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ABSTRACT This paper extends the steepest descent
method for Riemann-Hilbert problems introduced by Deift
and Zhou in a critical new way. We present, in particular, an
algorithm, to obtain the support of the Riemann-Hilbert
problem for leading asymptotics. Applying this extended
method to small dispersion KdV (Korteweg-de Vries) equa-
tion, we (i) recover the variational formulation of P. D. Lax
and C. D. Levermore [(1979) Proc. Natl. Acad. Sci. USA 76,
3602–3606] for the weak limit of the solution, (ii) derive,
without using an ansatz, the hyperelliptic asymptotic solution
of S. Venakides that describes the oscillations; and (iii) are
now able to compute the phase shifts, integrating the modu-
lation equations exactly. The procedure of this paper is a
version of fully nonlinear geometrical optics for integrable
systems. With some additional analysis the theory can provide
rigorous error estimates between the solution and its com-
puted asymptotic expression.

Introduction

The Korteweg-de Vries (KdV) equation

ut 2 6uux 1 «2uxxx 5 0, u~x,0! 5 u0~x!, [1]

was solved by Gardner, Greene, Kruskal, and Miura (1) who
discovered its close connection with the Schrödinger equation,

2«2­x
2 f 1 u~x,t ,«!f 5 lf,

and introduced the inverse scattering transformation as a
fundamental tool of applied mathematics and physics.

The initial value problem for KdV with small dispersion
«n0, was first analyzed by Lax and Levermore (2, 3) for initial
data consisting of a single potential well u0(x) , 0, and then by
Venakides (4) for initial data consisting of a single ‘‘hump’’
u0(x) . 0. The dispersion coefficient tending to zero («n0),
corresponds to considering the Schrödinger operator in its
semiclassical limit, a regime that allows explicit scattering
calculations by the WKB method. In both studies, the inverse
scattering transformation procedure led, at each (x,t), to a
variational problem over spectral density functions of the
eigenvalue parameter l. The variational problem was shown to
possess a unique solution and the weak limit u#(x,t) of u(x,t,«)
as «n0 emerged as a simple linear functional of the maximiz-
ing function c.

The nonexistence of a strong limit beyond a break time tcrit
was shown by the fact that, over wide space-time regions, the
weak limit of u2 did not equal u# 2, a fact that demonstrated the
emergence of small-scale oscillations in these regions. The

analysis of the variational problem by Lax and Levermore (2,
3) revealed the deep significance of the nature of the support
of the maximizing function c. Under the assumption that the
support of c is a finite set of intervals, Lax and Levermore
derived a formula for the weak limit in terms of the endpoints
of these intervals. The number 2N 1 1 of the end points (N 5
0, 1, 2, . . . ), and the end points themselves, were dependent on
(x,t). At t 5 0, it was seen that N 5 0 and the unique end point
for any given value of x was easily derived from the initial data
u0(x). In space-time regions of constant N, Lax and Levermore
showed that the end points were the solution of a nonlinear
hyperbolic system in Riemann invariant form. The system
turned out to be identical to the modulation equations satisfied
by the evolving spectral end points that describe modulated
multiphase KdV waves. The latter had been derived earlier by
Whitham (5) for single-phase traveling waves and concurrently
with the Lax–Levermore calculation by Flaschka, Forest, and
McLaughlin (6) (N . 1) for multiphase waves. Thus, Lax–
Levermore theory produced overwhelming evidence that the
small-scale oscillations in the initial value problem for Eq. 1
consisted of multiphase KdV waves, and that the Lax–
Levermore end points should be identified with the spectral
endpoints of quasi-periodic N-phase KdV waves. We will refer
to the end points as branch points, because in both theories
they are the branch points of an algebraic curve. The precise
identification between the branch points of the two theories
was not made, and a direct derivation of the small-scale
oscillations was still lacking.

