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ABSTRACT The evolution of a dendritic pattern from a
planar solid–liquid interface during directional solidification
of a binary alloy was investigated experimentally. The model
alloy used was the transparent organic crystal succinonitrile
doped with the laser dye coumarin 152. The buildup of solute
ahead of the initially stable planar interface and the subse-
quent instability of the planar front were measured in detail
and compared with recent theoretical calculations by Warren
and Langer [Warren, J. A. & Langer, J. S. (1993) Phys. Rev. E
47, 2702- 2712]. The fluorescence of coumarin 152 was used
for direct observations of the evolution of the solute concen-
tration profile ahead of the initially planar solid–liquid in-
terface. UV absorption was used to produce thermal pertur-
bations of the sample that generated spatially periodic mod-
ulations of the planar interface. This technique allows for
measurement of both positive and negative linear growth
coefficients (determined from the growth or decay rate of the
modulation after the perturbation is switched off) for a large
range of wave vectors. Measurements of the evolution of the
concentration profile and the linear growth coefficients, and
the occurrence of the initial instability, were in good agree-
ment with the Warren–Langer predictions.

The study of dynamical instabilities has developed dramatically
during the past decade due to both major theoretical advances
and the introduction of videomicroscopy and digital image
analysis techniques permitting precise quantitative tests of
theoretical predictions. Pattern-forming instabilities occur in
many dynamical systems far from equilibrium, particularly
hydrodynamic systems. The instabilities we will discuss in this
article occur at the solid–liquid interface during growth of
crystals from the melt. The morphology of the resulting
solidification patterns is of considerable practical importance
because the mechanical properties of solidified metallic alloys
depend critically on the dendritic microstructure and associ-
ated nonuniform distribution of solute (the minor material
components of the alloy) that result from the instability. These
solidification instabilities are also of fundamental interest as an
experimentally accessible example of instabilities at free
boundaries for which nonlinear dynamical behavior can be
investigated.

When alloy solidification occurs rapidly, the smooth solid–
melt interface becomes unstable and transforms to a pattern
of shallow cells, deep cells, or an array of dendrites with
sidebranch structure, depending on the growth conditions (see
Figs. 1 and 2A). The physical origin of this instability was
described in 1953 by Rutter and Chalmers (1) and by Tiller et
al. (2) as ‘‘constitutional supercooling.’’ Because the solute is
usually more soluble in the melt than in the crystal, solute

rejection occurs continuously during solidification, producing
a ‘‘snowplow’’ buildup of rejected solute ahead of the advanc-
ing solidification front. Because of freezing-point depression,
the local crystallization temperature ahead of the advancing
front increases with distance, inducing the instability if the
gradient in crystallization temperature exceeds the actual
temperature gradient present at the interface. The dynamical
theory of this solidification instability was first analyzed in 1964
in a seminal paper by Mullins and Sekerka (3), to be described
in the following section.

Studying morphological instabilities in metallic alloys is
extremely difficult because the samples are opaque and the
high melting temperature impedes precise control of the
solidification conditions. The usual metallurgical approach is
to allow the sample to solidify, and then to cut, polish, and etch
the exposed surface so that the solidification pattern can be
examined in a microscope. A major experimental break-
through occurred in 1965 when Jackson and Hunt showed that
transparent organic materials with low surface tension anisot-
ropy effectively solidify like metals, and the evolution of
pattern-forming instabilities can be studied in thin samples of
these materials in an ordinary optical transmission microscope
equipped with a motor-driven temperature-gradient stage
(directional solidification, see Fig. 2B) (4, 5). Stimulated by
this convenient transparent analogue of metallic alloys, various
groups performed many experimental studies and undertook
detailed tests of theoretical predictions. (Reviews can be found
in, e.g., refs. 6–9.)

In recent years, such experiments have been significantly
enhanced by the availability of digital videomicroscopy tech-
niques employing quantitatively precise computer processing
of digitized microscope images obtained from charge-coupled
device (CCD) cameras. The experiments have shown that the
Mullins–Sekerka analysis provides a qualitatively correct de-
scription of the planar–cellular instability, but the experimen-
tally observed initial cellular patterns usually have consider-
ably larger wavelengths than the theory predicts. The origin of
this disagreement lies in one assumption of the Mullins–
Sekerka approach: that the instability of a planar front occurs
after the dynamical steady state has been reached. In reality,
the planar interface will generally become unstable before the
steady-state concentration profile has been established. Thus,
to quantitatively describe the initial instability and its evolu-
tion, a non-steady-state theory is needed.

