
ð7Þ

(Derrida and Peliti 1991) and which for large Nm is
simply L/2. Away from these two limiting cases, one may
expect an explicit dependence on the relevant selection
coefficients. For rugged landscapes, one can get an idea
of such a dependence at late times when (as explained
in finite populations) the population gets trapped
at a sequence whose mutants within deff are not fitter
than itself. In such a case, the population at the peak
and its surrounding valley reaches a stationary state and
forms a quasi-species. Approximating the surrounding
genotypes by a flat fitness landscape with W(s9) ¼ 1
and the localizing sequence with fitness W ðsÞ?1, an
analysis within the unidirectional approximation shows
that the population distribution is an exponential

Xðs9Þ � mð1 1 sðs; s9ÞÞ
sðs; s9Þ

� �dðs;s9Þ
XðsÞ ð8Þ

(Higgs 1994). Defining deff as the genetic distance at
which the population fraction falls to 1/N, the resulting
expression for deff is given by

deff �
ln N

j ln m j 1 1
1

s j ln m j

� �
; ð9Þ

which reduces to (6) with a correction that becomes
negligible for sðs; s9Þjln mj?1. When either the selec-
tion is weak or the mutation rate is large, the effective
mutational distance is larger than given by (6). In the
following sections, we study three distinct cases classi-
fied on the basis of distance (6): (a) deff ¼ L, (b) 1 #

deff , L, and (c) deff , 1.

QUASI-SPECIES DYNAMICS

When the population N * m�L, the effective distance
deff ¼ L and the population can spread all over the
Hamming space. For small mutation probability m (of
the order 10�3–10�8) that we consider here, this popula-
tion size far exceeds the number of available genotypes.
The requirement of such a large population size for a
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completely deterministic description comes from (2),
according to which the mutation probability decreases
exponentially with the distance.

The discrete-time quasi-species Equation 1 was iter-
ated numerically for the population fraction X dðs;sð0ÞÞ

rank ,
where we have labeled a sequence by its rank and
Hamming distance from s(0). The time evolution is
depicted in Figure 1 for various m and fixed L. Since
Xðs; 1Þ � mdðs;sð0ÞÞ, all the mutants become available
immediately with a concentration decreasing exponen-
tially with the distance from the parent sequence. As a
result, the population at fitter sequences closer to the
parent increases and that at s(0) decreases. One of these
fit sequences becomes dominant in the sense that it
supports the largest population. This sequence is in turn
overtaken by a fitter sequence close to it, and this
process of leadership changes goes on until the pop-
ulation has reached the global maximum. We are
interested in the evolutionary trajectory traced out by
the most populated sequence s*(t) at time t.

The analysis of Krug and Karl (2003) and Jain

and Krug (2005) provides a simple way of identify-
ing the genotype s* for a given landscape and a given

starting sequence. It is based on a particular strong
selection limit, in which the mutation rate is scaled to
zero and the fitnesses are scaled to infinity in such a
way that the (appropriately normalized) logarithmic
population fractions remain well behaved. The key
observation is that the behavior of the evolutionary
trajectory s*(t) can be accurately predicted by simply
assuming that the mutations can be turned off once the
sequence space has been ‘‘seeded’’ by the population
fraction �md that is established by mutations after the
first generation. Thus, each unnormalized population
frequency Zðs; tÞ changes exponentially in time ac-
cording to its own fitness, from an initial value propor-
tional to mdðs;sð0ÞÞ. In logarithmic variables, this implies
the simple linear time evolution

lnZðs; tÞ ¼ � j ln m j dðs; sð0ÞÞ1 ln W ðsÞt ð10Þ

(see also Zhang 1997). Since the first term on the
right-hand side is the same for all sequences in a shell of
constant Hamming distance d(s, s(0)), within each shell
only the sequence with the largest fitness needs to be

Figure 1.—Quasi-species evolution of the populations X dðs;sð0ÞÞ
rank . The numerical iteration of Equation 1 is shown for m ¼ 10�8,

10�6, and 10�4 (top to bottom) with L ¼ 15, starting from all the populations at sequence s(0) in the fitness landscape explained in
the text. The sequences with fraction $0.005 are shown.
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considered for determining s*(t). It is also evident
from (10) that among these shell fitnesses only fitness
records, that is, sequences whose fitness is larger than
the fitnesses in all shells closer to s(0), can possibly par-
take in the evolutionary trajectory. Fitness records can
be identified purely on the basis of the fitness rank.
Their statistical properties are independent of the
underlying fitness distribution, but depend on the
geometry of the sequence space ( Jain and Krug 2005;
Krug and Jain 2005).

