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ABSTRACT

We describe a model-based method for using multilocus sequence data to infer the clonal relationships of
bacteria and the chromosomal position of homologous recombination events that disrupt a clonal pattern
of inheritance. The key assumption of our model is that recombination events introduce a constant rate of
substitutions to a contiguous region of sequence. The method is applicable both to multilocus sequence
typing (MLST) data from a few loci and to alignments of multiple bacterial genomes. It can be used to
decide whether a subset of isolates share common ancestry, to estimate the age of the common ancestor, and
hence to address a variety of epidemiological and ecological questions that hinge on the pattern of bacterial
spread. It should also be useful in associating particular genetic events with the changes in phenotype that
they cause. We show that the model outperforms existing methods of subdividing recombinogenic bacteria
using MLST data and provide examples from Salmonella and Bacillus. The software used in this article,
ClonalFrame, is available from http://bacteria.stats.ox.ac.uk/.

BACTERIA reproduce clonally but their genomes
evolve by a variety of mechanisms, including point

mutation, genome rearrangement, deletion, duplica-
tion, bacteriophage lysogeny, gene degradation, trans-
position, slippage mutation in DNA sequence repeats,
and homologous and nonhomologous recombination
(Maynard Smith et al. 1993; Feil et al. 1999, 2000;
Lawrence and Hendrickson 2003). Recombination
can occur when bacterial DNA enters the host cell via
conjugation (which requires cell-to-cell contact between
a donor and a receiver), transformation (uptake of
naked DNA that remains from the lysis of another cell),
or transduction (which involves packing of host DNA in a
phage and release in the receiver).

The variety of evolutionary mechanisms by which
bacteria evolve can pose problems when attempting to
infer relationships between strains. Clonal relationships
can be represented by a genealogy, which is a tree where
each leaf is a member of the sample and each internal
node is the most recent common ancestor of the de-
scendant strains. Each node is associated with a time
before the present when that ancestor divided. Many
methods for inferring these relationships rely on DNA
sequence differences. Point mutations happen approx-
imately randomly and independently and thus, in the
absence of other processes, would allow accurate recon-
struction of clonal relationships using standard phylo-
genetic methods (Felsenstein 1989; Swofford 2002;
Drummond and Rambaut 2003). However, even in
‘‘housekeeping genes’’ that are required for metabolic

function, so that gross changes in sequence such as
insertions or deletions are likely to be lethal and there-
fore rarely observed, homologous recombination with
other bacteria from the same population can change
several nucleotides at once (Milkman and Crawford

1983). These events are overweighted by nucleotide-
based phylogenetic methods in comparison to point mu-
tations, which can lead to inaccurate genealogies being
inferred (Schierup and Hein 2000).

The necessity to account for recombination as well as
point mutation in genealogical inference has led to the
development of sequencing strategies such as multi-
locus sequence typing (MLST), which involves sequenc-
ing a handful (typically seven) of fragments from
housekeeping genes that are each sufficiently far apart
on the chromosome of the type strain that it would be
unlikely for more than one of them to be affected by a
single recombination event (Maiden et al. 1998). It has
also led to the use of allele designations for each unique
sequence at each locus rather than the sequence itself.
Alleles are considered to be equally distinct from each
other whether they differ at one nucleotide position or
at many with the consequence that recombination and
mutation events are given similar weight in analysis. A
variety of methods have been adapted, and new ones
such as BURST have been developed, to analyze genetic
relationships using allele designations (Jolley et al.
2001; Feil et al. 2004; Spratt et al. 2004).

Allele-based methods have important limitations. Al-
leles that differ at one or two nucleotides can provide
evidence for a higher degree of relatedness for the
strains that carry them than alleles that differ by many.
For example, if recombination were rare, and a strain
differed from a second one by one or two nucleotide
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differences at six of seven loci and by many nucleotides
at the seventh one then the two strains would be clas-
sified as unrelated by allele-based methods despite the
clear evidence for a relatively recent common ancestor
provided by the six similar loci. Additionally, variation in
relatedness within each sequence fragment is ignored. A
half fragment of identical sequence provides evidence
of relatedness even if the other half contains several
nucleotide differences because this spatial pattern will
most likely have been caused by a homologous recom-
bination event whose boundary occurred at the middle
of the fragment. Allele-based methods are thus more
suited to exploratory data analysis than to fine statistical
inference. Ultimately, we are interested in patterns of
relatedness for entire bacterial genomes and therefore
would like to dispense with arbitrary boundaries be-
tween loci and instead infer the beginning and end
points of each homologous recombination event.

Here we describe a statistical approach for inferring
bacterial clonal relationships on the basis of DNA se-
quences that accounts for both point mutation and
homologous recombination. In bacteria, each recom-
bination event affects a contiguous region of sequence,
but leaves the remainder of the circular chromosome
unchanged. In the language of eukaryotic geneticists,
we therefore need to model gene conversion-like events,
but not crossovers. Our method estimates the extent
of the clonal frame for each branch of the genealogy,
which is the subset of the genome that has not under-
gone recombination (Milkman and Bridges 1990). Our
approach is model based in the sense that it attempts
to infer the parameters and events in the evolutionary
process that led to the observed pattern of DNA se-
quence variation. However, our method does not at-
tempt to model the origin of the DNA imported in
homologous recombination events, instead assuming
that imported stretches differ from the sequence they
replace at a constant proportion of nucleotides, n. n is
estimated from the data but does not have a straight-
forward biological interpretation.

We do not attempt to model the origin of imports
for two reasons. First, a full description of the ancestral
relationships of all the DNA in a sample, the ancestral
recombination graph (ARG), is extremely complex
(Griffiths and Marjoram 1996). This complexity
makes it computationally challenging to perform in-
ference of the ARG even for modestly sized data sets
in which the sample can be assumed to come from a
closed, homogenous population in which recombina-
tion takes place at a uniform rate between all pairs of
strains (McVean and Cardin 2005). Second, bacteria
are often more promiscuous than eukaryotes, occasion-
ally importing DNA from different species (e.g., Dingle

et al. 2005) or even genera (Ochman et al. 2000), making
the standard assumption of a closed, homogeneous pop-
ulation particularly unrealistic. Ignoring interpopula-
tion events is problematic even if they are rare because

these events can be responsible for a large number
of nucleotide differences. Our method avoids both of
these problems. However, because it does not look for
potential sources of descent for each stretch of DNA,
it tends to underestimate the number of recombina-
tion events that have taken place (see results below).
Nevertheless, it is still able to infer genealogies more
accurately than existing methods, with an algorithm
that is fast enough to be applied to multiple bacterial
genomes.