A generalization of the Mullins–Sekerka theory incorporat-
ing non-steady-state dynamics was developed recently by War-
ren and Langer (10, 11), opening the way for a full analysis of

© 1998 by The National Academy of Sciences 0027-8424y98y95431-8$2.00y0
PNAS is available online at http:yywww.pnas.org.

Abbreviations: SCN, succinonitrile (NCOCH2OCH2OCN); C152,
coumarin 152; WL, Warren–Langer.
*Present address: Department of Physics, 506 Reiss Science Building,

Georgetown University, 37th and O Streets NW, Washington, DC
20057-0995.

431



the evolution of dendritic patterns during solidification. In this
paper, we will briefly review the Warren–Langer (WL) ap-
proach and then present experimental results obtained with a
new model alloy system that allows quantitative tests of many
of the new theoretical predictions. We have analyzed the time
dependence of both the interface morphology and the solute
concentration field, starting with the initial transient following
the initiation of crystal growth, investigated the time evolution
of the linear growth coefficients, and determined the time
required for the initial instability to develop. We have also
followed the evolution of the interface morphology after the
initial instability as it approaches the final steady-state mor-
phology. This evolution will be described in the following
paper (12).

Theory

Mullins–Sekerka Theory. The central theoretical approach
that has been followed in virtually all analyses of data obtained
from directional solidification experiments is the linear sta-

bility analysis first employed by Mullins and Sekerka in 1964
(3). The sample, assumed to be two-dimensional and isotropic,
moves in the z direction at constant pulling speed V in an
externally imposed temperature gradient G (see Fig. 2B). A
continuum description is used for low-anisotropy materials,
and attachment kinetics are neglected. The interface temper-

FIG. 1. Steady-state patterns formed at the crystal–melt interface
of a binary alloy of succinonitrile and coumarin 152 during directional
solidification. From Top to Bottom (with increasing growth speed):
planar interface, cellular interface, deep cells, and dendritic array.

FIG. 2. (A) Time evolution of the interface morphology for
SCNyrhodamine 6G at constant pulling speed V (V 5 3.11 mmys, G 5
2.8 Kycm, C` 5 0.325 wt%). From Top to Bottom: stationary planar
interface, cellular pattern at the crossover time, onset of nonlinear
instabilities, coarsening phase, and steady-state dendritic array.
Elapsed time (in minutes:seconds) from the initiation of pulling is
shown at the right. (B) Schematic drawing of the directional solidifi-
cation experiment. The (thin) sample is moved through the temper-
ature gradient at pulling speed V while the crystal–melt interface
remains nearly fixed in the laboratory reference frame.

432 Applied Physical Sciences: Losert et al. Proc. Natl. Acad. Sci. USA 95 (1998)



ature Ti(x), where x is the direction parallel to the interface, is
given by

Ti 5 TM 2 mCi 2 d0kTM. [1]

In Eq. 1 TM is the bulk melting temperature of the pure
material, m is the slope of the liquidus line, Ci is the solute
concentration on the liquid side of the interface, d0 5 syL is
the capillary length (where s is the surface free energy density
and L is the latent heat), and k(x) is the local curvature. The
second term on the right of Eq. 1 is the freezing point
depression due to the solute; the third term is freezing point
depression due to curvature, the Gibbs–Thomson correction.
The solute concentration field in the liquid, C(x, z, t) obeys the
diffusion equation in the frame of reference fixed in the
laboratory:

­C~x, z, t!
­t

5 D¹2C~x, z, t! 1 V
­C~x, z, t!

­z
. [2]

Solute diffusion in the solid is neglected. Similarly, thermal
diffusion in both the solid and liquid is neglected because the
thermal diffusion coefficient Dth is usually much larger than
the chemical diffusion coefficient D. The interface (at z 5 z0)
introduces additional boundary conditions (with C for the
liquid and C9 for the solid):

C9i 5 kCi [3]

C9i~1 2 k!Vzn 5 2 D~¹Czn!i [4]

The partition coefficient k is the ratio of equilibrium concen-
trations on the solid and liquid sides of the interface. In the
following it is assumed that k , 1, which is true for most alloys.