The set of sequences {s*} making up the evolutionary
trajectory is a subset of the fitness records, from which
those records are eliminated that are being bypassed by
a fitter but more distant record before reaching the
status of the most populated genotype (Krug and Karl

2003; Sire et al. 2006). To decide whether a given record
is bypassed, the actual fitness values and not just their
ranks are needed. Bypassing is a significant effect: it
reduces the number of steps in the evolutionary
trajectory from the number of records, which is of order
L, to the order

ffiffiffiffi
L
p

for logarithmic fitness distributions
of the exponential type ( Jain and Krug 2005; Krug

and Jain 2005). Thus, not all of the L 1 1 mutant classes
can appear in the trajectory and in fact, only a vanishing
fraction of a total of 2L genotypes actually appear
(Figure 1).

When applied to our reference landscape, the above
analysis predicts an evolutionary trajectory involving
the genotypes with ranks 28,795, 4688, 5, 1, and 0 in
shells 0, 1, 2, 7, and 10, respectively, which are precisely
the ones that appear in Figure 1. Each of these geno-
types is also a record, none of which is bypassed in the
landscape used here. To see bypassing of the contend-
ing genotypes, we need to consider larger L as the
number of bypassed sequences increases with L.

As Figure 1 shows, although the set {s*} remains
the same for a broad range of mutation probability m,
the timing of the appearance of new mutants and the
polymorphism of the population depends on m. These
effects are also reflected in the stepwise behavior of the
population averaged fitness WðtÞ ¼

P
s

W ðsÞXðs; tÞ
in Figure 2. For smaller m, adaptive events occur at later
times. This is expected on the basis of (10) from which
m can be eliminated by a rescaling of time with jln mj.
Indeed, the inset shows that the timing of the peak
shifts can be made to coincide by scaling time with jln mj.
The other effect with increasing m is that the transitions
between fitness peaks become more gradual (Krug

and Halpin-Healy 1993), and the fitness level at a
given (rescaled) time is lowered. This happens due to an
increase in the diversity (the number of genotypes
present in the population) that is controlled by the
probability 1� (1�m)L�mL for any mutation to occur.
For the largest mutation probability m ¼ 10�2 that we
consider here, this probability is significant and the
mutational load (Haldane 1927) can be estimated as
follows. Using the quasi-species Equation 1 in the steady

state within unidirectional approximation ( Jain and
Krug 2007) for the master sequence with fitness W(s*),
it immediately follows that the population fitness is
given by W(s*)e�mL for large L and small m. The muta-
tional load is thus W(s*)(1 � e�mL) and the fitness is
reduced by a factor e�mL � 0.86 for m ¼ 0.01 and L ¼ 15,
in very good agreement with the data in Figure 2. To
summarize, the mutations affect the dynamics in two
respects: on decreasing m, the new mutants get fitter but
are slower to appear (‘‘slow-but-fit’’).

FINITE POPULATIONS

As we discussed above, in the infinite population limit
all the genotypes are immediately occupied so that the
subsequent dynamics involving the fit genotypes can be
approximated as largely due to the selection process.
For finite N on the other hand, the population distri-
bution has a finite support deff at any time. Then if the
distance to the genotype that offers selective advantage
over the currently dominant one is larger than deff, or
the distance deff is less than unity, the average number of
individuals at the desired distance is smaller than one.
One cannot work with averages under such circum-
stances and must take fluctuations arising due to rare
mutations into account.

Crossover from deterministic to stochastic dynamics:
We first consider the case when 1 # deff , L. Starting
from a parent sequence s(0) supporting a population
N >m�L, the mutants can spread up to a shell at a dis-
tance deff , L. Then provided the selection coefficient