We perform inference in a Bayesian framework, which
means that we need to specify a prior for the gene-
alogical process that defines the probability of any gene-
alogy before observing the data. We assume a standard
neutral coalescent model (Kingman 1982), which is
equivalent to assuming that the bacteria in the sample
come from a constant-sized population in which each
bacterium is equally likely to reproduce, irrespective of
its previous history. More details about the coalescent
can be found, for example, in Donnelly and Tavaré

(1995). A coalescent prior has the advantage of tracta-
bility and simplicity. However, it has been shown that for
many bacterial populations, there is an excess of isolates
with identical allelic profiles, in comparison to neutral
expectations (Fraser et al. 2005; Jolley et al. 2005).
Since bacteria do not disperse at each replication, dif-
ferent growth conditions in different physical locations
could introduce local correlations in the genealogy. The
geographical and temporal extent of these correlations
has not been established for any bacterial species and
other factors such as selection and demography can also
cause deviations from neutral expectation. These devia-
tions might introduce biases in the genealogy produced
by our method. Fortunately new genotyping technolo-
gies will allow population variation to be surveyed at a
genomic scale. Such data have the potential to provide a
great deal of information on the shape of the genealogy,
which reduces the importance of the prior and will
ultimately reveal the causes of the deviations from
neutrality that have been observed.

MODEL AND METHODS

We now provide a more detailed description of our
modeling assumptions and the algorithms used to per-
form inference. The mathematical symbols used and
their meanings are summarized in Table 1.

Model: We perform statistical inference assuming
that the clonal genealogy and the sequences on each
node have been generated by the probabilistic model
described in this section and summarized in Figure 1.
Let t1, . . . , tN�1 specify the times before the present at
which branching takes place in the genealogy, with t1 ,

t2 , . . . , tN�1 and let t0 ¼ 0. The assumption of a
coalescent prior means that for all i 2 [1, . . . , N� 1], the
difference ti � ti�1 is exponentially distributed with
mean 2/(N� i)(N� i 1 1). The prior probability for the
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entire genealogy, T , is equal to the product of probabil-
ity of all N � 1 branching events,

PðT Þ ¼
YN�1

i¼1

exp � N 1 1� i
2

� �
ðti � ti�1Þ

� �
: ð1Þ

Each sequence is assumed to consist of b blocks of size
(s1, . . . , sb), with

P
i2½1; ... ;b� si ¼ L. Each site of the se-

quence at the topmost node of the tree is equally likely
to be one of the four bases A, C, G, and T. The sequence
associated with each daughter node is generated by the
combined effects of recombination and mutation. Re-

combination happens between each node as a Poisson
process of rate R/2, so that for a branch of length l, the
total number of recombination events is Poisson dis-
tributed with mean Rl/2. Each recombination event
affects a contiguous stretch of the sequence of the
daughter node. Only a small proportion of the chro-
mosome may be available in the alignment and we
model only events that affect this subset while assuming
that events occur uniformly on the whole chromosome.
To do this, we make the simplifying assumptions that
blocks are distant enough from each other that each
recombination event affects one and only one block and
that recombination events are equally likely to start at
any site on the genome. The total length of a recombi-
nation event is assumed to be geometrically distributed
with mean d. For any given recombination event that
affects a given block, the probability that it starts at any
nucleotide in the block except for the first is identical
and is denoted u. The probability that the observed be-
ginning of the event is at the first nucleotide of a block
is higher and equal to

u9 ¼
X‘

i¼0

uP ðd . iÞwith d � Geomðd�1Þ ð2Þ

¼ u
X‘

i¼0

ð1� d�1Þi ¼ ud: ð3Þ

Summing over all possible sites, we get

u ¼ 1

bd 1 L � b
and u9 ¼ d

bd 1 L � b
: ð4Þ

TABLE 1

Symbols used

Symbol Description

Data
A Aligned sequence data
N Number of sequences
L Total length of the sequences
b Number of blocks in the alignment
{si}i¼1,. . .,b Size of the ith block

Model parameters
T Genealogy
R Locations of recombination events associated with the branches of the genealogy
C Ancestral sequences for the internal nodes of the genealogy
M Model parameters: n, R, d, u

u/2 Rate of mutation on the branches of the genealogy
R/2 Rate of recombination on the branches of the genealogy
n Rate of nucleotide differences in the recombined stretches
d Mean of the exponential distribution modeling the length of recombinant segments
{ti}i¼1,. . .,N�1 Age of the ith coalescent event (looking back in time)
u Probability that a specific recombination event starts at any given site within a block
u9 Probability that a specific recombination event starts at the beginning of a given block
a(l) Parameter of the exponential distribution modeling the length of imported regions for a branch of length l
b(l) Parameter of the exponential distribution modeling the length of nonimported regions for a branch of length l

Figure 1.—Illustration of the model. Two blocks (horizon-
tal lines) evolve by point mutation (black crosses) and recom-
bination from an unmodeled origin (colored arrows, inducing
the substitutions marked by colored crosses).A ¼ fa1; a2; a3; a4g
corresponds to the observed sequences and C ¼ fc1; c2; c3g cor-
responds to the sequences at internal nodes.
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Within the recombined regions (which are affected
by at least one recombination), the daughter sequence
is altered with constant rate n. Within the nonrecom-
bined regions the daughter sequence at each nucleo-
tide is altered with probability ul/2L on the branches of
the genealogy. Altered nucleotides are replaced accord-
ing to the model of Jukes and Cantor (1969), where
all substitutions are equally likely.

Inference: Given the data A, which consist of the N
sequences at the leaves of the genealogy, we wish to infer
the genealogy, T ; the sequences at each of the internal
nodes, C; the position of the recombined regions in
each of the branches of the genealogy, R; and the four
model parametersM¼ ðn;R ; d; uÞ. In formal terms, we
wish to calculate the posterior of all these terms given
the data, PðT ;M;R; C jAÞ. While it is not possible to
compute this distribution exactly, it is possible to use
Markov chain Monte Carlo (MCMC) to obtain an ap-
proximate sample (Gilks et al. 1998). See, for example,
Pritchard et al. (2000) for another application of MCMC
to population genetics inference.

MCMC involves updating subsets of the parameters,
conditional on the values of the others. To do so, we
make use of the following decomposition:

PðT ;M;R; C jAÞ} PðT ;M;R; C;AÞ
¼ PðA; C jR;M; T ÞPðR j T ;MÞPðT ÞPðMÞ: ð5Þ

PðT Þ is the prior probability of the genealogy, which
is independent of other parameters and given by Equa-
tion 1. PðMÞ is the prior probability of the model
parameters that are detailed in appendix c. PðR j T ;MÞ
is the prior probability of the locations of the recom-
bined regions for each branch of the genealogy. The
locations of these regions are independent from branch
to branch and can be calculated block-by-block using a
Markovian approximation detailed in appendix a, where
the lengths of recombined and nonrecombined regions
are assumed to be exponentially distributed with pa-
rameters a(l) and b(l), respectively. Each branch has
an associated map of imported regions, r, where ri,j ¼ 1
when the jth position of the ith block of r is imported
and ri,j ¼ 0 otherwise. The prior distribution of r for a
branch of length l is given by

PðrÞ ¼
Y

i2½1;b�

 
Pðri;1Þ

Y
j2½1;si�1�

Pðri;j11 j ri;jÞ
!