Eqs. 1–4 are first solved assuming a flat interface (k 5 0) to
find the steady-state concentration field C(z):

C~z! 5 C`S1 1
1 2 k

k
e22zylD [5]

where C` is the background concentration in the liquid far
away from the advancing interface. Eq. 5 predicts that at steady
state Ci 5 C`yk and that C(z) decays exponentially from Ci to
C` with a decay length l 5 2DyV. This ‘‘spike’’ (or snowplow)
of rejected solute moves ahead of the advancing interface.

The Mullins–Sekerka linear stability analysis (3) begins with
the steady-state solution (Eq. 5) and adds an infinitesimal
sinusoidal modulation with wave vector q:

z~x, t! 5 zq~t! cos~qx! 5 A0 cos~qx!ea0~q!t. [6]

A similar modulation is assumed for the concentration field.
This interface and concentration field ansatz is then put into
the governing Eqs. 1–4, which are linearized and solved for the
linear growth coefficient a0(q) 5 [dzq(t)ydt]yzq(t).

The main results of this linear stability analysis, shown
schematically in Fig. 3, are as follows:

(i) For pulling speeds V below a critical value VC, a0(q) , 0
for all q and the interface is therefore stable against all
deformations. (At high concentrations, VC is given approxi-
mately by

VC 5
GDk

~1 2 k!mC`
, [7]

where G is the temperature gradient at the interface.)
(ii) When V 5 VC, the interface is marginally stable

[a0(qC) 5 0] for a single wave vector qC.
(iii) For V . VC, the interface is unstable against a range of

wave vectors, i.e. there is a band of unstable modes for which
a0(q) . 0.

In the a0(q) vs. q curve (c), for V . VC, the range of unstable
modes is set by the two neutral stability points where a0(q) 5
0, while the maximally unstable mode qmax defined by the
maximum of the a0(q) vs. q curve should grow most rapidly.
The calculated neutral stability curve with its maximally
unstable mode has been the main tool for comparing exper-
iments and theory. In general, however, the wave vector qinit of
the initial modulation observed experimentally does not cor-
respond to the calculated maximally unstable mode qmax.
Typically, qinit is smaller than qmax by a factor of '5 (13).

There are several limitations to this method of comparing
experimental data with predictions of the linear stability
analysis that could explain the disagreement.

(i) While the Mullins–Sekerka stability analysis is per-
formed assuming a steady-state planar interface, if the pulling
speed V is well above VC the interface may destabilize long
before steady state is reached with a different qmax than that
at steady state.

(ii) The results of the Mullins–Sekerka linear stability
analysis beginning with Eq. 6 are equivalent to an equation of
motion for zq(t):

d
dt

zq~t! 5 a0~q!zq~t!. [8]

Note, however, that if zq(t 5 0) 5 0, then from Eq. 8 zq(t) 5
0 for all t $ 0 even if a0(q) is positive. The linear stability theory
therefore does not provide a complete equation of motion for
zq(t). An initiation mechanism—e.g., thermal noise effects—
should be included, as discussed in the next section.

(iii) While the thermal diffusion field can be ignored for high
impurity concentrations, this approximation becomes less valid
as C` decreases and thermal effects become important (14).

(iv) Linear stability analysis does not fully describe the
instability. Nonlinear terms must also be included to obtain
steady-state nonplanar solutions (15) and to determine if the
initial instability is subcritical or supercritical—i.e., with or
without hysteresis (14).

WL Theory. Warren and Langer (10) reanalyzed the pat-
tern-formation phenomenon of directional solidification with
a procedure based on the Mullins–Sekerka linear stability
approach, but without the approximations i and ii. Warren and
Langer analyzed the dynamics beginning from the time that
pulling is initiated, and followed the motion of the interface
z0(t) and the evolution of the concentration field C(x, z, t). They
applied the Mullins–Sekerka stability analysis dynamically as
the concentration field evolves with time rather than assuming
steady state. Warren and Langer also analyzed the evolution
of the pattern in the nonlinear regime leading to steady-state
dendrite arrays. We will discuss that aspect of their work in the
following paper (12).