The open question could be phrased as follows: Derive the
leading order asymptotic behavior for the solution u(x,t,«)
after break-time, that is after the time at which oscillations
emerge. The task would require resolving the small-scale wave
structure, i.e., identifying the local wave as a KdV single-phase
or multiphase wave and calculating the small-scale wave
parameters, i.e., the mean value (weak limit), the wave num-
bers, the frequencies, and the phase shifts. The local mean
value was calculated in Lax–Levermore theory. The wave
numbers and frequencies also would follow if the above
identification of two types of branch points were made. Even
then however, the phase-shifts (i.e., the order one term in the
phase function of the oscillatory structure) lay well beyond any
existing theory.

A further step toward the above identification was made by
Venakides (4) in two ways, first by using Abel sums (7, 8), and
later by a sharpening of the derivation of the variational problem
in ref. 9. This sharpening led to the introduction of an additional
‘‘quantum condition’’ or quantum constraint on the variational
problem. As a consequence, the unique maximizer of the varia-
tional problem was replaced by a sequence of nearby maximizers
that carried the information not only of the solution average, but
also of the structure of the oscillations (9). As a result, a version
of Eq. 12 below was derived in ref. 9 that describes the leadingThe publication costs of this article were defrayed in part by page charge
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asymptotic behavior of the solution u(x,t,«) as «n0. The deriva-
tion (9) relied on an averaging Ansatz and, as stated in that study,
there was some uncertainty in the resolution of the phase shifts.
During this time the theory for the periodic small dispersion KdV
equation (10) also was developed.

Our approach in this paper follows the Shabat (11) (see also
ref. 12) reformulation of the inverse scattering transformation
as a Riemann–Hilbert problem (RHP). It is motivated by the
steepest descent method for oscillatory RHPs introduced by
Deift and Zhou (13) and developed further, in particular, in
refs. 14 and 15. For simplicity, we consider only the case u0(x)
. 0. The case u0(x) , 0, as well as the case when u0 changes
sign, also can be handled with slight modifications of the same
method (see Remark below). A more detailed version of the
results of this paper is given in ref. 16. The extension of the
nonlinear steepest descent method of Deift and Zhou consists
of introducing a rigorous fully nonlinear version of geometrical
optics in the following way.

As in refs. 15 and 16, we introduce in the Shabat vector RHP,
which describes inverse scattering, the phase function g (see
section 1) as the nonlinear analogue of the phase function in
the geometrical optics representation of a linear wave. The
form of the function g cannot be easily guessed in this case; we
introduce a systematic procedure for determining g, which
reduces its calculation to a scalar RHP. The solution of the
scalar RHP corresponds to the solution of the eikonal equation
and the leading transport equation in linear wave theory
(amplitude is coupled to the other wave parameters) with g
yielding the local number of phases, wave numbers, frequen-
cies, and the weak limit. Pursuing the analogy to the linear
theory, we call the scalar RHP, the eikonal RHP. Once g is
determined, we solve the remaining vector RHP explicitly in
terms of theta functions.

We present three main results for small dispersion KdV.
First, the leading asymptotic behavior of u(x,t,«), including

the phase shifts, is obtained in terms of the modulating branch
points described above. The identification between the branch
points of refs. 2 and 3 on the one hand, and refs. 5 and 6 on
the other, is made precise (there is no use of an Ansatz). Our
Eq. 12 indicates that the corresponding formula of ref. 9 has
the correct phase shifts to order «. Our method actually allows
one to write down higher order correction terms in the
asymptotic expansion of u(x,t,«), but this work has not yet been
carried out.

Our second result relates to the determination of the branch
points. In the Lax–Levermore theory, the calculation of the
branch points is reduced to solving the initial value problem for
the modulation system. This goal motivated a large body of
research both in the former Soviet Union and in the West in
the eighties and nineties. Leaving aside the discussion of the
work of many authors (see ref. 16) we mention the fact that the
KdV modulation equations are themselves integrable, as was
first shown by Tsarev (17), and that the local existence of the
solution of the modulation system beyond break-time was
established constructively for N 5 1 by Tian (18). In the
present work, we write down explicit first integrals for the
solution of the modulation equations, for arbitrary N. If N is
known, and (x,t) is fixed, our Eqs. 7 and 8 provide a complete
algebraic system of 2N 1 1 equations for the 2N 1 1 unknown
branch points. To find the branch points at some given (x,t), we
have to solve this nonlinear algebraic system starting with the
value N 5 0, and proceeding to N 5 1, . . . until the corre-
sponding function g (see section 1) satisfies conditions (Eqs. 4
a–d) below. The function g corresponds (see below) to the
Lax–Levermore–Venakides maximizer. For illustrative pur-
poses (see ref. 16), we have carried out this construction
globally in (x,t) when the graph of u0 has the shape of a tent,
u0(x)5 1 2 x for x , 1, and u0(x) 5 0 otherwise. We remark
that we derive Eqs. 7 and 8 for the branch points directly from
the RHP and without resorting to the modulation equations.