ð6Þ

¼ bðlÞ
bðlÞ1 aðlÞ

� �x aðlÞ
bðlÞ1 aðlÞ

� �b�x

3 ð1� bðlÞÞL�s�z bðlÞy�xð1� aðlÞÞs�yaðlÞz�b1x ;

ð7Þ

where x ¼
P

i2½1;b� ri;1 is the number of blocks starting
in imported state, y is the total number of imported

regions of r, z is the total number of nonimported
regions of r, and s ¼

P
i2½1;b�

P
j2½1;si � ri;j .

PðA; C jR;M; T Þ is proportional to the product for
each branch of T of the probability to obtain the se-
quence at the bottom of the branch given the sequence
at the top of the branch and the location of imports for
the branch. For a branch a of length l this is equal to

PðaÞ ¼ ð1� ul=2LÞxðul=6LÞyð1� nÞzðn=3ÞL�x�y�z; ð8Þ

where x is the number of nonidentical sites in nonim-
ported regions, y the number of identical sites in non-
imported regions, z the number of nonidentical sites
in imported regions, and L � x � y � z the number of
identical sites in imported regions.

We are now in a position to outline updates for the
elements of C,R, T , andM. The model parametersM
and the ages of the nodes of the genealogy are updated
using the Metropolis–Hastings algorithm as described
in appendix c. We also designed an additional update to
deal with missing data presented in appendix d.

The ancestral sequences and maps of imports are
updated node-by-node. We outline the update for a
nonroot internal node n of the tree T . A similar update
is used for the root. The locations of the recombined
regions are highly correlated with the ancestral sequen-
ces of the nodes, so to achieve better mixing of the
Markov chain we update the location of recombination
events of the branch above and the two branches below
each internal node simultaneously with the ancestral se-
quence associated to n. This is done using the forward–
backward algorithm as detailed in appendix b.

The branching of the genealogy is updated by a
version of the branch-swapping algorithm of Wilson

and Balding (1998). A nonroot internal node x is
chosen uniformly as well as a node y and we propose to
reconnect x on the branch above y. y is chosen accord-
ing to the procedure adopted by Wilson and Balding

(1998). The age of the newly created node n is drawn
uniformly from [max(tx, ty), tz] if y has a father z and
from [ty, ty 1 1] if y is the root. To calculate the ancestral
sequence and location of imports for the new node n,
we apply the forward–backward algorithm described
in appendix b to the node n. The move is accepted ac-
cording to the Metropolis–Hastings acceptance ratio

a ¼ min 1;
PðT 9; C9;R9 j A;MÞ
PðT ; C;R jA;MÞ

�

3
Q ðT ; C;R j T 9; C9;R9;A;MÞ
Q ðT 9; C9;R9 j T ; C;R;A;MÞ

�
; ð9Þ

where the ratio of posterior probabilities can be calcu-
lated using Equation 5 and Q ðT 9; C9;R9 j T ; C;R;A;MÞ
is the probability to propose the new parameters T 9;
C9; R9 and is given by

Q ðT 9; C9;R9 j T ; C;R;A;MÞ ¼ Q ðHMMÞQ ðy j xÞQ ðageÞ;
ð10Þ

1254 X. Didelot and D. Falush



where Q(y j x) is the probability to propose y given x
as described by Wilson and Balding (1998); Q(age) is
the probability that the age of n was proposed, which
is equal to 1 if y is the root and to 1/(tz � max(tx, ty))
otherwise; and Q(HMM) (hidden Markov model, HMM)
is the probability that the forward–backward algorithm
returned the given ancestral sequence for n and loca-
tion of imports for n and its children x and y.

In all of the examples shown, each iteration of the
MCMC algorithm updates the ancestral sequence and
associated location of imported regions for each in-
ternal node once as described in appendix b. Updates
are also performed for the age of each node; for the
values u, R, n, and d; and for the nucleotide sequence
of any missing data. A single attempt is also made to
change the topology T using the branch-swapping al-
gorithm. However, experimentation has shown that
the mixing is improved by attempting several topology
updates per iteration, especially for large data sets.
Convergence and mixing properties were assessed by
monitoring parameters and comparing runs with dif-
ferent starting conditions (Gelman and Rubin 1992).

APPLICATIONS TO DATA

Detection of imports from an external origin: The
simplest use of our method is to detect genetic imports
affecting closely related strains, from sources that are
external to the data set. Our model is particularly well
suited to this scenario because of the assumption that
all recombination events introduce novel polymor-
phisms. Even if this assumption that imported stretches
contain a constant rate n of new polymorphisms is
not met exactly, it should still be relatively easy for the
model to distinguish imports from point mutations,
which will be scattered and rare.

This use is illustrated in Figure 2 for four genomes of
Salmonella enterica, serovar Typhimurium [LT2 is pub-
lished in McClelland et al. 2001; DT2, DT104, and
SL1344 are unpublished data from the Sanger Institute
(J. Parkhill and N. Thomson)]. An alignment of the
four genomes was built using Mauve (Darling et al.
2004): 57 sequence stretches were found that are locally
colinear in all four genomes, making up an alignment of
total length L¼ 4,957,309 bp. Each of these was input as
a block in our program. Our program was run for 10,000
iterations (including 5000 burn-in iterations), which
required 72 hr on a desktop computer. Results were
highly replicable between different runs.

Our method (Figure 2D) produces a tree with shorter
branches than those of neighbor joining (Figure 2A,
with root chosen arbitrarily), UPGMA (Figure 2B), or
BEAST (Figure 2C) (Drummond and Rambaut 2003).
One reason is that our method identified 50 imported
regions with an estimated mean length d of 800 bp
that have introduced a total of 872 substitutions. These
events (Figure 2E) are in most cases visually obvious,

introducing a much higher number of substitutions
than observed in the clonal frame (Figure 2F). n, the rate
of differences introduced by recombination is estimated
between 1.2 and 1.4%. This value is close to the average
number of differences between strains of S. enterica
based on MLST data (Falush et al. 2006) and much
higher than the maximum rate of mutations inferred
in the clonal frame of any branch of the genealogy, which
is 0.01%, implying that the method should success-
fully identify imports from unrelated S. enterica as long
as they are .200–300 bp in length.

Our analysis allows us to make a detailed reconstruc-
tion of the events involved in the divergence of these
four strains. First, it shows that LT2 and DT104 are the
most closely related, sharing 141 point mutations and
four imports. Second, the genealogy is star-like in shape,
splitting into four lineages soon after they all shared a
common ancestor. This pattern is unlikely under the
coalescent prior. Specifically, the ratio of the last and
first coalescence times in the posterior is higher than
that in a random coalescent genealogy 98% of the time.
Our program inferred this pattern because most of
the polymorphic sites in the data set are unique to one
strain. This pattern is consistent with a rapid clonal
expansion of the most recent common ancestor of these
Typhimurium, which perhaps coincided with adapta-
tion to its current niche in farm animals. Third, there is
clear evidence for a higher number of mutations in the
DT2 lineage, with SL1344 also evolving more slowly than
the other strains, since the observed number of muta-
tions in both lineages is significantly different from what
is expected given a constant mutation rate. The elevated
rate of change is not due to relaxed selection, since
the ratio of synonymous to nonsynonymous mutations
does not differ significantly between lineages (data not
shown). Thus, the mutation rate has changed at least
twice during a relatively short evolutionary history.