Figure 2.—Punctuated rise of the average fitness WðtÞ for
fixed landscape and fixed initial condition in the quasi-
species model with genome length L ¼ 15. The solid line is
the fitness Wmax of the global maximum and the dashed line
is e�mLWmax with m ¼ 10�2. The steps become more diffuse as
m increases, and the fitness level is reduced for the largest
value of m due to the broadening of the genotype distribution.
Inset: average fitness plotted as a function of t/jln mj to show
the scaling of jump times.
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involving the fittest and the next few fittest sequences
within deff is large, the dynamics within this distance
are similar to the quasi-species case in that the popula-
tion at the fittest sequence in each shell competes with
the one in other occupied shells and passing through
sequences at which it becomes dominant in the least
time finds the best available sequence s* within deff of
s(0). The last step is akin to finding the global maximum
in the quasi-species case. If, however, the selection is not
strong, several fit genotypes get populated, and due to
a mutation in this set of fit sequences, the population
may be able to find a sequence even fitter than the
fittest sequence s* within deff. In such an event, the
fittest sequence within deff still achieves a majority status
but only momentarily. A similar process is repeated
within shells at radius deff from the new most populated
sequence s*. The above deterministic process is ex-
pected to occur for individual trajectories obtained
in stochastic simulations as long as the population can
find a sequence better than the current s* within a dis-
tance deff. In particular, for deff � 1, the local quasi-species
evolution continues until the population hits a local
peak, after which stochastic evolution takes over. The
latter typically involves ‘‘crossing the valley’’ via less fit
nearest-neighbor mutants to a better peak than the
current one.

In Figure 3, we chose deff slightly above unity; since
at any time typically the population can sense only
L sequences, we work with a small sequence space of
length L¼ 6 to reduce the number 2L�L of unoccupied
sequences. Also, we keep the mutation probability m

somewhat large since for deff close to one, N � m�1 and
Wright–Fisher sampling requires operations of order
N per time step. Note that in this case the number of
genotypes 2L ¼ 64 is much smaller than the population
size. Nevertheless, we will see that the dynamics is
far from the deterministic quasi-species limit, because
the more stringent condition deff ¼ L is not met. Since
doubling deff requires increasing the population size
from N to N 2, it is clear that fully deterministic behavior
can be realized only under extreme conditions.

Deterministic dynamics: The different runs in Figure 3
correspond to different sampling noise with all the
other parameters kept the same. We start with all the
individuals at sequence s(0) with rank 55. Since deff is
close to one, the population spreads from here to
sequences within Hamming distance unity of s(0) and
moves to the best sequence among them, namely the
sequence with rank 28. In this case, there is no bypassing
(discussed in quasi-species dynamics) of a fit sequence
and the best sequence in the first shell becomes the
most populated sequence s*. As the population at this
sequence grows, the chance that it will produce its one-
mutant neighbors also increases; in fact, a mutant s̃

better than s* appears at time t � (1/s)ln(s/Nm2),
where the selection coefficient s ¼ sðs̃; s*), when the
fraction at the current s* becomes �1/Nm (Wahl and

Krakauer 2000). The population then starts growing at
the sequence with rank 5, which is the best sequence in
the first shell centered about the sequence ranked 28.
The process so far is deterministic as is evident from the
three runs. Note that the set s* obtained using the local
quasi-species theory will in general be different from the
quasi-species analysis of the Hamming space containing
all shells up to the shell in which the local peak is
situated; this is because the sequences obtained in the
former case can be outcompeted by fitter mutants
before reaching fixation as discussed in the last section.
For instance, if we apply the deterministic prescription
to the Hamming space restricted to shell 2 about s(0),
the sequence ranked 5 will not appear in the trajectory
since it will be immediately overtaken by the global
maximum that also lies in shell 2.

In Figure 3, the sequence with rank 5 is a local peak so
a better sequence lies beyond distance unity; in fact, it
lies in the second shell about this local peak and carries
the rank label 2. The trajectories in Figure 3 take dif-
ferent routes from here onward. In all three cases, the
last most populated sequence shown is at a distance 4
from the global maximum, which in fact lies at distance
2 from the initial sequence. Thus, a finite population
wanders around and is inefficient in search of the global
peak.

Figure 4 shows the evolutionary trajectories for larger
m (and hence deff) for fixed population size. In Figure
4A, since deff � 1.4, the population finds the best
sequence 28 in shell 1 about s(0) as before. But as the
sequence with the globally largest fitness became avail-
able due to a mutation in a nearest-neighbor mutant of
s(0), the population moves to the global peak. We per-
formed several runs for this set of parameters and found
that X5 never achieved a majority status. On increasing
m further corresponding to deff� 2.1, the sequence with
rank 0 being within deff of the initial sequence became
immediately available, and the population formed a
quasi-species around the global peak.