FIG. 3. The Mullins–Sekerka linear growth coefficient a0(q) vs. q
at steady state for V , VC (curve a), V 5 VC (curve b), and V . VC
(curve c). These curves can also represent the evolution of a0(q, t) with
time for V . VC as the concentration field evolves toward steady state.
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Taking z0 5 0 as the position of the interface of an undoped
sample in equilibrium, the initial (t 5 0) and steady-state (t3
`) values of z0(t) are

z0~t 5 O! 5
2 mC`

G
[9a]

z0~t3 `! 5
2 mC`

kG
. [9b]

For the planar interface Warren and Langer assumed that the
concentration field in the liquid is given by

C~z, t! 5 C` 1 @C~z0, t! 2 C`#e22~z2z0!yl~t! [10]

i.e., an exponential decay with a time-dependent decay length
l(t). At steady state, Eq. 10 becomes identical to Eq. 5 [i.e., l(t
3 `) 5 2DyV]. This assumption simplifies the numerical
calculations significantly because the problem can now be
reduced to two coupled differential equations for l(t) and z0(t)
that can be solved numerically, with results as illustrated in Fig.
4. This ad-hoc assumption was shown to give essentially the
same results for z0(t) and l(t) as a full numerical calculation
(16).

WL next solved linearized (Langevin) equations of motion
for interface modulations zq(t):

d
dt

zq~t! 5 a0~q, t!zq~t! 1 hq~t! . [11]

Eq. 11 differs from Eq. 8 in two ways. First, the inclusion of the
random thermodynamic (Langevin) fluctuating force term
hq(t) provides an initiation mechanism for the instability;
second, the linear growth coefficient a0(q, t) is time dependent,
computed from the instantaneous concentration field of Eq. 10
rather than from the steady-state result.

Numerical solution of Eq. 11 for all q predicts how the
pattern will evolve with time. Warren and Langer introduced
a crossover time t0 at which the initial modulation amplitude
reaches the same magnitude as the mean wavelength l0, and
the (approximate) end of the linear regime is reached. Because
a0(q, t) increases with time the amplitude of interface modu-

lations grows faster than exponentially. The mean wavelength
of those modulations, on the other hand, decreases only slowly.

Experiments

Sample Preparation. Among the organic crystals used in
studies of solidification instabilities, the most widely investi-
gated material is succinonitrile (SCN) for which the important
material properties have been accurately measured (17) (see
Table 1). Usually acetone is used for the second component
(solute). However, because both SCN and acetone are trans-
parent, the solute concentration field cannot be directly ob-
served.

Following preliminary unpublished experiments of J. Bech-
hoefer, F. Heslot, and A. Libchaber, who introduced a laser
dye as the solute to produce a visible solute field, we have
employed SCN with the dye coumarin 152 [C152; 7-(dimeth-
ylamino)-4-trif luoromethylcoumarin] as the solute. The seg-
regation coefficient k of SCNyC152 is 0.05, about half of that
of SCNyacetone (see Table 1), within the range observed in
metallic alloys (18).

SCN with 99% purity purchased from Fluka was vacuum
distilled [pressure , 200 mtorr (27 Pa)] four times. The pure
SCN was then mixed with C152 (Sigma) at concentrations from
0 to 0.45 wt%. The mixture was filled under vacuum into thin
glass capillaries purchased from Vitro Dynamics (inner dimen-
sions 0.1 3 2.0 3 300 mm) which were then flame sealed.
Three samples were produced at the same time from each
mixture. As a test for other impurities one sample of pure SCN
was directionally solidified at a high pulling speed (V . 10
mmys) with a low temperature gradient (G , 5 Kycm) where
a small impurity concentration should produce an instability.
No instabilities occurred, and it was therefore assumed that
any remaining impurities in the doped samples would not
affect the experimental results.

The solute concentration of each sample was calibrated by
fluorescence measurements. For the low concentrations used,
a linear relationship between the concentration and fluores-
cent intensity holds (see ref. 19). To determine the absolute
concentration, a pure sample and a sample of known concen-
tration, produced in a nitrogen environment to avoid subli-
mation loss of C152, were used as fluorescence intensity
calibration standards. The determination of the segregation
coefficient is described in ref. 19.

