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Abstract
Background: Selenium (Se), vitamin C and vitamin E function as antioxidants within the body. In
this study, we investigated the effects of reduced dietary Se and L-ascorbic acid (AA) on vitamin C
and α-tocopherol (AT) status in guinea pig tissues.

Methods: Male Hartley guinea pigs were orally dosed with a marginal amount of AA and fed a diet
deficient (Se-D/MC), marginal (Se-M/MC) or normal (Se-N/MC) in Se. An additional diet group (Se-
N/NC) was fed normal Se and dosed with a normal amount of AA. Guinea pigs were killed after 5
or 12 weeks on the experimental diets at 24 and 48 hours post AA dosing.

Results: Liver Se-dependent glutathione peroxidase activity was decreased (P < 0.05) in guinea pigs
fed Se or AA restricted diets. Plasma total glutathione concentrations were unaffected (P > 0.05)
by reduction in dietary Se or AA. All tissues examined showed a decrease (P < 0.05) in AA content
in Se-N/MC compared to Se-N/NC guinea pigs. Kidney, testis, muscle and spleen showed a
decreasing trend (P < 0.05) in AA content with decreasing Se in the diet. Dehydroascorbic acid
concentrations were decreased (P < 0.05) in several tissues with reduction in dietary Se (heart and
spleen) or AA (liver, heart, kidney, muscle and spleen). At week 12, combined dietary restriction
of Se and AA decreased AT concentrations in most tissues. In addition, restriction of Se (liver, heart
and spleen) and AA (liver, kidney and spleen) separately also reduced AT in tissues.

Conclusion: Together, these data demonstrate sparing effects of Se and AA on vitamin C and AT
in guinea pig tissues.
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Background
Vitamin C is a water soluble antioxidant. In contrast to
many mammals, humans (and guinea pigs) are unable to
synthesise vitamin C due to the lack of the enzyme L-
gulono-gamma-lactone oxidase [1] and therefore must
rely on diet for maintaining adequate levels of the vita-
min. In tissues, the active form of vitamin C, L-ascorbic
acid (AA), can be regenerated by the reduction of its oxi-
dised forms, dehydroascorbic acid (DHAA) and the ascor-
bate free radical in a process mediated by glutathione
(GSH) [2-6]. Notably, however, other systems have also
been implicated in the regeneration of AA [7,8].

Selenium (Se) and vitamin E also function as important
antioxidants within the body. Se is an essential trace ele-
ment that functions in oxidant defence as a component of
selenoproteins [9,10]. Vitamin E is a lipid soluble antioxi-
dant present in cell membranes where it plays a vital role
in protecting against lipid peroxidation [11-13]. Vitamin
E refers to several structurally related compounds; how-
ever, α-tocopherol (AT) is the predominant form found in
animal tissues. Like vitamin C, vitamin E must be
obtained from the diet.

The importance of maintaining adequate levels of Se, vita-
min C and vitamin E is underscored by studies indicating
that low antioxidant status may be associated with
increased risk of developing various diseases [14-16]. Se
has been shown to spare both AA [7,8] and AT [17]. Fur-
ther, sparing effects of AA on AT have also been reported
[18-20]. Given that Se, vitamin C and vitamin E activities
are interconnected, it is important to understand how
deficiency in one or two of these antioxidants influences
the other(s). In this study we sought to explore the sparing
effects of Se and AA on vitamin C and AT in guinea pig, an
in vivo model that cannot synthesise vitamin C.

Methods
Animals and test diets
On arrival, male Hartley guinea pigs (~ 10 days old) (Elm
Hill Breeding Labs, Inc., Chelmsford, MA) were subjected
to a 2 week adaptation period. Following the adaptation
period, guinea pigs (n = 22/diet group) had free access to
one of 4 test diets (Table 1) and demineralised drinking
water. Normal or marginal amounts of AA were given to
each guinea pig in a 0.5 mL aqueous solution via oral dos-
ing by gavage three times per week (i.e. Monday, Wednes-
day and Friday). Amount of AA was calculated from the
previous day's mean body weight for the diet group [2.4
(normal) or 0.3 (marginal) mg AA/100 g body weight].
Normal and marginal AA levels were chosen based on the
AA requirement for growing guinea pigs and previous
studies demonstrating suboptimal dietary AA levels [21-
23]. Test diets were torula yeast-based diets deficient in Se
and similar to diets previously used to induce Se defi-

ciency in guinea pigs [24]. Test diets were supplemented
with 0 (deficient), 0.05 (marginal) or 0.20 (normal) mg
Se/kg diet.

