
Hormesis and aging in Caenorhabditis elegans

James R. Cypser*, Pat Tedesco, and Thomas E. Johnson
University of Colorado, Institute for Behavioral Genetics, Box 447 Boulder, CO 80309 FEDEX
ADDRESS ONLY: 1480 30th St, Boulder CO 80303

Abstract
Hormesis has emerged as an important manipulation for the study of aging. Although hormesis is
manifested in manifold combinations of stress and model organism, the mechanism of hormesis are
only partly understood. The increased stress resistance and extended survival caused by hormesis
can be manipulated to further our understanding of the roles of intrinsic and induced stress resistance
aging. Genes of the dauer/insulin/insulin-like signaling (IIS) pathway have well-established roles in
aging in C. elegans. Here we discuss the role of some of those genes in the induced stress resistance
and induced life extension attributable to hormesis. Mutations in three genes (daf-16, daf-18, and
daf-12) block hormetically-induced life extension. However, of these three, only daf-18 appears to
be required for a full induction of thermotolerance induced by hormesis, illustrating possible
separation of the genetic requirements for stress resistance and life extension. Mutations in three
other genes of this pathway (daf-3, daf-5 and age-1) do not block induced life extension or induced
thermotolerance; daf-5 mutants may be unusually sensitive to hormetic conditions.

1. Introduction
The number of widely-accepted environmental interventions that slow aging is limited. Such
interventions can be broadly categorized as caloric restriction, pharmacological interventions
and hormetic treatments. When these interventions are completely understood, some overlap
of mechanisms will likely be found. Caloric restriction is the most widely studied mechanism
of life extension and has been studied extensively in numerous model organisms, especially
rodents, but also Caenorhabditis elegans (Houthoofd et al., 2003; Klass, 1977; Lakowski and
Hekimi, 1998). Another environmental intervention - drug treatments - has also been used to
prolong survival in nematodes (Evason et al, 2005; Melov et al, 2000). A third type of
intervention – hormesis – has become recognized more recently as a reliable mechanism for
extending lifespan, and C. elegans is also a reliable model for further investigation of the
mechanisms underlying this intervention, (Cypser and Johnson 2002, 2003; Lithgow et al.,
1994; 1995).

Hormesis was reported as early as 1887 (for review, see Calabrese et al., 1999a). The term
“hormesis was first coined by Southam and Ehrlich (1943), and can be defined as “stimulatory
effects of low doses of substances known to be toxic at higher doses”. Hormesis typically
stimulates the response 20–60% over the controls. These effects are typically found in response
to doses of 20–25% of the minimum toxic dose, and the stimulatory dosages generally have a
10-fold range (Calabrese and Baldwin 1999b). It should be understood that hormesis is not a
result of the culling of weak individuals from a population subjected to stress, followed by
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increased survival of those individuals who survived the stress because of intrinsic greater
robustness. Experiments using large populations have demonstrated both increased stress
resistance (Khazaeli et al., 1997) and increased life expectancy (Khazaeli et al., 1997;
Michalski et al., 2001) without significant mortality

Resistance to the seemingly paradoxical effects of hormesis necessitated the extended and
exhaustive documentation of the phenomenon, an effort led primarily by Edward Calabrese
(Kaiser, 2003). Those efforts produced both practical and theoretical benefits. The practical
benefit was an additional set of tools useful in studying survival, following the application of
mild stress. The theoretical aspect was further support for the inverse correlation observed
between stress resistance generally and improved survival. This review will focus on the effects
of hormesis upon subsequent stress resistance and life span and also explore how the IIS
pathway, known to modulate aging in the worm, also modulates hormesis.

2. The breadth and reality of hormesis
Hormetic effects have been documented in diverse combinations of stressors and recipient
organism. Such sub-lethal stress pretreatments have been shown to increase germination
growth in plants, cell proliferation in culture, protein turnover, subsequent stress resistance,
and life expectancy. Stressors reported to increase subsequent stress resistance include heat,
cold, hypergravity and pesticides. Increased life span has been reported after a similarly diverse
number of hormetic treatments including heat, cold, hypergravity, ionizing radiation; exercise,
electric shock, and wounding accompanied by regrowth (Martinez, 1996; Minois, 2000). Some
of the earliest work in C. elegans by Lithgow et al (1994; 1995) demonstrated hormesis in
response to sub-lethal heat treatment, affecting both subsequent heat resistance as well as
longevity. We have expanded on that work to demonstrate the close relationship between the
amount of exposure to a toxin and the level of induced stress resistance or induced life extension
in C. elegans (Cypser and Johnson, 2002; Figure 1).

2.1. The basis of hormesis
The biological mechanisms underlying hormesis are far from clear. The hormetic response
may require transcription, translation, and/or post-translational protein modification, such as
phosphorylation. Calabrese and Baldwin (2002) have suggested that hormesis is best defined
by a description of dose and response, and that “…no single hormetic mechanism is expected,
but a common evolutionary-based homeostasis maintenance regulatory strategy is evident.”