Our algorithm was, however, unable to infer which
pair of LT2, DT104, and the ancestor of DT2 and
SL1344 is most closely related. This is indicated by a
three-way branching at the top of the consensus tree
shown in Figure 2D, which means that there is not a pair
of strains that is most closely related in 50% of the pos-
terior sample of genealogies produced by the MCMC.
The inability to infer this branching pattern despite
having data from the entire genome is partly due to the
star-shaped genealogy but also to the intrinsic difficulty
of resolving the location and sequence of the root of
a tree.

Application to simulated data from a closed popula-
tion: A more ambitious use of the method is to attempt
to define the clonal relationships and imports for a
sample from an entire bacterial species. The assump-
tions of the model fit less well since in many instances
recombination will reassort existing polymorphisms
rather than introduce novel ones. In addition, the deeper
branches in the genealogy might be difficult or impossible
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to resolve accurately, especially if there has been sub-
stantial recombination so that most of the genome of
each strain has been exchanged since they shared a
common ancestor. Finally, imports from closely related
strains might be difficult to distinguish from mutation,
particularly for the longer branches, so that the value
of n becomes more important in the inference.

Analysis of simulated data sets shows that despite
these potential difficulties our model provides useful
results and outperforms existing methods of subdivid-

ing bacterial populations. To evaluate the performance
of our algorithm we simulated ARGs using the algorithm
described in Hudson (1983) but with gene conversion
rather than crossing over. The simulation parameters
were chosen to approximately mimic MLST data, with
seven unlinked fragments of 500 bp each for N ¼ 100
isolates and an average tract length of d ¼ 1000 (Tables 2
and 3). For each data set, 100,000 iterations of our pro-
gram were performed (including 50,000 burn-in inter-
ations), which required �12 hr on a desktop computer.

Figure 2.—Application to whole genomes of Salmonella enterica serovar Typhimurium. (A) A neighbor-joining tree; (B) a UPGMA
tree; (C) a majority-rule consensus tree based on the output of BEAST (Drummond and Rambaut 2003); (D) a majority-rule
consensus tree based on the posterior distribution of genealogies inferred by our method. Black numbers above each branch
indicate observed/expected numbers of mutations, while red numbers below the branch indicate the equivalent values for re-
combination events followed by the total number of substitutions caused. The scale is the same for all three trees and is propor-
tional to the expected number of mutations in each branch in D given the inferred values of u and T . (E) Highlights the events on
each branch of D. Each row represents 300,000 bp, with recombined regions in red and point mutations in green. (F) Three
regions containing imports, with crosses indicating substitutions and the red line indicating probability for each nucleotide to
have recombined. The location of the beginning and end of each region is indicated in kilobase pairs.
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Instead of checking convergence for each run we assess
the validity of the results by comparison with the true
history.

Figure 3 compares our method and eBURST (Feil

et al. 2004), an implementation of the BURST algorithm,
for one example with u ¼ 0.2 per site, and r ¼ 5 for the
entire data set. In this example, it is clearly not going
to be possible to infer every branch of the genealogy
let alone to accurately estimate each branch length
(both shown in Figure 3A) because the 100 isolates have
only 27 sequence types between them. We handle the
statistical uncertainty by retaining only branches that are
supported in a majority-rule consensus tree (Bryant

1997) on the basis of the posterior probability for the
genealogy and using the posterior mean for the length
of each supported branch (Figure 3B). Our algorithm
both correctly captures the overall structure of the tree
and correctly infers the sequence types (STs) of most
internal nodes (shown in italics on each branch, with x
denoting an ST that is not found in extant strains). One

of the few errors is that the strain with ST 20 is not cor-
rectly grouped with STs 7 and 4 on the genealogy in-
ferred by our method. An explanation can be found by
looking at the sequence types of the ancestral nodes of
the real topology: ST 20 was in fact the type of the most
recent common ancestor of more than half of the
sample. This type disappeared by mutation and recom-
bination, but reappeared later once due to recombina-
tion. Our program has correctly inferred that the type of
the most recent common ancestor (MRCA) of STs 1 and
3 was 20 and therefore clustered the observed isolate
of type 20 at that point in the tree, which is the most
parsimonious explanation for the observed data but
not the correct one in this case.

A UPGMA tree (Figure 3C) correctly captures most of
the branch structure of the tree but gets the branching
order of the deepest clades wrong (i.e., in the true tree
ST 3 is more closely related to ST 2 than to ST 11 while
the UPGMA tree indicates the opposite). Another issue
is that many branch lengths are exaggerated (e.g., ST 21).

TABLE 2

Comparison of the efficiency and accuracy of UPGMA using site-by-site and gene-by-gene bootstrapping, BURST,
and our method on simulated data

Parameters UPGMAa UPGMAb BURST Our program

Simulation no. u/L (3100) r Efficiency Accuracy Efficiency Accuracy Efficiency Accuracy Efficiency Accuracy

1 0.2 0 0.16 0.94 0.19 0.90 0.11 0.83 0.17 0.95
2 1.0 0 0.42 0.91 0.44 0.91 0.20 0.84 0.42 0.94
3 5.0 0 0.57 0.85 0.57 0.82 0.15 0.86 0.75 0.94
4 0.2 1 0.14 1.00 0.14 1.00 0.11 0.84 0.19 0.94
5 1.0 1 0.37 0.86 0.38 0.84 0.19 0.82 0.43 0.95
6 5.0 1 0.65 0.85 0.67 0.87 0.15 0.85 0.73 0.93
7 0.2 5 0.14 0.87 0.15 0.88 0.12 0.86 0.19 0.86
8 1.0 5 0.35 0.79 0.38 0.76 0.18 0.80 0.40 0.86
9 5.0 5 0.57 0.74 0.58 0.77 0.14 0.88 0.70 0.90
10 0.2 10 0.21 0.67 0.17 0.85 0.14 0.80 0.19 0.81
11 1.0 10 0.33 0.66 0.34 0.73 0.18 0.80 0.39 0.84
12 5.0 10 0.70 0.85 0.70 0.87 0.16 0.91 0.71 0.89

a Site-by-site bootstrapping.
b Gene-by-gene bootstrapping.