Guinea pigs were killed following an overnight fast by
exsanguination while anesthetised with 3% isoflurane.
Half the guinea pigs per diet group were killed after 5
weeks and the remainder after 12 weeks on the experi-
mental diets at 24 and 48 hrs post AA dosing. Blood was
withdrawn from the abdominal aorta and collected in
heparinised tubes. Plasma was separated from cells by
centrifugation (1000 × g, 20 min, 4°C). Skeletal muscle
(from quadriceps) and soft tissues were extracted and
immediately frozen in liquid nitrogen. Plasma and tissues
were stored at -80°C until analysis. The Health Canada
Animal Care Committee approved the experimental pro-
tocol. Guinea pigs were treated in accordance with the
guidelines of the Canadian Council on Animal Care.

Determination of vitamin C and α-tocopherol in tissues
AA and total vitamin C (following reduction of the sam-
ple with homocysteine) were measured by reverse-phase
HPLC with electrochemical detection as described [25].
DHAA was calculated as the difference between total vita-
min C and AA. Excised tissues were immediately frozen in
liquid nitrogen, a procedure that has been shown to pre-
vent oxidation of vitamin C [26]. To further prevent oxi-
dation of vitamin C, plasma and tissue homogenates were
preserved by treating with metaphosphoric acid to a final
concentration of 0.85% w/v. AA and DHAA standards
could be completely recovered when spiked into tissue
homogenates indicating that with this method both AA
and DHAA are stable in a tissue matrix [27]. Further, time
course experiments revealed that AA and DHAA concen-
trations remained constant over the course of 90 minutes
indicating that AA was not being converted to DHAA. AA
concentrations determined using this method were also
closely correlated with AA concentrations determined
using the 2, 4-dinitrophenylhydrazine method [28]. AT
content was determined by reverse-phase HPLC with flu-
orescence detection [29].

Enzyme and other assays
Se-dependent glutathione peroxidase (Se-GSHPx) activity
was measured essentially as described [30] using a SPEC-
TRAmax PLUS microplate spectrophotometer (Molecular
Devices, Sunnyvale, CA). Liver extracts were prepared by
homogenising in 0.2% Triton-X-100. Se-GSHPx activity is
expressed as U/g protein, where one unit of activity catal-
yses the oxidation of 1.0 mmol of reduced NADPH/
minute. Total plasma GSH was determined by HPLC
using a manual adaptation of the automated NaBH4
reduction and monobromobimane derivatization proce-
dures described previously [31,32]. Liver cytosolic and
plasma protein carbonyls were determined by slot-blot
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immunoassay using reagents from an OxyBlot Protein
Oxidation Detection Kit (Intergen, NY, USA) as previously
described [33]. Lipid peroxide concentrations in liver
homogenates and plasma were determined using a com-
mercially available kit (LPO-CC Lipid Peroxides, Kamiya
Biomedical, Seattle, WA, USA). Protein concentration was
determined by the bicinchoninic acid method [34].

Statistical analyses
Data were analysed by one-way ANOVA and differences
between means were determined by Fisher's least signifi-
cant difference test. For tissue vitamin C, data were ana-
lysed using univariate ANOVA with diet as the main effect.
Since the variability of tissue AA levels increased with an
increase in mean, AA data were transformed using the
square root transformation. Two contrasts were included
in the analyses to test for an effect of Se or AA intake on
tissue AA, DHAA and total vitamin C concentrations. The
Se-D/MC, Se-M/MC and Se-N/MC diet groups were used
to test for an effect of Se intake. These diet groups were
also used to determine whether a decreasing or increasing
trend was present as the amount of Se decreased in the
diet. Trend here refers to an overall increasing or decreas-
ing response to a decrease in dose. To test for an effect of
AA intake, the Se-N/MC and Se-N/NC diet groups were
compared. For vitamin C analyses, data from guinea pigs
killed at week 5, 48 hrs post AA dosing and week 12, 24
hrs post AA dosing were combined in order to increase the
power of the statistical comparisons. The ability to com-

bine these data is predicated on the similarity of the
response (i.e. tissue vitamin C concentrations) of week 5,
48 hrs and week 12, 24 hrs guinea pigs to changes in die-
tary Se or AA. Similarity of the response was determined
by ANOVA. Data are shown as means ± SEM. Statistical
significance was set at P < 0.05. Data were analysed using
Statistica 7 (StatSoft, Tulsa, OK) and SAS (SAS Canada,
Ottawa, Canada) software.