The liquidus slope m was determined by fixing the temper-
ature gradient, stage, and microscope focus so that the solid–
liquid interface position measured by the camera reproducibly
indicates the melting temperature of the sample. After suffi-
cient equilibration time (.2 days) the interface positions of
seven samples were measured, from which we determined m 5
5.43 6 1 Kymol%. The diffusion constant D was determined
from an exponential fit to the concentration profile in the
liquid ahead of a growing planar front as it approaches steady
state (see Eq. 5). From the long-time asymptotic value of the
characteristic length l(t) 5 2DyV for different pulling speeds
we found D 5 450 6 50 mm2ys. The measurement of the
concentration profile will be explained in the beginning of the
next section. The values of m and D were verified through fits
of the experimental evolution of the position z0(t) to the WL
calculations.

Apparatus. The experiments were carried out in a high
precision computerized directional solidification apparatus.
The glass capillary sample cell is glued to a holder attached to
a micrometer screw that is driven with a computer-controlled
dc motor. The glass capillary extends into an oil-filled stainless
steel tunnel that has two sapphire windows to allow visual
observation of the interface. The tunnel is inserted into copper
hot and cold blocks and brought into good thermal contact
with both so that a linear temperature gradient is established
in the tunnel between the two blocks. The whole system has a

FIG. 4. Solutions of the WL equations for z0(t) (a) and l(t) (b). The
parameters used correspond to the experiment shown in Fig. 6
(SCNycoumarin 152 at V 5 0.549 mmys ' 6 VC, G 5 20.2 Kycm, C`

5 0.30 wt%).
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plastic cover for thermal isolation. The hot block is held at
constant temperature by an electronic temperature controller
(Yellow Springs Instruments proportional temperature con-
troller model 72). The range of available temperatures is 30°C
to 120°C with an accuracy of 60.05 K. The cold block is cooled
with a water bath (Lauda RM6). The available temperature
range is 10°C to 80°C with an accuracy of 60.01 K. We also
measured the actual temperature profile in the tunnel and
found a linear temperature gradient across the region of
observation. Measurements with a thermocouple inside a glass
capillary showed that the temperature gradient does not
change with a change in pulling speed, permitting accurate
determination of the interface position both in equilibrium and
while pulling.

With the motor drive, pulling speeds in the range from 0.05
mmys to more than 100 mmys can be selected. The motor
(MicroMo Electronics, St. Petersburg, FL) is controlled by a
386 personal computer and held at constant speed with an
optical decoder with an accuracy of 60.5%. The whole setup
is mounted on the stage of a Nikon inverted Diaphot micro-
scope. The experiments are captured with a Dage-MTI (Mich-
igan City, IN) CCD 72 camera with a resolution of 480 3 640
points with 256 gray scales. Data acquisition is carried out with
a Macintosh IIci computer equipped with a Data Translation
interface (Marlboro, MA) board that can capture images at a
rate of up to 15 per sec.

To produce an oriented single crystal the whole sample is
first solidified as a polycrystalline solid by rapid cooling. When
the sample is inserted into the directional solidification appa-
ratus and allowed to equilibrate, the solid–liquid interface
consists of many grains. The sample is then pulled rapidly and
dendritic crystal growth starts. If a properly oriented dendrite
is found, it is grown further while dendrites from other grains
are melted back with laser pulses and are overgrown by the
oriented dendrite until the solid–liquid interface is made up of
a single grain. (If no grain develops dendrites growing in the
z direction within an angle of ,1°, or if the sidebranches don’t
lie in the x–z plane, the sample is melted back until other grains
are at the solid–liquid interface and the process is repeated.)
Once a properly oriented dendrite has been selected the
temperature is lowered slowly so that the oriented grain grows
and completely fills the liquid side of the sample. The tem-
perature gradient is subsequently inverted, which melts away
all other grains, and the temperature is again lowered slowly
to let the single correctly oriented grain fill the complete
sample. The interface is then positioned so that about three-
quarters of the capillary is liquid and one-quarter solid. The
sample, which on the solid side is now a single properly
oriented crystal, is brought into equilibrium in the selected
temperature gradient by waiting for at least 1 day. Growth at
the selected pulling speed V is then initiated, and video images
are either captured and digitized in real time or recorded on
videotape for later analysis.