The same authors point out that a given hormetic response may reflect one of two forms, either
a direct stimulation or an overcompensation response. Minois (2000) has proposed an
alternative description wherein hormesis is seen as a consequence of metabolic regulation
coupled to the expression of stress response proteins. These two views are not mutually
exclusive; however a full discussion of the molecular nature of hormesis is beyond the scope
of this review.

2.2. Dietary restriction as hormesis
The best-documented and most powerful non-genetic intervention known to extend life span,
in a broad variety of species, is caloric restriction (McCay 1935; Weindruch and Walford
1988; Yu 1994; for review, see Weindruch 1996). Johnson et al. (1996) and Masoro (1998,
2000) have suggested that caloric restriction may be a form of hormesis. Animals restricted to
a balanced diet, containing as little as 60% of the calories they would consume ad libitum, have
life expectancies up to 50% greater than ad libitum controls. This argument requires that caloric
restriction be considered a stressor, and in fact caloric restriction does promote the expression
of stress response factors, including corticosterone, glucocorticoids (Masoro 1995) and heat
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shock proteins (Aly et al., 1994; Heydari et al., 1996; Moore et al., 1998). Caloric restriction
can be induced in the worm in multiple ways. Klass (1977) demonstrated caloric restriction in
response to reduced food concentration. The Eat mutations in C. elegans produce physiological
defects which slow feeding, and also display increased lifespan (Lakowski and Hekimi 1998)
and thermotolerance (Johnson et al., 2001). Houthoofd et al. (2003) have shown that axenic
medium can extend life span about three-fold independently of daf-16. Indeed when this form
of caloric restriction is used to treat a daf-2 mutant, an eight-fold extension in life can be
achieved (Houthoofd et al., 2004).

Complete caloric deprivation – that is, starvation - can also serve as a hormetic treatment to
extend life span of C. elegans. Young adult worms deprived of all food for 1 – 3 days display
an increase in mean life span of 30 – 40%. Interestingly, the relative size of this effect appears
to be reduced in animals carrying a mutation in age-1. It may be that the age-1 mutants have
nearly maximized the effect, rendering sizable further increases in life span unattainable by
the same mechanism (Figure 2). Additionally, a mutation in daf-16 appears to reduce this effect
(Tedesco and Johnson, unpublished).

However, Neafsey (1990) has concluded that mortality analysis of caloric restriction and other
forms of hormesis indicate that they are different entities. In addition, the nematode Eat mutant
which displays the greatest increase in life span [eat-2(ad465)] can have its intrinsic resistance
to heat increased even further by a hormetic heat pretreatment (Figure 3). Although it is not
clear that the effects of both caloric restriction and heat pre-treatment have been maximized,
these results are consistent with the two effects being qualitatively different. Whether these
(presumably) additive effects for thermotolerance translate into increased life expectancy has
not been tested. Taken together, these results indicate that caloric restriction may be a hormetic
phenomenon in the broad sense, but the contributions of caloric restriction and other sub-lethal
stress pretreatments may contribute independently to increased stress resistance and life
expectancy.

3. The correlation between stress resistance and longevity
There is a strong correlation between increased stress resistance and life span extension among
various mutants representing diverse species, including yeast, the nematode, the fly and the
mouse (Finkel and Holbrook 2000). Numerous examples of the correlation between increased
stress resistance and life span extension are known from C. elegans (Johnson et al., 2001).
Furthermore, this correlation has been found in strains derived by selective breeding, in animals
carrying single-gene mutations (Johnson et al, 2001), in transgenic animals, and in response
to environmental interventions. However, while stress resistance appears to be necessary for
life span extension, it is not sufficient; C. elegans carrying the daf-4 or daf-7 mutations are
thermotolerant but not long-lived (Lithgow et al. 1995).

4. Genetics of induced thermotolerance in C. elegans
The IIS pathway mediates both life span and intrinsic stress resistance in C. elegans. Mutations
in age-1 or daf-2 increase both life expectancy (Friedman and Johnson 1988a, b; Kenyon et
al., 1993) and stress resistance (Barsyte et al., 2001; Larsen 1993; Lithgow et al., 1994, 1995;
Murakami and Johnson, 1996; Vanfleteren 1993), and mutations in daf-16 or daf-18 suppress
both the increased life span (Dorman et al., 1995; Kenyon et al., 1993; Larsen et al., 1995;
Mihaylova et al., 1999) and the increased stress resistance (Barsyte et al., 2001; Murakami and
Johnson 1996;). Wild-type animals display greater life span (Butov et al., 2001; Lithgow et
al., 1995; Michalski et al., 2001; Yashin et al., 2001; 2002) and thermotolerance (Cypser and
Johnson, 2002) in response to pretreatment with sub-lethal heat stress.