We can derive the modulation equations from the compati-
bility condition gxt 5 gtx exactly as in Lax–Levermore theory,
but they do not play such a prominent role in our calculation.

Our third result consists of establishing a connection be-
tween our steepest descent approach and the variational
approach of Lax and Levermore.

We assume a positive, and hence soliton-free, u0(x) that is
analytic and consists of a ‘‘hump’’ of unit height, restrictions
that are convenient but not essential to our method. This is the
problem considered in ref. 4. After changing from the =l-
plane to the l-plane, taking the right half =l-plane onto
C\(2`,0], the Shabat RHP consists of finding a row-vector-
valued function m(l) 5 m(l;x,t,«) 5 (m1,m2), analytic for
complex l off the real axis, with boundary values m6 (l;x,t,«)
[ m(l 6 i0;x,t,«) [ (1,1) 1 L2(udl1/2u) that satisfy the jump
condition

m1~l;x,t ,«! 5 m2~l;x,t ,«!v~0!~l;x,t ,«!

on the real axis. The jump matrix v(0)(l;«) is given by

v~0!~l;«! 5 s1 ; S0
1

1
0D , for l , 0,

(s1 reflects the =l to 2=l symmetry of the RHP in the
=l-plane), while

v~0!~l;«! 5 S1 2 uru2

re2iay«

2r#e22iay«

1 D , for l . 0.

Here r(l;«), l . 0, is the reflection coefficient for the
Schrödinger equation (Eq. 2) at t 5 0 and a 5 4tl3/2 1 xl1/2.
The space and time variables are simply parameters in the
solution process. The solution to Eq. 1 is given by

u~x,t ,«! 5 22i«­xm11~x,t ,«!

where

m1~l;x,t ,«! 5 1 1 m11l21y2 1 O~l21!, l 3 `.

We identify r with its WKB approximation (cf e.g., ref. 19)

r~l;«! , 2ie22ip~l!y«x@0,1#~l!,

r~l! 5 x1l1y2 1 E
x1

`

@l1y2 2 ~l 2 u0~x!!1y2#dx,

1 2 uru2 , e22t~l!y«, t~l! 5E
x2

x1

~u0~x! 2 l!1y2dx, 0 , l , 1,

the quantities x2(l) , x1(l) being defined by u0(x6 (l)) 5 l.
Here x[0,1] is characteristic function of the interval [0,1]. The
jump matrix reduces to the identity for l . 1 and our problem
reduces to a RHP on the interval (2`,1]. Further reductions
of the RHP m1

(n) 5 m2
(n)v(n), where m1

(n) and m2
(n) are the left

and right boundary values of m(n) on the oriented contour S(n)

with jump matrix v(n), will not affect the jump matrix outside
0 , l , 1.

1. The Eikonal Problem and the Differentiated
Eikonal RHP

We introduce the complex phase function,

g~l! 5 g~l;x,t! 5 g1~x,t!yl1y2 1 O~1yl!, ~l 3 `!

to be determined below, by making the change of dependent
variable
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m~1!~l! 5 m~l!eig~l!s3y«, s3 ; S1
0

0
2 1D .