TABLE 3

Comparison of the efficiency and accuracy of our method for different sizes of simulated data

7 3 500 bp 14 3 500 bp

Simulation no. u/L (3100) r Efficiency Accuracy u/L (3100) r Efficiency Accuracy

1 0.2 0 0.17 0.95 0.2 0 0.28 0.96
2 1.0 0 0.42 0.94 1.0 0 0.58 0.94
3 5.0 0 0.75 0.94 5.0 0 0.84 0.96
4 0.2 1 0.19 0.94 0.2 2 0.23 0.96
5 1.0 1 0.43 0.95 1.0 2 0.54 0.96
6 5.0 1 0.73 0.93 5.0 2 0.84 0.94
7 0.2 5 0.19 0.86 0.2 10 0.27 0.86
8 1.0 5 0.40 0.86 1.0 10 0.53 0.90
9 5.0 5 0.70 0.90 5.0 10 0.79 0.91
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Figure 3.—Application to simulated MLST data. (A) The true clonal genealogy; (B) the genealogy inferred by our program;
(C) a UPGMA tree. The genealogies were drawn using the radial tree option of Mega (Kumar et al. 2001) and share a common
scale. STs of internal nodes are indicated in italics in A and B, with x indicating an ST that does not occur in the sample. STs are
indicated in regular type, with the size of the font approximately proportional to the number of strains represented. (D) The
output of eBURST; (E) a network representation of our output using Graphviz (Gansner and North 2000). The network shows
inferred ancestral nodes in black and the location of isolates in red, with each red line indicating a single isolate. Each isolate has
the genotype of the node it is connected to, unless otherwise indicated. Nodes whose ST is not found among isolates are shown as
an empty circle. The ancestral node of each network component is indicated by a thicker circle.

1258 X. Didelot and D. Falush



Indeed the correlation coefficient between the time of
divergence between pairs of strains and their number of
nucleotide differences on which UPGMA is based is 0.91,
whereas the times inferred by our method have a correla-
tion coefficient of 0.97 with the true values. The UPGMA
tree also does not make it explicit which STs constitute
monophyletic clusters (e.g., ST 11 does not since it occurs
in more than one place in the true tree).

eBURST (Figure 3D) correctly identifies many of the
subdivisions at the tips of the tree. However, it fails to
identify any of the deep nodes in the tree, for example,
failing to indicate that ST 11 and ST 14 are related to
each other, and also fails to find close relatives for ST 25
or ST 26. Moreover, although it sometimes assigns an-
cestral sequences to particular lineages these assign-
ments are not particularly accurate (for example, ST 23
is not ancestral to ST 3). A similar network representa-
tion of the consensus genealogy (without estimated
branch lengths) obtained using our method is shown in
Figure 3E. This representation, which should be partic-
ularly useful for large data sets, makes it explicit that
some STs (for example, ST 2) probably occur in more
than one location in the true genealogy, while others
probably form a single cluster (such as ST 17). Indeed
in this case, inspection of the true genealogy shows that
some ST 2 isolates are more closely related to ST 17
isolates than they are to some of the other ST 2’s.

More formally, two types of error can be identified for
the branching pattern. An error of type A happens, for
example, for STs 1, 9, and 12, where the clustering of
these three STs is correctly identified by our method,
but the details of how these three STs relate to each
other was not inferred. We call efficiency the ratio of
numbers of correctly inferred clusters and clusters pres-
ent in the data (this second number being always equal
to N � 1). An error of type B happens, for example, for
ST 20, which is not inferred to be a close relative of 4 as
it should be, causing the cluster containing STs 4 and 7
to be wrong. We call accuracy the proportion of inferred
clusters that are correct. For this example the efficiency
of our program is 18% and its accuracy is 90%. Exactly
the same method can be used to measure the perfor-
mance of BURST (which we reimplemented ourselves
for the purpose of comparison). We interpreted BURST
output as a genealogy analogous to ours. Specifically
we assume that only STs at the tips of each complex and
groups of STs that form a single clade radiating from
the ancestral ST are predicted to be monophyletic. Ac-
cording to these criteria, the efficiency of BURST is 13%
and its accuracy is 68%. The alternative assumption that
each ST constitutes a monophyletic lineage gives an in-
crease in efficiency, but at the expense of a large de-
crease in accuracy (data not shown).

We have performed simulations of 10 ARGs similar to
the one presented above for a range of parameter com-
binations (u, r), which shows that our algorithm pro-
vides accurate subdivisions and outperforms existing

methods (Table 2). BURST has consistent accuracy of
80–91% for all parameter combinations we explored
but never infers .20% of the nodes correctly, even when
there are a large number of mutations on the tree, so
that the data are potentially highly informative about
relationships between strains.

UPGMA trees can be bootstrapped either site-by-site
or gene-by-gene. The latter takes into account the pro-
perty that recombination can import an entire gene
that may look similar to the sequence of another strain.
Gene-by-gene bootstrapping performs more accurately
for high recombination rates but both methods gener-
ally underperform our program in both accuracy and
efficiency. The efficiency of our method is significantly
increased for all parameter combinations by doubling
the number of loci to 14, showing that additional se-
quencing is likely to be effective in providing additional
resolution (Table 3).

In general, the performance of our method increases
with u and decreases with r. For low values of u (sim-
ulations 1, 4, 7, and 10), the accuracy and efficiency of
our program is only slightly better than that of boot-
strapped UPGMA trees. However, for higher values of u

(simulations 3, 6, 9, and 12), our program outperforms
bootstrapped UPGMA trees both in accuracy and in
efficiency by up to 10% (simulations 3 and 9).

Our model can also be used to estimate model param-
eters (Table 4). It provides accurate and approximately
unbiased estimates of u and the size of imported chunks,
d. Estimates for the recombination rate r are poor when
r and u are low (simulations 1–7 and 10) but become
better for higher values of these two parameters (sim-
ulations 9 and 12).

Application to a Bacillus MLST data set: Finally,
we present a reanalysis of the Bacillus data set described
in Priest et al. (2004). We calculated a 95% majority-
rule consensus genealogy assuming no recombination
(Figure 4A) and estimating recombination parameters
and location of imports from the data (Figure 4B), on
the basis of 100,000 iterations including 50,000 burn-
in iterations, which required �6 hr on a desktop com-
puter. This consensus was highly replicable between
different runs of the algorithm. Figure 4D shows the
location of imports for each of the seven MLST loci
estimated for a selection of branches as indicated in
Figure 4B.

Our analysis shows that although many of the clades
can be correctly identified using phylogenetic methods,
ignoring recombination has important effects on the
inference. First, our analysis indicates that a majority of
the polymorphisms have been introduced by recombi-
nation, so that estimates of the time since divergence
between lineages would be substantially overestimated
by assuming a molecular clock calibrated using the mu-
tation rate. Second, the existence of some clades is ob-
scured by particular recombination events. For example,
ST 20 is closely related to STs 58, 10, and 43, but a single
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genetic import in the pycA gene in the common ances-
tor of the latter three STs (corresponding to event G
in Figure 4D) obscured this close relationship. Third,
statistical support for some subdivisions, such as many
of those within the Kurstaki clade, is overestimated.
Indeed, the topmost node in our genealogy, indicating
the relationships between Kurstaki, Cereus, and Others,
is not resolved, consistent with the general difficulty in
inferring deep branches when substantial recombina-
tion has taken place.