Cypser et al. Page 3

Exp Gerontol. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Given the well-established correlation between stress resistance and longevity and the
importance of the IIS response pathway to intrinsic longevity, we wondered whether the same
pathway might also modulate hormetic responses. We asked whether this pathway was required
for heat-induced stress resistance, and heat-induced life extension attributable to hormesis.

4.1. Genetics of induced thermotolerance in C. elegans
We have found that several mutants of the IIS pathway display increased thermotolerance in
response to pretreatment with sub-lethal doses of heat. Several dauer-defective mutants that
interfere with signaling (daf-3(e1376), daf-5(e1386), daf-12(m20), daf-16(m26), daf-16
(m27) and daf-16(mgDf50)) were tested and these mutants all displayed induced
thermotolerance similar to that of the wild-type (daf-5 mutants displayed a significantly greater
induced thermotolerance than did wild-type controls). In contrast, we found that although
daf-18(e1375) and daf-18(nr2037) mutants do significantly increase their thermotolerance, the
induced thermotolerance is still significantly less than that displayed by pretreated wild-type
animals (Cypser 2002).

4.2. Genetics of induced life extension in C. elegans
We tested the effects of mutations in daf-3, daf-5, daf-12, daf-16, daf-18, and age-1 on hormetic
life extension caused by sub-lethal heat treatment. We found that three Daf-d mutants, daf-12
(m20), daf-16(m27), and daf-18(nr2037), lack the ability to increase their life expectancy in
response to this pretreatment (Cypser and Johnson, 2003). daf-5 and age-1 mutants (and
daf-3 mutants, although the evidence is not so robust) show induced life extension. age-1
mutants overall display a significant increase in life span after heat pretreatment beyond that
conferred by the age-1 mutation. The daf-5 mutant we tested was significantly shorter-lived
than wild-type controls; however, it is striking that pretreatment with the conditions known to
extend the life span of the wild type compensated for this defect.

5. Discussion
We conclude that genes of the IIS pathway are required for hormetic effects in C. elegans
(Figure 4). daf-18 is required for both hormetic life extension as well as hormetic
thermotolerance. In spite of having no effect on induced thermotolerance, the daf-12 and
daf-16 genes appear to be required for the hormetic life extension seen in response to the same
conditions of heat pretreatment that induces thermotolerance. (In an interesting contrast, Fisher
and Lithgow (2006) have demonstrated an allele-specific role for daf-12 in intrinsic
thermotolerance) Thus some separation of the genetic requirements for stress resistance and
life extension is evident.

The relationship between stress resistance and life expectancy provides an important frame of
context for the study of aging, and hormesis provides an important tool to disentangle improved
survival from secondary phenotypes. The worm is an excellent model of induced stress
resistance and induced life extension, because hormesis has been well-characterized in C.
elegans. Indeed, Rea et al (2005) have shown that level of expression of hsp-16 predicts both
thermotolerance and survival of individual worms subsequent to hormetic conditions. Further
investigations of hormetic phenotypes at the molecular and physiological level should
contribute to our understanding of aging and the life-history tradeoffs that affect aging.
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Figure 1.
Hormetic heat treatments induce both increased thermotolerance and improved survival. The
similarity of the two dose-response curves is consistent with a relationship between stress
resistance and aging. (Modified from Cypser and Johnson, 2002).
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Figure 2.
Short-term starvation extends lifespan in C. elegans. age-1 mutants display a relatively smaller
effect size. Animals in experimental groups were transferred to liquid medium (S Basal)
containing no food for 1 day or two days, then returned to survival medium (Johnson and Wood,
1982) for the duration of survival. Mean ± SEM (days) and p-value (log-rank) compared to
unstarved control: For N2 (unstarved), 14.8 ± 0.3, NA; N2 (starved 1 day), 16.9 ± 0.4, p <
0.001; N2 (starved 2 days): 19.3 ± 0.3, p < 0.0001. For age-1 (unstarved), 25.3 ± 0.4, NA;
age-1 (starved 1 day), 26.5 ± 0.4, p not significant; age-1 (starved 2 days), 28.8 ± 0.4, p <
0.0001.
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Figure 3.
Relative benefits derived from hormesis. Mean ± SEM (hours) and p-value by t-test from
comparison of naïve and heat-pretreated animals (for N2): naive, 9.1 ± 0.4; pretreated, 16.9 ±
1.1, p < 0.0001, (for eat-2[ad465]): naive, 14.8 ± 0.8, pretreated, 19.8 ± 1.1, p < 0.001.
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Figure 4.
Genes of the insulin/IGF-2 signaling pathway are required for induced stress resistance and
induced life extension. daf-18 appears to be required for heat-induced thermotolerance
independently of daf-16. However, the daf-12, daf-16 and daf-18 mutants tested were all found
to be defective for life extension induced by heat pretreatment. (Modified from Cypser and
Johnson, 2003).

Cypser et al. Page 11

Exp Gerontol. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