The function g is required to be analytic in l off the set
(2`,1] and satisfy g1(l) 1 g2(l) 5 0 for l [ (2`,0), to
maintain the jump s1 for m(1) across (-`,0). The formula for
u becomes

u~x,t ,«! 5 22i«­xm11
~1! 2 2­xg1~x, t!. [2]

where mi
(1)(l) 5 1 1 m11

(1)yl1/2 1 O(1yl); in the region 0 , l
, 1, the RHP transforms to

m1
~1! 5 m2

~1!v~1!,v~1! 5 Se~ig12ig222t!y«

2ieihy«

2ie2ihy«

e2i~g12g2!y«D [3]

where h 5 g1 1 g2 2 2r 1 2a.
Our strategy is to determine g in such a way that for each

value of 0 , l , 1, as «n0, the jump matrix v(1) reduces to
one of the following three forms with exponentially small
errors,

S 1
2ieih~l!y«

2ie2ih~l!y«

0 D , S 0
2ieih~l!y«

2ie2ih~l!y«

0 D ,

S 0
2ieih~l!y«

2ie2ih~l!y«

1 D ,

where h9 , 0 in the first form, h9 5 0 in the second form, and
h9 . 0 in the third form. As can be seen in the more detailed
presentation (16), according to the steepest descent method,
the first and third forms can be replaced by the identity matrix
through the use of an intermediate RHP (m(2),v(2), S(2)). This
reduces the RHP for m(1) to one with a piecewise constant
jump matrix (h9 5 0) of the second form, which is exactly
solvable. To implement this strategy we require that, at each
0 , l , 1, exactly one of the conditions (Eqs. 4 a–c) be
satisfied, and that condition (Eq. 4d) below be satisfied as
required earlier.

2t 5 ~g1 2 g2!y2i and h9 , 0, [4a]

2t , ~g1 2 g2!y2i , 0 and h9 5 0;

thus g1 1 g2 2 2r 1 2a 5 2Vj,

where Vj is some constant of integration, [4b]

g1 2 g2 5 0 and h9 . 0, [4c]

g1 1 g2 5 0 when l , 0 and g1 2 g2 5 0 when l . 1, [4d]

In the remaining RHP (m(3), v(3), S(3)) the contour S(3) consists
of the union of (-`,0] with the set of ls where Eq. 4b holds. We
pose the ansatz that the latter consists of disjoint intervals Ij 5
(aj,bj),j 5 0, . . . , N , `, ordered from left to right and lying
in the open interval (0,1), with a0 5 0. For l in Ij, the jump
matrix v(3)(l) 5 2is1e2Vjy«s3 where Vj 5 2h(l). The equalities
in Eqs. 4 a–d define a scalar RHP for the function g. This is the
eikonal problem.

Differentiating with respect to l, we obtain a RHP for g9
namely

g91 1 g92 2 2r9 1 2a9 5 0, l [ ø Ij, [4e]

~g91 2 g92!y2i 5 2t9 (case A), or ~g91 2 g92!y2i

5 0 (case B), l [y ø jIj ø ~2`,0!, [4f]

g91 2 g92 5 0, l [ ~2`,0! ø ~1,`!. [4g]

This is the differentiated eikonal problem. To have a well-
posed RHP for g9, we require additionally that

The functions Îlg9~l!)6 be continuous for real l. [5]

2. Calculation of the Branch Points aj and bj

The solution to the differentiated eikonal RHP is given in
terms of the initial data of Eq. 1 by

g9~l! 5 Îp~l!

SE
øIj

2r9~m! 2 2a9~m!

Îp~m!1~m 2 l!

dm

2pi
1E

~0,E!\øIj

22it9~m!

Îp~m!1~m 2 l!

dm

2pi D, [6]

where E 5 1 in case A and E 5 bN in case B,

p~l! 5 ~l 2 b0! P
j51

N

~l 2 aj!~l 2 bj!,

with =p determined to be positive for l . bN, and =p(l)1 5
=p(l 1 0i).

We obtain 2N 1 1 equations to determine the 2N 1 1
unknown branch points b0,aj,bj,j 5 1,. . . N as follows. The
condition g(l) 5 O(l21y2) for large l implies g9y =p 5
O(l2N21), and leads to the N 1 1 moment equations, for k 5
0, . . . , N,

E
øIj

r9~l! 2 a9~l!

Îp~l!1

lkdl 1 E
~0,E!\øIj

2it9~l!