Our analysis confirms and refines the original con-
clusions of Priest et al. (2004), namely that some of the
named groupings of Bacillus do not correspond to mono-
phyletic groups, so that the taxonomy needs to be rede-
fined. Our method provides the most accurate basis to
date for redefining this taxonomy. The inferred value of
n is high with a 95% credibility region of 0.031–0.042
and some events have even higher values (e.g., event G
in Figure 4D introduces substitutions at a rate of 0.06).
Such events introduce a higher rate of polymorphism
than is available in the Bacillus population studied
(�2.5–3.0%), which means that they might come from
outside Bacillus. These imports have greatly increased
average branch lengths, accounting for the size differ-
ence between Figure 4A and 4B. Thus, standard meth-
ods of inference assuming a coalescent model with
within-population recombination would be particularly
inappropriate for this data set. The average tract length
of recombination chunks d is surprisingly small with a
95% credibility region of 193–435 bp; however, this low
value may in part be due to model misspecification and
the fact that the gene fragments of the Bacillus MLST
scheme are quite short (405 bp on average), making
inference of tract size more difficult.

Our method also produces estimates of the relative
frequency of recombination and mutation. However, the
limited information provided by short sequence frag-

ments and the wide variety of estimates obtained by
different methods suggest that these estimates should
also be treated with care. Two quite different measures
have been used: the ratio of probabilities that an in-
dividual nucleotide will be altered through recombina-
tion and point mutation, r/m, and the ratio of absolute
number of events r/u. For Neisseria meningitidis, three
quite different methods have been used to estimate r/m.
Our method, using the data set of Jolley et al. (2005),
which ran for 100,000 iterations including 50,000 of
burn in, gives 5–8; a population genetic method based
on the pattern of linkage disequilibrium within sequence
fragments (McVean et al. 2002) gives 6–16; and a method
based on the number of nucleotide changes within
single-locus variants of robustly assigned clonal found-
ers gives 80 (Feil et al. 1999, 2000, 2001). The three
published estimates of r/u are more consistent, each in-
cluding 1. These are our estimate (0.7–1.2), the estimate
of Jolley et al. (2005) (0.16–1.8), and that of Fraser

et al. (2005) based on the distribution of allele sharing
within a population (1.1). For Bacillus, 95% credibility
regions for r/m and r/u based on our method are 1.3–
2.8 and 0.2–0.5, respectively, showing that recombina-
tion is rare compared to the level observed in Neisseria
or in many other bacteria.

eBURST finds few clades in this example, reflecting
a paucity of single-locus variants, implying that the STs
are too distantly related to be clustered by this type of
method (Figure 4C). Our method finds many more sub-
divisions, which is analogous to the better performance
of our method for high values of u in the simulated data.
Specifically, eBURST has correctly grouped STs 25 and 8
together. Looking at the events on branches A and C on
our output indicates that the difference between these
two types is a single mutation on the glpF gene, making
them single-locus variants of each other. However,
eBURST does not see that ST 15 is also a close relative

TABLE 4

Parameter estimation on simulated data

Parameters u/L R d�1

Simulation no. u/L (3100) r Mean SD Right Mean SD Right Mean SD Right

1 0.2 0 0.17 0.05 10/10 0.03 0.06 0/10 0.014 0.018 9/10
2 1.0 0 0.98 0.14 10/10 0.10 0.12 0/10 0.015 0.017 9/10
3 5.0 0 5.01 0.57 10/10 0.06 0.08 0/10 0.021 0.022 9/10
4 0.2 1 0.24 0.05 10/10 0.17 0.35 0/10 0.011 0.014 8/10
5 1.0 1 0.97 0.17 10/10 1.01 0.41 1/10 0.012 0.014 9/10
6 5.0 1 5.09 0.57 9/10 2.98 0.42 3/10 0.004 0.004 8/10
7 0.2 5 0.22 0.06 10/10 1.27 1.16 0/10 0.012 0.015 10/10
8 1.0 5 1.03 0.16 10/10 3.36 0.81 4/10 0.001 0.001 7/10
9 5.0 5 5.06 0.56 10/10 4.80 0.98 6/10 0.002 0.001 7/10
10 0.2 10 0.2 0.06 8/10 12.92 2.1 0/10 0.010 0.013 7/10
11 1.0 10 1.03 0.16 9/10 5.38 1.3 3/10 0.001 0.001 9/10
12 5.0 10 5.15 0.6 10/10 8.92 1.51 8/10 0.002 0.001 7/10
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because two mutations, one on glpF and one on tpi,
separate it from ST 8. A less stringent definition of clonal
complexes would allow these strains to be grouped
together but would not help to spot a relationship where
several genes have been altered through point muta-
tions. Examples of this are branches D, E, and F: many
genes have been mutated, but in a pattern consistent
with clonal evolution.

DISCUSSION

We have described a general method for using multi-
locus sequence data to assess the clonal relationships
among a sample of bacteria. As well as defining lineages,
i.e., subsets of the sample that uniquely share a partic-
ular common ancestor, the algorithm can be used to
infer the relative age of each lineage, the sequence of

Figure 4.—Application to MLST data of Bacillus. (A) The output of our program with R fixed at 0; (B) the output of our pro-
gram with R inferred; (C) the eBURST output. Each row of D corresponds to the inferred events on a branch of B as labeled. The
columns correspond to the seven housekeeping gene fragments of the Bacillus MLST scheme. Black crosses indicate inferred
substitutions with the intensity proportional to its probability and the height of the red lines represents the inferred probability
for recombination on a scale from 0 to 1.
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the ancestor, and the recombination and mutation
events that have taken place in giving rise to each of
its descendants.

Application of our method to simulated data sets
shows that as well as providing additional information
that existing methods do not, our method provides
more accurate subdivisions and appropriate measures
of statistical uncertainty. Further, our method is uni-
quely able to fully and appropriately utilize information
from long stretches of contiguous sequence, up to com-
plete genomes. Although our method is slower than
non-model-based approaches such as UPGMA trees or
the BURST algorithm, the time taken to perform each
iteration is a linear function of the product of the number
N of strains and the length L of the sequences. The
algorithm should be run for longer as N increases, but the
algorithm remains feasible to apply to scores of bacterial
genomes or MLST data from thousands of isolates.

Most problems in bacterial epidemiology and system-
atics require accurate information about genealogies,
whether on a very short timescale (e.g., in tracking the
origin of a particular disease outbreak) or on a longer
one (e.g., in identifying lineages that have acquired spe-
cific phenotypes), ranging up to species splits. On short
timescales, the dominant paradigm has been to identify
either isolates with identical STs or ‘‘clonal complexes,’’
i.e., groups of closely related genotypes that share a re-
cent common ancestor, on the basis of sharing a partic-
ular number of alleles. Over longer timescales, analysis
is typically performed using phylogenetic methods, on
the basis of a large number of concatenated fragments
(Gevers et al. 2005). Our method allows us to estimate
degrees of relatedness at a wide range of different time-
scales using a single unified approach. Indeed applica-
tion of our method correctly indicates that sharing the
same ST can provide quite different information on
when the strains last shared a common ancestor, de-
pending on the genotypes of the rest of the sample. ST
complexes can also differ considerably in their antiquity.
Since the method provides indications of uncertainty it
also indicates when there is insufficient information to
infer clonal relationships in a given data set.