Stochastic dynamics: We now describe the individual
trajectories in Figure 3 in some detail. In Figure 3, top, at
t ¼ 7, a nearest neighbor of s(0) with rank 40 mutated at
one locus to produce an individual at rank 4 sequence,
which is a local peak. The rank 4 sequence replaces the
rank 5 sequence as the most populated genotype before
the rank 5 sequence has reached fixation. Since the two
sequences are four point mutations apart, this consti-
tutes an example of what has been called a leapfrog
episode, in which two consecutive majority genotypes
appear that are not closely related to each other but
have a common ancestor further back in the genealogy
(Gerrish and Lenski 1998). Later, a rank 50 neighbor
of rank 4 sequence mutated once at t¼ 996 to populate
rank 1 sequence, thus enabling the population to shift
from one peak to another.

In Figure 3, center, although a rank 48 neighbor
of the sequence ranked 5 mutated once at t ¼ 1234 to
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produce an offspring with rank 2, this individual was
lost. At t ¼ 2384, a double mutation in the sequence
ranked 5 allowed the population to shift the peaks
without crossing the valley. In Figure 3, bottom, the
population remained trapped at the rank 5 sequence
until the last observed time t ¼ 104.

The process of shifting peaks via valley crossing
(Wright 1932) or stochastic tunneling (Iwasa et al.
2004; Weinreich and Chao 2005) can happen if
many mutants at Hamming distance unity from a local
peak are available. While the Wrightian concept of valley
crossing involves moving the whole population through
a low-fitness sequence, the process of stochastic tunnel-
ing requires only the presence of a few low-fitness neigh-
bors and we discuss this here. During the residence time
of the population near the peak, a mutation–selection
balance is reached between the peak genotype and its
one-mutant neighbors. Then the average fraction of
population at a given valley sequence with fitness

Wmut can be estimated using the quasi-species equation,
and one has

Xmut �
mWmut

Wloc �Wmut
; ð11Þ

where Wloc is the fitness of the local peak. Clearly,
the total number of mutants produced depends on the
neighborhood of the local peak; if the fitness of the
neighbors is much smaller than that of the local peak,
then it is of the order NmL/Wloc where we have used that
the average value of exponentially distributed variables
is 1. Otherwise it is dominated by the population at
the best one-mutant neighbor with fitness close to Wloc.
In Figure 3, the sequence ranked 4 produced on average
NLm � 10 mutants, while rank 5 produced a suite of
�200 mutants, a lower bound (�80) of which can be
obtained by using (11) and the fitness Wmut of the rank
6 sequence, which is the fittest nearest neighbor of rank
5 sequence.

Figure 3.—Evolutionary trajectories in a sequence space of length L¼ 6 with N¼ 214, m¼ 10�4 so that Nm� 1.64 and deff� 1.05.
The population fraction is denoted by Xrank(s), where the si’s that do not change in the course of time are represented by a dash.
Only the sequences with population fraction $0.05 are shown. In the initial phase, the three populations X55, X28, and X5 occur in
all of the above trajectories and have rather similar curves, supporting deterministic evolution. At later times, the population
escapes the local peak with rank 5 via tunneling (top) and by a double mutation (center).
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Since there are typically many low-fitness sequences
available in the valley, it is likely that the population
trapped at a local peak escapes due to a mutation in
one of the NmL one-mutant neighbors. This gives the
simple estimate of the tunneling time to be �(Nm2L)�1

� 103 for our choice of parameters. This in fact is a
lower bound as the tunneling time depends inversely
on the advantage conferred by the next local peak.
An expression for the rate (� T�1

tunnel) to tunnel to a
beneficial mutation via a deleterious one has been
obtained in Iwasa et al. (2004), using a Moran process
(also see Weinreich and Chao 2005). This is given by
the product of three factors: average number of dele-
terious mutants produced, mutation probability with
which a deleterious mutant mutates to an advantageous
one, and the fixation probability that is the relative
fitness difference between the final and initial mutants,
finally yielding

Ttunnel � N m2L
1

Wloc;i
� 1

Wloc;f

� �� ��1

; ð12Þ

where Wloc,{i,f} refers to fitness of the initial and the final
local peaks. Inserting the fitness values of the two local
peaks in question, Ttunnel turns out to be�3000, which is
somewhat larger than that observed in Figure 3, top.