Îp~l!1

lkdl 5 0. [7]

An additional set of N equations is obtained by integrating g9
around each Ij and by using Eqs. 4a and 4c. In case A we obtain
for j 5 1, . . . N,

E
Ij

~g91~l! 2 g92~l!!dl 5 22i~t~bj! 2 t~aj!!, [8]

while in case B, t(bN) must be replaced by zero. To calculate
the branch points at some (x,t), we solve the above equations
for N 5 0. If g, as determined from g9 by integration, satisfies
the conditions (Eqs. 4 a–c), it is the desired solution of the
scalar RHP. If not, we increase the value of N by one and
repeat the calculation. We expect that the procedure always
terminates with a finite N for generic initial data. For a more
systematic determination of N 5 N(x,t), we construct for each
t the separatrix F(t)5[(x,l): l 5 b0(x,t), a1(x,t),. . . ,bN(x,t),
2` , x , `,] (see Fig. 1a and b). If a vertical line is drawn
at some x, its intersection with the points in the plane on the
one side of the curve (the ‘‘lower’’ one) gives the contour S(3).
For example, if x . x1 in Fig. 1b, then S(3) consists of a single
interval (2`,b0(x)): on the other hand, for x2 , x , x1, S(3)

consists of two intervals, (2`,b (x))ø(a,(x),b(x)), etc.
For times t less than the critical value tcrit at which Eq. 1

with « 5 0 breaks down, we take N 5 N(x,t) 5 0. Solving Eq.
7 for b0, we find that F(t)5[(x,l):l 5 u(x,t)], where u(x,t) is
the solution of Eq. 1 with « 5 0, and we verify that the
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corresponding function g satisfies Eqs. 4 a–c. For x . xmax(t),
we are in case B and for x , xmax(t), we are in case A. For
fixed t . tcrit, we construct the separatrix of Fig. 1b starting
with x .. 1 and N(x,t) 5 0. We then move x to the left,
calculating the parameters aj,bj, and readjusting the value of
N as soon as one of the inequalities (Eqs. 4 a–c) is violated.
In Fig. 1b, interval I0 splits into two intervals at x1 and x2,
whereas interval I1 collapses to a point and disappears at x3

and x4. As noted earlier, we have carried out (see ref. 16) this
procedure explicitly in the case of the nontrivial example
u(x,0)5 1 2 uxu , when uxu , 1 and u(x,0) 5 0 otherwise.

3. Calculation of the Vj

We obtain a formula for g by solving the eikonal RHP,

g~l! 5 Îp~l! O
j50,· · ·,N SE

Ij

2r~m! 2 2a~m! 2 Vj

Îp~m!1~m 2 l!

dm

2pi

1 E
~0,E!øIj

2 2it~m!

Îp~m!1~m 2 l!

dm

2pi D .

The original RHP for m has a =l symmetry, and we require
that g be an odd function of =l to retain the symmetry for
m(1); this leads to the condition V0 5 0. We determine the
remaining Vjs from the N moment conditions that gy =p 5
O(l2N) must satisfy at l 5 `. We find for j . 0, Vj 5 xVj1 1
tVj2 1 Vj3, where

Vj1 5 24piRes` l1y2vj, Vj2 5 216piRes` l3y2vj,

Vj3 5 4 E
øIk

rvj 2 4 E
~0,1!\øIk

itvj. [9a]

In these formulae, vi 5 pi(l)y=p(l) dl, i 5 1, . . . , N, and pi(l)
are polynomials of degree #N 2 1 uniquely determined from
the N relations *aj vi 5 dij (contour aj circles around interval
Ij clockwise). Solving the RHP for ­xg we obtain

g1x 5 22 Res`~l1y2qyÎp! 5 2 O
j50

N

~aj 1 bj!y2 2 qN21,

where the meromorphic differential (q/=p)dl 5 (lN 1
qN21lN21 1 . . . 1q0)y=p(ldl, has N coefficients q0, . . . qN21

uniquely determined by the N relations *aj(qy=p)dl 5 0,j 5
1, . . . , N.