Results
To investigate the sparing effects of Se on vitamin C and
AT when intake of AA is low, guinea pigs were orally
dosed with a marginal amount of AA and fed a diet defi-
cient (Se-D/MC), marginal (Se-M/MC) or normal (Se-N/
MC) in Se. An additional diet group (Se-N/NC) dosed
with a normal amount of AA and fed a normal Se diet was
included in the experimental protocol to allow investiga-
tion of the sparing effects of AA on vitamin C and AT
(comparison with diet group Se-N/MC). Approximately
one third of the guinea pigs fed the Se-D/MC diet devel-
oped paralysis of their hind limbs and showed poor
mobility beginning as early as 4 weeks on the diet. Three
Se-D/MC guinea pigs died or were euthanised prior to the
week 5 necropsy and two prior to the week 12 necropsy.

At week 5, liver Se-GSHPx activity showed a dose-depend-
ent decrease (P < 0.05) with decreasing amounts of Se in
the diet, confirming induction of graded levels of Se status
in the guinea pigs (Table 2). At week 12, Se-D/MC guinea

Table 1: Composition of experimental diets

Ingredients Diets

Se-D/MC Se-M/MC Se-N/MC Se-N/NC

g/kg diet
Torula Yeast 400 400 400 400
Non-nutritive fibre 150 150 150 150
Cornstarch 142 142 142 142
Mineral mix1 90 90 90 90
Sucrose 73.1 73.1 73.1 73.1
Stripped corn oil2 73 73 73 73
Dextrinised starch 51.9 51.9 51.9 51.9
Vitamin mix3 10 10 10 10
Choline chloride 4 4 4 4
L-methionine 3 3 3 3
L-arginine 3 3 3 3
DL-α-tocopherol acetate4 40 40 40 40
Se5 0 0.05 0.20 0.20
L-ascorbic acid6 0.3 0.3 0.3 2.4

1 Dyets no 200151 salt mix for Reid-Briggs guinea pig diet.
2 Containing 0.2 mg Tert-butylhydroquinone/g stripped corn oil.
3 Dyets no 300151 vitamin mix for Reid-Briggs guinea pig diet (Vitamin E omitted).
4 IU/kg diet; added via stripped corn oil.
5 mg/kg diet; added as Na2SeO4.
6 mg L-ascorbic acid/100 g body weight.
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pigs had lower Se-GSHPx activity compared to Se-M/MC
or Se-N/MC guinea pigs. Se-N/MC guinea pigs had lower
Se-GSHPx activity compared to Se-N/NC guinea pigs at
week 12. Plasma total GSH concentrations were similar (P
> 0.05) in guinea pigs fed the different test diets, consist-
ent with a previous study showing no change in GSH lev-
els with decreased Se and vitamin C status [7]. However,
plasma GSH concentrations were lower (P < 0.05) in week
12 compared to week 5 guinea pigs for all diet groups.

Tissue vitamin C and AT concentrations are only pre-
sented for guinea pigs killed at week 5, 48 hrs post AA dos-
ing and week 12, 24 hrs post dosing (see Discussion).
Proportion of DHAA to AA in each tissue was similar
between week 5 and 12 guinea pigs (Fig. 1). The only
exception was plasma, where most of the vitamin C was
present as AA at week 5 and as DHAA at week 12 (Fig. 1G).
The ratio of DHAA to AA varied markedly between tissues.
In testis, the majority of vitamin C was AA (Fig. 1D),
whereas in heart and muscle most of the vitamin C was
DHAA (Fig. 1B and 1E).