In Figure 3, center, although many mutants are
available at the valley sequence ranked 6, the population
could not tunnel through this sequence as it does not
have a better neighbor other than sequence 5 itself.
Instead a double mutation at t ¼ 757 was responsible
for escaping the local peak at the sequence ranked 5
to the next local peak with rank 2. Since the time Tdouble

for the (desired) double mutation to occur in one
generation is given by

Tdouble �
Wloc

Wloc �Wmut
Ttunnel ð13Þ

(Iwasa et al. 2004; Weinreich and Chao 2005), it
exceeds Ttunnel if Wmut � Wloc, and in such a case, tun-
neling is the dominant mode of escaping the local
peak. On the other hand, the valleys typically encoun-
tered in a rugged landscape are ‘‘deep’’ as Wmut ¼ 1
and W loc ¼ ln L. In this situation, the population may
attempt to hop across the valley; the probability for such
an event is roughly given by Nm2 times the average
number of fitter neighbors available at distance 2 away.
The latter is simply (L2/2)Q(W(s*)). UsingW loc ¼ ln L,
we again find that the timescale over which a double
mutation can occur is of the same order as the tunneling
time.

Crossover time: We now estimate the time T3 at which
the crossover from deterministic to stochastic evolu-
tion occurs using an argument employed previously by
Krug and Karl (2003) and Jain and Krug (2005). We
consider the evolution Equation 10 for the unnormal-
ized population according to which the logarithmic
population at a fit sequence increases linearly. Then the
crossover time T3at which the first local peak is reached
can be approximated by the typical time at which the
population at the first local peak (rank 5 in Figure 3)
overtakes the population at the most populated se-
quence s* (rank 28) at Hamming distance unity from it.
This is given by

T 3 �
j lnm j

lnðWloc=W ðs*ÞÞ: ð14Þ

For the landscape used in Figure 3, the fitness W(s*) �
0.81 and Wloc� 1.65 so that T3 works out to be�13 time
steps, which is in reasonable agreement with the time
at which X5 appears. The dependence of T3 on L can
be found by noting that generally the fitness ratio in
the argument of the logarithm is close to unity, so that
the logarithm can be expanded. The denominator
then reduces to Wloc/W(s*) � 1 � 1/W(s*) on using

Figure 4.—Evolutionary trajectories for m ¼ 10�3 (A) and
m¼ 10�2 (B) with N¼ 214 and L¼ 6. (A) The effective distance
deff� 1.4 and the population passes deterministically through
the rank 28 sequence toward the global maximum. (B) Dis-
tance deff � 2.1 and the population reaches the global maxi-
mum almost immediately.
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that the typical difference between two exponentially
distributed independent random variables is equal to
unity (David 1970; Sornette 2000). The fitness W(s*)
of the last-but-one most populated sequence in the
quasi-species regime is expected to be of the same order
as the fitness of the local peak, which increases as ln L.
Thus for exponentially distributed fitness and deff ¼ 1,
the local quasi-species theory works over a timescale
that increases as

T 3 � j ln m j ln L: ð15Þ

Although we discussed mainly the case deff¼ 1 above,
it is easy to see that for larger effective distance also,
the local quasi-species theory will work up to a crossover
time after which the population will get trapped at a
‘‘local peak’’ that does not have a better sequence avail-
able within Hamming distance deff and will have to
wait for a rare mutation to find a better sequence. For
deff>L, the crossover time can be easily generalized by
approximating it by the time required for the last over-
taking event to happen, which is given by Krug and
Karl (2003) and Jain and Krug (2005):

T 3 ðdeffÞ �
j ln m j deff

lnðWloc=W ðs*ÞÞ: ð16Þ

Expanding the logarithm as above, and using that
the peak genotype is the best among � Ldeff sequences,
it follows that

T 3 ðdeffÞ � d2
eff j ln m j ln L: ð17Þ

Fully stochastic evolution: We now turn to the regime
when the effective distance is less than unity. Unlike in
the previous cases, now the dynamics is stochastic at all
times. The parameter deff , 1 implies that the average
number of mutants Nm produced at Hamming distance
unity is also ,1. Since the population is discrete, this
number cannot be observed until time �(Nm)�1 when
one mutant is produced at a given sequence. However,
since the mutation probability is rotationally symmetric,
a total of�LNm new mutants at Hamming distance unity
can be produced in one generation. The dynamics de-
pend on whether the parameter LNm is above or below
unity, and we study these two cases in the following
subsections. We focus mainly on the short time regime
as the behavior at long times is expected to be similar to
that discussed previously.