Data Extraction and Analysis. The captured images are
analyzed on a Macintosh IIci computer using the NIH IMAGE
program and additional C programs for the extraction of the
solid–liquid interface position. Better than one pixel resolution
is required to allow analysis of the interface shape for very
small deformations. For each of the 480 lines of pixels along
the z axis (perpendicular to the planar interface) the pixel
gray-scale profiles are extracted and a parabola is fitted
through them. The tip of the interpolated parabola is taken to
define a point of the solid–liquid interface with a resolution of
up to 0.3 mm, one-tenth of one pixel (20). For deep cellular or
dendritic shapes the line can cross the interface more than
once, but for further analysis only the front interface point for
each line is selected through pattern recognition algorithms
that distinguish the front of the interface from the back and
from stray dust points. Removal of all stray points is crucial to
obtain reliable data for interfaces close to planar and for a
determination of cellular or dendritic tip positions, spacings,
and shapes and comparison to theoretical predictions.

The extracted interface profile is subsequently analyzed
through a spatial Fourier transform procedure. In our exper-
iments the visible interface pattern often includes fewer than
20 wavelengths, a circumstance that precludes a fast Fourier
transform (FFT) analysis. The interface profile was therefore
transformed through direct calculation of the Fourier integral
f(q) for at least 100 values of q by using C programs provided
by J. M. A. Figueiredo (Universidade Federal de Minas Gerais,
Brazil). The largest peak of f(q) determines the largest Fourier
component q0 with good frequency resolution, reveals small
shifts in frequency, and provides the amplitude of the largest
Fourier component with better accuracy than FFT.

Experimental Results and Comparison with Theory

Evolution of the Solute Concentration Field and Recoil of
the Planar Interface. We first investigated the time evolution
of the solute concentration field C(z, t) and the interface
position z0(t) in the SCNyC152 mixtures after initiation of
pulling at constant speed V at t 5 0. The WL prediction is that
C(z, t) will obey Eq. 10 with the decay length l(t) determined
by the numerical solution illustrated in Fig. 4b. At t 5 0, C(z,
t) should exhibit a step discontinuity at the interface with C(z,
0) 5 C` in the liquid and CS (0) 5 k C` in the solid. As t 3
`, C(z0, t), the concentration on the liquid side of the interface,
should increase to C`yk, while CS (z0, t), the concentration on
the solid side of the interface, should approach C`.

The fluorescence of C152 allows direct observation and
measurement of the solute concentration profile, because the
fluorescence intensity is directly proportional to the solute
concentration for the small concentrations used in the exper-
iments. For quantitative determination of C(z, t), a 488-nm
laser beam of ,10 mm diameter was scanned along the 0.3 wt%
SCNyC152 sample perpendicular to the interface, and the
fluorescence intensity was recorded with a photomultiplier.

Table 1. Material properties of SCN/C152 mixtures

Property Value Ref.

Segregation coefficient k 0.05 Present exp.
Liquidus slope m 5.42 K/mol% Present exp.
Diffusion constant D 450 mm2/s Present exp.
Interfacial free energy g (SCN) 8.95 3 10215 J/mm2 17
Melting temperature TM (SCN) 331.24 K 17
Latent heat (SCN) 4.627 3 10211 J/mm3 17
Molecular weight (SCN) 80.092 g/mol 17
Molecular weight (C152) 257 g/mol Sigma
Density (solid SCN) 1.016 g/cm3 17
Density (liquid SCN) 0.970 g/cm3 17
Thermal conductivity (solid SCN) 5.36 3 1024 cal/cmzszK 17
Thermal conductivity (liquid SCN) 5.32 3 1024 cal/cmzszK 17
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The observed buildup of C(z, t) and the accompanying ‘‘recoil’’
of the interface position z0(t) with time are shown by the
symbols in Fig. 5a. Even though in this experiment V . VC, the
planar interface remains stable for a long transient time. Fits
to the WL Eq. 10 are also shown, with the resulting diffusion
length l(t), obtained from two such experiments, shown in Fig.
5b. The evolution of l(t) is in reasonable quantitative agree-
ment with the WL calculations shown as the solid line in Fig.
5b. The steady-state value of l(t) is approached on the time
scale of 2DyV2 ' 4,600 s, whereas the approach to the

steady-state interface position z(t) occurs much more slowly,
on a time scale of DykV2 ' 46,000 s (21). It is therefore possible
to observe the approach to steady state for l(t) in this exper-
iment even though V . VC. This experiment was also used to
determine the diffusion coefficient D since l(t3 `) 5 2DyV.