An advantage of model-based approaches over ad hoc
methods is that they can be refined to take into account
a wide variety of features of the data. For example,
instead of the Jukes–Cantor model for mutation used
here, it would be possible to incorporate more sophis-
ticated models of mutation, such as those discussed in
Whelan et al. (2001). Incorporating such a parametric
mutational model into our inferential framework would
be straightforward. In addition to assuming a simple
mutational model, our method does not take into
account insertions, deletions, or rearrangements and
can handle only fully aligned sequence data. In princi-
ple it might be possible to jointly infer alignment and
genealogy (Suchard and Redelings 2006). The model
we use for the prior on the genealogies is a standard

coalescent that assumes a constant population size. This
can be generalized to include population subdivisions
and growth as described in Wilson et al. (2003). It
would also be possible to allow changes in demographic
parameters and mutation or recombination rates in
different parts of the genealogy (e.g., Drummond et al.
2005, 2006).

The key assumptions of the model concern recombi-
nation. The method does not attempt to model the
origin of genetic imports and instead assumes that
imports introduce a uniform rate of novel substitutions
n. As a consequence, the model tends to underestimate
the number of recombinations as opposed to mutation
events and can infer incorrect subdivisions, particularly
if recombination is frequent compared to mutation.
There are a number of different ways of addressing
these limitations. For example, it should be relatively
easy to assign putative origins for inferred imports on
the basis of homology with different sequences from
within or external to the data set in question and hence
to make inferences on patterns of recombination in
bacteria, which can be highly nonrandom (Zhu et al.
2001; Didelot et al. 2007; Falush et al. 2006).

It might also be possible to incorporate some in-
formation on origin of imports directly into the model.
For example, for each branch in the genealogy, it would
be possible to distinguish between substitutions that are
novel and those that are already present in another
lineage. Those that are present are more likely to have
been introduced by recombination and also provide
information about the likely origin of the event. An-
other interesting refinement would be to make the sub-
stitution rate in recombined regions nonconstant. One
way to do this would be to have a different value of n for
each recombined region, but this implies a nonconstant
dimensionality of the parameter space, which requires
the use of complex inferential methods, for example,
reversible-jump MCMC (Green 1995) or exact sampling
(Fearnhead 2006). Alternatives include having a dif-
ferent value of n for each branch or having several pos-
sible values of n representing different distances of the
import source. Each of these refinements would make
the inference a lot slower unless efficient approxima-
tions can be found.

In summary, we find that the method that we described
here provides accurate estimation of bacterial genealo-
gies and specific genetic changes both for simulated data
and for real data. The application of our general ap-
proach to the large-scale DNA sequence data sets that are
becoming available should facilitate a detailed under-
standing of patterns of microevolution and phenotypic
change (Falush and Bowden 2006) in diverse bacterial
genera.

The algorithms described in this article have been im-
plemented in a computer software package, Clonal-
Frame, which is available at http://bacteria.stats.ox.ac.
uk/.
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APPENDIX A: MARKOVIAN STRUCTURE OF THE RECOMBINED AND UNRECOMBINED REGIONS

Under our model, recombination may happen several times on a branch of the tree and affect the same portion of
the genome repetitively. However, because recombination erases previous polymorphism accumulated through
recombination and mutation for that branch, it is impossible to tell how many successive recombination events took
place. We therefore describe each site of each branch as having two states: imported or unimported. The lengths of
imported and nonimported regions follow complex distributions that are, respectively, those of busy and idle periods
of an M/M/‘ queue with arrival rate Rlu/2 and mean service requirement d as studied by Roijers et al. (2007).

To facilitate statistical inference, we approximate the relationship of these two states for a branch of length l to make
it Markovian with transition matrix from one nucleotide to the next equal to

to to
unimported imported

from unimported
from imported

1� bðlÞ bðlÞ
aðlÞ 1� aðlÞ

� �
: ðA1Þ

Where a(l)�1 and b(l)�1 are set to be equal to the means of the busy and idle periods of an M/M/‘ queue, respectively,

aðlÞ ¼ Rlu=2

eRlud=2 � 1
and bðlÞ ¼ Rlu=2: ðA2Þ

Consequently, the average length of an imported region is a(l)�1 and the average length of an unimported region
is b(l)�1.

The imported and unimported states are not observed directly for each branch but the level of polymorphism
between the genotypes at the top and the bottom of a branch gives us some information on the state. Under our
model, the expected polymorphism rates in affected and unaffected regions are n and ul/2L, respectively. We can
therefore use a hidden Markov model to infer the location of affected and unaffected regions given the genotype at
the top and at the bottom of a branch of T .

APPENDIX B: UPDATE OF THE ANCESTRAL SEQUENCES AND MAPS OF IMPORT

We consider a nonroot node n. Let a and b denote the children of n and f denote its father. Let ln, la, and lb denote the
lengths of the branches above n, a, and b, respectively. We need to update the ancestral sequence cn and map of imports
rn of n, as well as the map of imports ra and rb of the two children of n given the rest of the parameters and the data.
These depend only on ln, la, and lb and the ancestral sequences ca, cb, and cf of a, b, and f, so that we need to sample from
Pðcn; rn; ra ; rb j ln; la ; lb ; cf ; ca ; cb ;MÞ. To do so, we first sample from Pðrn; ra ; rb j ln; la ; lb ; cf ; ca ; cb ;MÞ and then sample from
Pðcn j ln; la ; lb ; rn; ra ; rb ; cf ; ca ; cb ;MÞ.

To sample from Pðrn; ra ; rb j ln; la ; lb ; cf ; ca ; cb ;MÞ, we consider the HMM (Durbin et al. 1998; Rabiner 1989), where
at each location the hidden states are the values of rn, ra, and rb and the observed messages are the values of cf, ca, and cb.
This HMM has eight different possible hidden states because rn, ra, and rb take values in {0, 1} (0 for a nonimported
region and 1 for an imported region) and five messages (enumerated in the emission matrix section below). Samples
from Pðrn; ra ; rb j ln; la ; lb ; cf ; ca ; cb ;MÞ are obtained using the forward–backward algorithm, with the transition and
emission matrices detailed below. The second step, sampling from Pðcn j ln; la ; lb ; rn; ra ; rb ; cf ; ca ; cb ;MÞ, is straight-
forward: we calculate for each position the probabilities of cn to be A, C, G, and T given ln, la, lb, rn, ra, rb, cf, ca, and cb

at that position and choose one of the four possibilities with their respective probabilities.
Transition matrix: Let pi denote the hidden state at site i and xi denote the message at site i. The transition matrix

T is defined by ts1;s2
¼ Pðpi ¼ s2 jpi�1 ¼ s1Þ. Here T is simply a function of the a(l) and b(l) for the branches above

and below n: each term of T is equal to the product for each j 2 {n, a, b} of b(lj) if rj stays in a nonimported region,
1 � b(lj) if rj steps into an imported region, 1 � a(lj) if rj stays in an imported region, and a(lj) if rj steps into a non-
imported region.
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Emission matrix: The emission matrix E is defined by es,m¼ P(xi¼ m j pi¼ s). For j 2 {n, a, b} let mj ¼ ulj/(2L) if rj is
in a nonimported region and n otherwise. Assuming that there are no repeat mutations on each branch, the emission
probabilities in E are equal to (1�mn)(1�ma)(1�mb) 1 mnmamb/9 for message 1 (cf, ca, and cb are equal), (1�ma)(1�
mb)mn 1 mamb(1�mn)/3 1 2mnmamb/9 for message 2 (cf is different from ca and cb), (1�mn)(1�mb)ma 1 mbmn(1�ma)/
3 1 2mnmamb/9 for message 3 (ca is different from cf and cb), (1 � mn)(1 � ma)mb 1 mamn(1 � mb)/3 1 2mnmamb/9
for message 4 (cb is different from cf and ca), and 2(1�mn)mamb/3 1 2(1�ma)mnmb/3 1 2(1�mb)mnma/3 1 2mnmamb/9
for message 5 (cf, ca, and cb are all different).