Clonal interference: Figure 5 shows the temporal
evolution of the population fraction for three different
sampling noises (keeping the rest of the parameters the
same). Clearly the population traces different trajecto-
ries in each case. In Figure 5, the population at s(0)

produced a total of NLm � 1–2 mutants in one
generation. Thus in this regime, the sequence space is
very sparsely populated as only two to three genotypes

are occupied. But since many [�LQ(W(s (0))) � 13] of
them are better than the parent, the population
immediately begins the hill-climbing process. In Figure
5, top, the best one-mutant neighbor of s(0) with rank
4688 mutated once at t ¼ 6 to move the population at a
highly fit sequence ranked 159, which is also a local
peak. In Figure 5, center, while most of the population
climbed the nearest neighbor of the parent with rank
9195, an individual at a much lower rank 20,940
produced an offspring at 4117 at t ¼ 5. Thus, due to
the interference of rank 20,940 sequence, the popula-
tion managed to access an even fitter sequence. After
a single mutation at the genotype ranked 4117, the
population reached a local peak with rank 1524 from
where it escaped via double mutation. In Figure 5,
bottom, at t ¼ 5, the rank 14,622 neighbor of s(0) mu-
tated once to populate a local peak with rank 2711.
However, the population escaped this local peak by
climbing a better local peak with rank 5 made avail-
able due to one mutation in sequence 14,622 at t ¼ 7.
In each case, since the selection coefficients involved
are of order unity, the fitter mutants get fixed imme-
diately and one can neglect the time to reach fixation.

In the preceding sections with deff *1, all the mutants
are available within the occupied shells and the best
among them becomes the most populated sequence
s*. However, for Nm , 1, only a few randomly sampled
sequences can get populated and as most of the geno-
types available at Hamming distance 1 from s(0) are of
comparable fitness, each of them can achieve a moder-
ate population frequency. While the best among them
has the highest chance of achieving majority status, the
other mutants in the meanwhile can establish their
own lineage by creating their own (small) suite of one-
mutant neighbors. If a mutant better than the one
that is currently going to fixation is produced, there is a
competition and the latter is bypassed. This process is
reminiscent of the bypassing discussed in quasi-species

dynamics—in both cases, while a fit mutant is going to
fixation, it may get bypassed by an even better one.
However, while the set of mutants that will compete
with each other in this manner is predetermined for
large populations, here they are stochastically gener-
ated in time.

The competition between several beneficial muta-
tions in an asexual population has been termed clonal
interference (Gerrish and Lenski 1998). A quantitative
criterion for the occurrence of clonal interference,
adapted to the present situation, reads

2NLm ln N . 1 ð18Þ

(Wilke 2004), which is clearly satisfied in Figure 5.
However, the usual view of clonal interference as an im-
pediment to the simultaneous fixation of different ben-
eficial mutations that slows down adaptation (Gerrish

and Lenski 1998; Wilke 2004) relies on a situation in
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which the fitness effects are essentially additive, and
hence strong (sign) epistasis is absent. In rugged fitness
landscapes, on the other hand, the presence of sev-
eral competing genotypes increases the likelihood of
finding high-fitness genotypes. This effect is thus seen to
speed up the adaptive process compared to the regime
where beneficial mutations arise and fix sequentially,
which we consider next.

Adaptive walk: The above discussion, of course, is
contingent on the fact that several genotypes are avail-
able to explore the landscape. We finally consider the
case in which the rate LNm at which the new mutants
appear is very small. Then the time ðLN mÞ�1

?1 re-
quired to produce a new mutant is very large, and the
competing mutants are not produced, enabling the
population at the currently occupied genotype to reach
a fraction unity. The population is thus localized at a
single sequence at all times unlike in the previous cases
where this happened only at long times. In Figure 6, the
dynamics in the regime LNm , 1 are shown for three

different values of m with fixed L and N. The effect of
decreasing m is similar to that in the quasi-species model
in that the adaptive events are delayed and the poly-
morphism is reduced. Since the dynamics are now sto-
chastic, the trajectories are different and an averaging is
required to deduce the effect on fitness.