Because of the large variability in vitamin C concentra-
tions between individual guinea pigs and the relatively
small number of guinea pigs analysed per diet group, vita-
min C data were combined for week 5, 48 hrs and week
12, 24 hrs guinea pigs to increase the power of the statis-
tical comparisons (see Methods and Discussion). Effects
of Se or AA intakes on tissue AA, DHAA and total vitamin
C concentrations were determined by univariate ANOVA
(Table 3). Differences between the Se-D/MC, Se-M/MC
and Se-N/MC diet groups were determined to test for spar-
ing effects of Se (Se Effect). Additional statistical analyses
were performed to test whether there was a decreasing or
increasing trend in vitamin C concentrations with decreas-
ing Se in the diet [Se Effect (Trend)]. Differences between
the Se-N/MC and Se-N/NC diet groups were determined
to test for sparing effects of AA (AA Effect).

Se intake affected (P < 0.05) AA concentrations in kidney
and muscle (Table 3, Se Effect). Trend analyses confirmed
that the differences detected reflected a decrease in AA
concentrations with decreasing Se in the diet [Table 3, Se
Effect (Trend)]. Significant differences in AA concentra-
tions were not detected (P > 0.05) in liver, heart, testis,
spleen and plasma. However, testis and spleen showed a
decreasing trend for AA with reduction in dietary Se. Total
vitamin C concentrations were affected by Se intake in
liver, heart, testis, muscle and spleen and showed a
decreasing trend with decreasing Se. A Se effect and simi-
lar decreasing trend was observed for DHAA in heart and
spleen. In contrast, the Se effect on liver DHAA reflected
an increasing trend with decreasing Se.

Se-N/MC guinea pigs had reduced (P < 0.05) AA concen-
trations in all tissues compared to Se-N/NC guinea pigs
[Table 3, AA Effect]. DHAA concentrations in Se-N/MC
guinea pigs were also reduced (P < 0.0001) in liver, heart,
kidney, muscle and spleen. All tissues from Se-N/MC
guinea pigs showed decreased (P < 0.0001) concentra-
tions of total vitamin C.

At week 5, there were no significant (P > 0.05) differences
in AT concentrations between diet groups for any of the
tissues analysed (Table 4). At week 12, Se-D/MC guinea
pigs had lower (P < 0.05) AT concentrations in liver, heart
and spleen compared to Se-M/MC guinea pigs (Table 4).
AT was lower in liver, kidney and spleen of Se-N/MC com-
pared to Se-N/NC guinea pigs. In plasma, while sole
restriction of Se or vitamin C showed no effects on AT
concentrations, combined restriction of Se and vitamin C
decreased AT (compare Se-D/MC and Se-N/NC). Com-
bined restriction of Se and vitamin C also decreased AT in
liver, heart, kidney and spleen. Collectively, these data
indicate that reductions in dietary Se and AA singly or in
combination decrease AT concentrations in guinea pig tis-
sues.

Table 2: Liver Se-GSHPx activity and plasma GSH concentration of guinea pigs after 5 and 12 weeks on the experimental diets1

Diet Group Liver Se-GSHPx (U/g protein) Plasma GSH (uM/L)

Week 5 Week 12 Week 5 Week 12

Se-D/MC 15.02 ± 1.32a 14.36 ± 1.49a 7.55 ± 0.45a 4.23 ± 0.20a

(n = 8) (n = 9) (n = 8) (n = 7)
Se-M/MC 33.97 ± 1.87b 30.84 ± 1.58b 8.44 ± 0.85a 3.86 ± 0.13a

(n = 11) (n = 11) (n = 8) (n = 8)
Se-N/MC 46.78 ± 2.70c 35.52 ± 1.90b 7.38 ± 0.49a 4.12 ± 0.31a

(n = 11) (n = 10) (n = 8) (n = 8)
Se-N/NC 57.04 ± 6.46c 43.12 ± 1.70c 7.52 ± 0.92a 4.33 ± 0.38a

(n = 11) (n = 11) (n = 8) (n = 9)