The WL prediction for the interface position z0(t) is shown
in Fig. 4a. At low growth speeds (V , VC) the time required
for z0(t) to reach the steady-state position (Eq. 9b) is unob-
servably long for our low k alloy, whereas at higher growth
speeds, the instability intervenes before the steady-state value

FIG. 5. (a) Experimentally observed solute concentration profile of SCNyC152 evolving with time after initiation of pulling with V 5 0.44 mmys,
G 5 15 Kycm, C` 5 0.3 wt% (symbols). Exponential fits to the data are shown as solid lines. (b) Diffusion length l(t) for two experiments obtained
from exponential fits (symbols) and from the WL calculation with V 5 0.44 mmys (solid line).

FIG. 6. Interface position z0(t) vs. t of a SCNyC152 sample (V 5 0.549 mmys, G 5 20.2 Kycm, C` 5 0.30 wt%). Comparisons with WL calculation
(solid line), WL analytic approximation (dotted line), and sample movement (dashed line) are shown. (Inset) Long-time behavior, where the WL
prediction breaks down due to solute trapping.
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of Eq. 9b is reached. At speeds close to VC after some time (on
a longer time scale than the approach to a steady state l(t), but
before a steady state for z(t) is reached) the position of the
interface z0(t) stops following the WL prediction even though
no instability of the planar interface is observed. The fluores-
cence measurements indicate that this departure is probably
due to solute trapping, possibly arising from an instability in
the third dimension that forms one cell across the small side
of the sample. An indication of the solute trapping can be seen
in the concentration profiles in Fig. 5a at t 5 17,720 s and
19,290 s as a strong increase of fluorescence intensity on the
solid side of the interface. While the liquid ahead of the
interface still has an exponentially decaying concentration
profile with essentially unchanged l(t), the interface position
and the amplitude of the solute spike no longer follow the WL
predictions. The influence of wall effects has been investigated

previously through variations in sample width (21), but our
procedure allows in situ observation and direct measurement
of solute trapping at the walls. Before the clearly visible onset
of the three-dimensional instability, the initial transient can
thus be safely treated by two-dimensional approximations. For
higher speeds, wall effects start to occur at the same time as
the initial instability.

Fig. 6 shows the measured interface position z0(t) vs. t for a
pulling speed V ' 6VC. The interface initially moves back at the
pulling speed V (indicated by the dashed line) only for unob-
servably short times because attachment kinetics are very
rapid. Subsequently, z0(t) follows the WL prediction for a
planar interface (shown by the solid line) until the interface
position levels off because of solute trapping at t ' 7,000 s. The
first-order analytic approximation calculated in ref. 10 (indi-
cated by the dotted line) breaks down too quickly to be
observable or relevant for the initial instability.

The Linear Growth Coefficients and the Marginal Stability
Time ti. The linear stability analysis of Mullins and Sekerka, as
extended to the non-steady-state situation by Warren and
Langer, requires the evaluation of the time-dependent linear
growth coefficients aq(t). Although the aq(t) have been calcu-
lated theoretically, they have not previously been determined
experimentally in solidification experiments. The only way to
study aq(t) in the past was to wait for the instability to develop
spontaneously and then to measure the modulation amplitude
as a function of time. That approach can determine aq(t) only
for a single q, and only if aq is positive.

We have developed a procedure to determine aq(t) for
experimentally selected values of q in which we apply a row of
small spots of UV illumination briefly to the crystal–melt
interface. The UV source is the fluorescence illumination
attachment on our Nikon microscope, equipped with a metal
slide having several rows of holes with different spacings.