At short times, the number of occupied genotypes
decreases with decreasing mutation probability. At late
times, however, the population can be associated with
a single sequence for large m also due to a reduction in
Q(W ). In Figure 6, top, the left-hand side of (18) is �2,
and correspondingly several genotypes coexist at early
times. For LN m>1, as in Figure 6, bottom, the popula-
tion shifts as a whole by one Hamming distance. Since
the mutation probability is small, to a first approxima-
tion, the population is likely to move only by one step
and the hops to larger distances can be neglected. Thus,
the population keeps moving one step uphill on the
rugged landscape until it encounters a local peak where-
upon this adaptive walk stops. The typical length of this

Figure 5.—Stochastic trajectories for L ¼ 15, N ¼ 210, m ¼ 10�4 with Nm � 0.10 and LNm � 1.54. The population passes through
different routes in each case right from the beginning and at short times, several mutants at constant Hamming distance are
produced simultaneously. Only the mutants that achieve a fraction $0.005 are shown in the plot. (Top) All the mutants shown
belong to the same lineage; (center and bottom) while a fit mutant is on its way to fixation, a split in the lineage produced an even
better mutant, thus bypassing the former one.
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walk is ln L � 3 for L ¼ 15 (Flyvbjerg and Lautrup

1992; Kauffman 1993). For m ¼ 10�7 in Figure 6,
bottom, the population reaches the sequence with rank
2947, which is a local peak. The time to escape this
sequence to a fitter one in the shell at Hamming
distance 2 is of order (LNm2)�1 (as discussed above),
which for our choice of parameters requires �1010 time
steps. For small N and m that we consider here, it may be
possible for a valley mutant to get fixed before the next
local peak does. This requires that the time to fix a valley
mutant is smaller than the time �(Nm)�1 to produce its
one-mutant neighbor with fitness Wloc,f (Carter and
Wagner 2002; Nowak et al. 2004). The valley mutant
fixation time is exponentially large in N if the mutant
fitness Wmut>Wloc;i, while it is of order N for the near
neutral case. Clearly, the above requirement can be met
only when the population escapes through a ‘‘shallow’’
valley, which is a rather unlikely scenario in a rugged
landscape.

Before the population gets trapped at a local peak,
the dynamics can be described by the mutational
landscape model (Gillespie 1984), which applies to a

genetically homogeneous population undergoing ben-
eficial mutation with a very low probability. As pointed
out in Orr (2002), the behavior of the population
undergoing an adaptive walk is neither deterministic
nor completely random in that each (better) mutant
would be equally likely to get fixed. In fact, each one-
mutant neighbor better than the currently occupied
one has a probability to get fixed given by

Pfixðs jsð0ÞÞ ¼
Pðs jsð0ÞÞP
s9 Pðs9 jsð0ÞÞ

; ð19Þ

where the sum is over the fitter nearest neighbors of s(0),
and the unnormalized fixation probability is given by

Pðs jsð0ÞÞ ¼ sðs; sð0ÞÞ
1 1 sðs; sð0ÞÞ

¼ 1�W ðsð0ÞÞ
W ðsÞ ð20Þ

for large N (Durrett 2002). In Figure 6, bottom, the
probability for the sequence ranked 25,483 to get fixed
is�0.049, which is almost half of the fixation probability
�0.095 of the best available sequence with rank 4688.

Figure 6.—Population evolution when LN m>1 for L ¼ 15, N ¼ 210 with m ¼ 10�5, 10�6, and 10�7 (top to bottom). The mutants
with Xrank(s) $ 0.005 are shown.
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DISCUSSION

In this article, we posed the question under what
conditions biological evolution is predictable. To an-
swer this, we studied the dynamics of a finite population
N within a mutation–selection model defined on the
space of binary genotype sequences of length L. This
work thus considers L-loci models, unlike that of
Rouzine et al. (2001), which focuses on the one-locus
problem. Our simulations also differ from those of
Wahl and Krakauer (2000), where the dynamics are
described by the quasi-species Equation 1 as long as
the population fraction X(s, t) exceeds 1/N and if the
fraction falls below this cutoff, an individual is added
to sequence s with a certain probability. We have instead
simulated the full stochastic process defined by Wright–
Fisher dynamics, which allows us to track the exact evolu-
tionary path of any mutant. The fitness landscape under
consideration is highly epistatic with many local optima.