From the RHP for ­xg and ­tg, we obtain the relations

­xVj 5 Vj1, ­tVj 5 Vj2, [9b]

that are not at all obvious because V(1), V(2), and V(3) all
depend on x and t through vj.

4. Calculation of u(x,t,«)

We verify (also see refs. 2 and 15) that the solution to the RHP
for m(3) is

m~3! 5
u~0!

u~Vy2p«!
SP

0

N l 2 aj

l 2 bj
D 1y4 Su~w~l! 2 Vy2p«

u~w~l!!
,

u~w~l! 1 Vy2p«!

u~w~l!!
D , [10]

where the Riemann theta function u has period matrix (*bjVi)
(contour bj proceeds from b0 to aj on the upper half of the lower
sheet of the Riemann surface and returns to b0 on the lower half

of the upper sheet), w(l) 5 *`
l v, v 5 (v1, . . . , vN)t, and V 5

(V1, . . . , VN)t. We obtain finally, as « 3 0,

u~x,t,«! , O
j50

N

~aj 1 bj! 1 2qN21 2 2«2­x
2 log u~Vy2p«!. [11]

In a space-time window of scale « about (x,t), we have

u~x 1 «x1, t 1 «t1, «! , O
j50

N

~aj 1 bj! 1 2qN21 2 2
­2

­x1
2

3 log~u~Vy~2p«! 1 ~2p!21x1Vx 1 ~2p!21t1Vt!. [12]

By using Eqs. 9 a and b, we see that Eq. 12 has precisely the
form of a modulated KdV wave (see e.g., ref. 6).

5. A Variational Principle for g*(l)

We make the change of variable l 5 1 2 h2, taking the upper
complex half-plane onto Cy(2`, 1]. The function g transforms
to G(h) 5 g(l). We extend the definition of G onto the lower
complex h half-plane, by the relation G(2h) 5 2 G(h), and
we observe that G is analytic off the real h axis. We transform
the RHP for g into a problem for G, observing that G1 2 G2

5 g1 1 g2 and G1 1 G2 5 2(g1 2 g2)sgnh. On the real axis,
we define the function c (h) to equal zero outside the interval
(21,1) while on (21,1)

c~h! 5 ­hFa~l~h!! 2 r~l~h!! 1
1
2

~G1 2 G2!G , [13]

and one verifies that

c~h! 5 ­h ReF ~1 2 h2!1y2~x 2 xmax! 1 4~1 2 h2!3y2t

1 E
xmax

` S ~1 2 h2!1y2 2 ~1 2 h2 2 u0~x!!1y2dxG
1

1
2

­h~G1 2 G2!. [14]

After a nontrivial calculation, conditions (Eqs. 4 a–c) trans-
form to the variational conditions of ref. 4 (a misprint in
equation 1.33, line i of this reference in which a factor h is
missing from the second term in the expression for a(h) is
corrected below). This allows us to use the variational formu-
lation of Lax–Levermore–Venakides for the derivation of c,
and hence of g. Indeed, the function c(h), restricted to the
interval [0,1] is the unique maximizer of the functional Q(c)
5 (2a,c) 2 (2g,c1) 1 (Lc,c) where

Lc~h! 5 E
0

1

ln
uh 2 mu
uh 1 mu c~m!dm,

a~h, x, t! 5 4th3 1 ~xmax 2 x 2 6t!h 1E
xmax

x1

~h2 2 1 1 u0~x!!1y2dx,

g~h! 5 E
xmax

x1

~h2 2 1 1 u0~x!!1y2dx,

c1(h) is the positive part of the function c. The benefit of the
variational formulation is that, because of the convexity of the
maximization problem, the uniqueness of c, and hence of G
and g, are guaranteed.
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Remark. The RH steepest descent method also can be
used to analyze potential wells u0(x) , 0: here the critical
behavior of the RHP takes place on the inter val
[minxu0(x),0], rather than the interval [0,1 5 maxxu0(x)] as in
the case of a ‘‘bump.’’ If u0 consists of a ‘‘bump’’ separated
from a well, then the critical region for the RHP is the
interval [minxu0(x),maxxu0(x)].
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