Fig. 7A shows the interface of a 0.30 wt% SCNyC152 sample
being pulled at 0.8 mmys in a temperature gradient of G 5
20.25 Kycm. Frame 2 (t 5 10.5 min) shows a row of UV spots
with a spacing of 225 mm (visible as white circles) which was
applied for 1 min starting at t 5 10 min. Absorption by the C152
caused local heating, producing a sinusoidal modulation of the
planar interface, which gradually decayed, indicating that aq(t)
, 0.

The Fourier transform of the interface provided the time-
dependent amplitude of the largest Fourier component of the
modulation, at l 5 225 mm. The time-dependent amplitude,
shown by the symbols in Fig. 7B, was fit to an exponential (a
straight line on the semilogarithmic plot) for the range t 5
684–810 s, which gave aq 5 20.0136 s21. The WL analysis
predicts that for this wavelength, aq(t) would increase from
20.0139 s21 at 684 s to 20.0120 s21 at 810 s.

To study the time dependence of aq(t), the measurement
described above was repeated sequentially as soon as the
modulation had decayed. Crystal growth was started at t 5 60 s
with V 5 0.52 mmys. The row of UV spots was applied for 60 s
to the solid–liquid interface at t 5 300 s, 900 s, 1,500 s, 2,100
s, 2,700 s, 3,600 s, and 4,500 s. The amplitude of the largest
Fourier component of the planar interface modulation, shown
in Fig. 8, was then fitted with an exponential after each
perturbation. At early times the decay of the modulation
amplitude can be fitted well with a single exponential. The
linear approximation of Eq. 8 therefore describes interface
stability accurately even though the amplitude of the applied
modulation is orders of magnitude larger than thermal noise.
As long as the modulation decays quickly, the time dependence
of aq(t) can be neglected. However, as the solute concentration
builds up and aq(t) approaches zero at t ' 4,500 s, the
modulation decays slowly and a single exponential fit does not
work well any longer.

The linear growth coefficient aq(t) for two experiments at
V 5 0.52 mmys with q 5 0.0228 mm21 and q 5 0.0162 mm21

FIG. 7. (A) Initiation and decay of the modulation produced by a
spatially periodic UV thermal perturbation with l 5 225 mm for a
planar interface (SCNyC152, V 5 0.8 mmys, G 5 20.25 Kycm, C` 5
0.30 wt%) (time, in minutes and seconds, increases from Bottom to
Top). (B) Amplitude of the largest spatial Fourier component of the
interface modulation vs. time, and exponential fit in the range t 5
684–810 s (aq,fit 5 20.0136 s21).
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obtained from the fits is plotted in Fig. 9 together with the WL
predictions. The good agreement between theory and exper-
iment indicates that interface stability during the transient can
be calculated by using the WL approach. Even for V . VC, as
in this experiment, interface stability can be described well by
a linear stability analysis, and the planar interface remains
morphologically stable until aq(t) changes over from negative
to positive for some one q. In analogy to the steady-state
marginal stability at VC we can introduce a marginal stability
time ti such that aq(ti) 5 0 for some q. This ti marks the onset
of instability beyond which the planar interface will sponta-
neously deform, and the interfacial pattern will then begin to
evolve toward its final steady-state morphology. The develop-
ment of the interface after this initial instability at ti, and its
evolution toward the final steady-state dendritic pattern, will

be discussed in the following paper (12), where our general
conclusions will also be presented.
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FIG. 8. Amplitude of the spatial Fourier component with q1 5 0.0228 mm21 of the interface modulation (E) vs. time, when a 60-s UV-thermal
perturbation with q1 is applied at tR 5 300 s, 900 s, 1,500 s, 2,100 s, 2,700s, 3,600 s, and 4,500 s. Exponential fits to Aq1 (t) 5 Ce2aq1(tR)t after each
perturbation time tR with aq(tR) as a free parameter (solid line), and aq(tR) given by the WL calculation (dashed line).

FIG. 9. Time dependence of aq(t) from exponential fits to the
amplitude of the largest Fourier component of the interface modu-
lation when a 60-s perturbation with q 5 0.0228 mm21 (}) or q 5
0.0162 mm21 (E) is applied at t 5 300 s, 900 s, 1,500 s, 2,100 s, 2,700
s, and 3,600 s, and comparison to the WL predictions.
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