We classified the various evolutionary regimes using
a parameter deff defined in (6) that has been obtained
under the assumption of strong selection. Usually the
boundary between deterministic and stochastic evolu-
tion is defined by the product Nm ( Johnson et al. 1995;
Wahl and Krakauer 2000; Rouzine et al. 2001); as
most of these theories are based on one-locus models
( Johnson et al. 1995; Rouzine et al. 2001), the descrip-
tion in terms of Nm suffices. We are instead dealing
with the whole sequence space in which mutations can
occur to a distance greater than unity depending on
the population size N and mutation probability m. This
requires a description in terms of the distance deff

that measures the typical distance to which the mutants
can spread. The boundary Nm ¼ 1 is included in our
description as this corresponds to deff ¼ 1. However, in
contrast to the product Nm, the logarithmic depen-
dence of (6) implies that moderate changes in deff

require enormous changes of N or m.
Our conclusions summarized in Table 1 fall into

three broad categories. The infinite-population case
with deff ¼ L is described by the deterministic quasi-
species model (Eigen 1971). Given the fitness land-
scape and the starting point, one can predict the path
taken by the initially unfit population to a peak in the
landscape. For finite populations with deff *1, although
the long time course is determined by stochastically
occurring rare mutations, it is possible to predict the

trajectory until a time T3 (Equation 17) that increases
with L and N, using the deterministic prescription locally.
We emphasize that the dynamics described by the local
quasi-species theory that apply to shells of size deff

centered about the current s* are different from those
of the quasi-species theory applied to the Hamming
space restricted to the shells up to the one in which
the local peak is located. This is simply because the ini-
tial population md at the local peak in question can be
,1/N. The intuitive picture provided by the local quasi-
species theory is in fact equivalent to the description
in Wahl and Krakauer (2000), where quasi-species
is applied to full space provided the lower cutoff 1/N
is imposed. The viewpoint that quasi-species dynamics
can be useful in understanding the behavior of finite
populations has been expressed by other authors also
(see, for example, Wilke 2005).

The local quasi-species description breaks down
when the population fails to find a genotype better
than the currently occupied one within distance deff.
Then rare mutations (of the order mdeff 1 1) that allow
the population to access a distance .deff play an impor-
tant role. On rugged landscapes, the population can
escape this situation either by double mutations (for
Nm� 1) or by tunneling through the low-fitness mutants
(Iwasa et al. 2004; Weinreich and Chao 2005). Large
populations are able to cross a fitness valley much
more rapidly than expected on the basis of the adaptive
walk picture, in which the fixation of a deleterious
mutation is exponentially unlikely (van Nimwegen and
Crutchfield 2000; Gavrilets 2004; Weinreich and
Chao 2005). The reason is that in a large population the
less-fit genotypes connecting the two fitness peaks are
always present in some number, enabling the popula-
tion to climb the new peak without ever in its entirety
residing in the valley. This is similar to the peak shift
mechanism found in the quasi-species model, where all
possible mutants are always present in the population
( Jain and Krug 2005, 2007).

To summarize, there is a crossover in the dynamics
when deff *1 from a deterministic quasi-species-type
dynamics to stochastic dynamics in which stochastic
escapes occur. For an RNA virus with typical population
size N � 106 and mutation probability m � 10�3 per base
per generation in a genome of �1000 bases (Lázaro

2007), these parameters give deff � 2, which suggests
that the local quasi-species dynamics operate in the

TABLE 1

Summary of regimes in evolution on rugged landscapes where deff ¼ ln N/jln mj

deff ¼ L 1 # deff , L deff , 1

Behavior Deterministic Crossover deterministic / stochastic Stochastic
Regime Quasi-species t , T3: local quasi-species LN m*1 : clonal interference

t . T3: valley crossing or hopping LNm , 1: adaptive walk
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finite viral populations for short times. This scenario is
expected to hold good for human immunodeficiency
virus also for which the product Nm � 1 (Rouzine and
Coffin 1999).

For Nm , 1, the dynamics are stochastic right from
the start. The long-time dynamics are expected to be
qualitatively similar to those discussed above. But the
short-time dynamics differ considerably and depend
on the number of one-mutant neighbors. While many
analytical results are available for the adaptive walk
limit (Gillespie 1984; Kauffman 1993), the parameter
regime when NLm is not too small on epistatic land-
scapes requires further attention. In experiments on
Escherichia coli that has L � 106, m � 10�10, and typical
colony sizes of order 106, N m>1 but LN m?1, which
hints at the stochastic nature of the bacterial evolution.
This behavior has been seen in the experiments by the
Lenski group in which the fitness of bacterial popula-
tions evolving under identical conditions diverged in
time (Korona et al. 1994; Lenski and Travisano 1994).

In this article, we have provided a unified picture of
the nature of the evolutionary process. As our models
are defined on sequence space, this constitutes a step
toward realistic modeling of the biological evolution
occurring in the genotypic space. Inclusion of other
relevant factors such as recombination could be the
next step in our understanding of genetic evolution.
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