Forward–backward algorithm: We can use the transition and emission matrices Tand E above to calculate the matrix
F, where fs,i ¼ P(x1, . . . , xi, pi ¼ s). This is done by using the recursion equation

fs;i11 ¼ es;xi11

X
k

fk;i tk;s : ðB1Þ

We can then draw pL from P(pL ¼ s) ¼ fs,L and each pi iteratively for all i from L � 1 down to 1, using

Pðpi ¼ s jpi11; xÞ ¼ fs;i ts;pi11 : ðB2Þ

The complexity of this algorithm is O(M2L), where L is the length of the alignment and M the number of hidden
states (eight here). This is acceptable even for full bacterial genomes where the length of an alignment is a few million
base pairs, but as this procedure will be called repetitively in the Monte Carlo Markov chain for each internal node of
the phylogeny, a considerable proportion of the time will be spent in it and it is therefore interesting to optimize it as
much as possible.

Optimization: One way in which this algorithm can be made much faster is to calculate only the values of fs,i for a
subset of the sites that we call the ‘‘reference sites.’’ We used the polymorphic sites, the sites at the beginning or end of
blocks, and additional sites at intervals of 50 bp. If p(i) denotes the ith reference site then Equation B1 becomes

fl ;pði11Þ ¼ el ;xpði11Þ

X
k

fk;pðiÞqðk; l ; pði 1 1Þ � pðiÞÞ; ðB3Þ

where

qðk; l ; pði 1 1Þ � pðiÞÞ ¼ Pðppði11Þ jppðiÞ; ðxpðiÞ11; xpðiÞ12; . . . ; xpði11Þ�1Þ ¼ 1Þ: ðB4Þ

The values of Q can be calculated recursively, using

qðk; l ; 1Þ ¼ tk;l and qðk; l ; d 1 1Þ ¼
X

m

qðk;m; dÞtm;l em;1: ðB5Þ

Note that as the values of Q do not depend on p(i) and p(i 1 1) but only on their difference d, Q can be calculated
once and for all before applying the forward–backward algorithm for all d¼ [1, . . . , maxi2[1,. . .,L�1](p(i 1 1)� p(i))].

In the backward step, we use the following equation instead of (B2):

ðppðiÞ jppði11Þ; xÞ ¼ fk;pðiÞqðppðiÞ;ppði11Þ; pði 1 1Þ � pðiÞÞ: ðB6Þ

This determines the hidden states at all reference sites. To finish, we determine the hidden states between two
reference sites by assuming that there is no change of state when two consecutive polymorphic sites have the same state
and assuming that there is only one transition point when they are different. For a transition between states x and y at
distance d from each other, the probability that the transition is at a distance i from the polymorphic site of state x for
all i 2 [0, . . . , d] is given by

PðiÞ} ex;1
i ey;1

d�i�1tx;x
i ty;y

d�i�1tx;y: ðB7Þ

It is possible to verify that this approximation has only a minor effect on the behavior of the program by calculating
the acceptance ratio of the move as if it was a Metropolis–Hastings move; i.e., the ratio

a ¼ PðC9;R9 j A; T ;MÞ
PðC;R jA; T ;MÞ

Q ðC;Rj C9;R9;A; T ;MÞ
Q ðC9;R9 j C;R;A; T ;MÞ: ðB8Þ

As this is a Gibbs move, the acceptance ratio should be equal to one. Without the approximation above a¼ 1 exactly,
which proves that the move is working as expected and with the approximation log(a) varies between�1 and 1, which
means that this approximation does not have much effect on the behavior of the move.
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APPENDIX C: UPDATE OF THE PARAMETER MODELS M AND THE AGES OF THE GENEALOGY

LetM denote the set of parameters of our model, i.e.,M¼ fu;R ; d; ng. Depending on how much prior information
we have on each of these parameters we might want to estimate them or not in the MCMC.

n is the only one that can be updated using a Gibbs step: as the likelihood PðA; T ; C;R jMÞ is a binomial function of
n, using a conjugate Beta prior for n leads to a Beta-distributed posterior. Here we used a Beta(1, 1) prior for n, i.e., a
uniform prior on [0, 1]. A non-Beta prior distribution can also be assumed if we use a Metropolis–Hastings move as
described below.

For R, d�1, and u we have to use a Metropolis–Hastings update. A natural uninformative prior is a uniform prior for
the log of each parameter. To make it proper, we consider only values of each parameter between 10�10 and 1.

We propose to update the value of log(u) by adding s to it with s drawn uniformly from [�0.05; 0.05]. If the proposed
value is ,10�10 or .1, the move is rejected. This move is symmetric and its acceptance probability is simply equal to the
minimum of one and the ratio of posterior probabilities PðT ;M;R; C jAÞ calculated using Equation 5.

The ages of T are updated using Metropolis–Hastings updates. For each internal node n of the tree T , its age is
updated by adding to it a random draw from Unif([�0.05, 0.05]). If the new age is ,0, less than the age of one of the
children of n, or more than the age of the father of n, then the move is rejected. The proposal distribution is therefore
symmetric and the move is accepted with a probability equal to the minimum of one and the ratio of the likelihood
with the new age over the likelihood before the update.

APPENDIX D: DEALING WITH MISSING DATA

There can be several reasons why an alignment contains gaps. First, deletions and insertions in one sequence create
indels that correspond to small gaps in the alignment. Second, when aligning genomes against each other, if one
sequence is incomplete then gaps may appear in the alignment depending on which alignment method is used.
Finally, sequences sometimes contain uncertainty about some of the nucleotides.

Here we treat gaps in the input alignment as missing data. Each missing nucleotide of each sequence in A is
therefore considered to be a parameter over which we need to mix as well as for any other parameter. Let G denote the
set of these missing nucleotides. We use a Gibbs step to update G given A and the current values of all the other
parameters. Our prior for each missing nucleotide is uniform over the four possible nucleotides.

Clearly, the value of each missing nucleotide g in sequence a depends only on the value x at that position in the
ancestral sequence of the father of a in T , the value r of the locations of recombinations on the branch above a, and
the length l of the branch above a:

If r ¼ 0, g ¼ x with probability 1 � ul/(2L) and equals something else with probability ul/(6L);
If r ¼ 1, g ¼ x with probability 1 � n and equals something else with probability n/3.
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