1 Data from guinea pigs killed at both 24 and 48 hrs post AA dosing.
2 Values in a column without a common letter differ, P < 0.05. Values are means ± SEM.
3 n values are in parentheses.
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Vitamin C concentrations in tissues of guinea pigs fed the experimental dietsFigure 1
Vitamin C concentrations in tissues of guinea pigs fed the experimental diets. Bars signify the amount of total vita-
min C (DHAA + AA) in tissues of guinea pigs fed the Se-D/MC, Se-M/MC, Se-N/MC or Se-N/NC diets. The proportions of 
DHAA (white portion of bar) and AA (black portion of bar) are shown. Values are reported as the mean. Number of tissues 
analysed for each diet group are indicated above the bars. For each tissue, data are shown for guinea pigs killed after 5 and 12 
weeks on the experimental diets at 48 and 24 hrs post AA dosing, respectively.
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Given that Se, vitamin C and AT function as antioxidants,
it prompted us to examine tissues for oxidative damage.
Liver cytosol and plasma protein carbonyl and lipid per-
oxide concentrations were similar (P > 0.05) in guinea
pigs fed the different experimental diets (Table 5).

Discussion
The primary objective of this study was to investigate the
sparing effects of dietary Se and AA on tissue vitamin C
and AT concentrations. Guinea pigs were chosen for these
experiments as they are similar to humans in their inabil-
ity to make vitamin C and therefore likely provide a more
relevant model system compared to previously used cell
culture systems [17,18,20] or animal models that have the
ability to make vitamin C [7]. Further, we chose to inves-
tigate the effects of Se under conditions of marginal AA
intake, given that Se may play a more biologically signifi-
cant role in sparing vitamin C and AT when intake of AA
is low.

Only guinea pigs fed the Se-D/MC diet developed paraly-
sis of their limbs. In some cases, the paralysis was severe
enough that the guinea pigs died or had to be euthanised.
These results are consistent with previous studies demon-
strating sensitivity of guinea pigs to disturbances in anti-
oxidant status. Particularly, Se deficiency combined with
vitamin E or C deficiency has been reported to cause skel-
etal muscle damage [24,35]. Further, vitamin E combined
with vitamin C deficiency has been shown to promote
limb paralysis and death due to severe damage in the
brainstem and spinal cord [36].

As part of the study design, guinea pigs were killed after 5
and 12 weeks on the experimental diets at 24 and 48 hrs
following AA dosing. Although analyses of vitamin C data
at each of the four separate time points revealed little dif-

ference between guinea pigs fed different levels of Se, a
discernable decreasing trend for vitamin C concentrations
in tissues with decreasing dietary Se was observed for week
5, 48 hrs and week 12, 24 hrs guinea pigs. In contrast, no
trend was observed for week 5, 24 hrs and week 12, 48 hrs
guinea pigs. The reason for the observed Se effect at differ-
ent times post AA dosing for week 5 and 12 guinea pigs
may be explained by differences in the metabolism of the
dosed AA between younger (week 5) and older (week 12)
guinea pigs. Notably, vitamin C concentrations were
higher for guinea pigs killed at 24 compared to 48 hrs post
dosing for both week 5 and 12 guinea pigs (data not
shown) indicating that vitamin C concentrations rise in
tissues following dosing and then fall over time as the
vitamin is consumed. Increases in tissue vitamin C con-
centrations at early times post dosing and low concentra-
tions after an extended time post dosing may mask any
effects of Se on vitamin C concentrations. Therefore, if the
younger and older guinea pigs metabolised the dosed AA
differently (e.g. differences in AA absorption or rate of AA
consumption by tissues), it would not be surprising that
the Se effects on vitamin C are observed at different times
post dosing for week 5 and 12 guinea pigs. However, addi-
tional studies are required to definitively show age related
differences in AA metabolism in guinea pigs. Nonetheless,
whatever the underlying mechanism for this difference,
we clearly demonstrate here that dietary Se influences tis-
sue vitamin C concentrations.

In vivo, AA is oxidised to DHAA. We show that Se or AA
restriction decreases both the reduced (AA) and oxidised
(DHAA) forms of vitamin C. Interestingly, liver was the
only tissue that showed an increasing trend in DHAA with
decreasing Se in the diet. Impaired regeneration of AA
from DHAA with Se restriction may have resulted in accu-

Table 3: Univariate significance tests for the effects of Se and AA intakes on vitamin C concentrations in guinea pig tissues1

Tissue Se Effect2 AA Effect 3 Se Effect (Trend)4

AA DHAA Total AA DHAA Total AA DHAA Total

Liver NSD < 0.05 < 0.01 < 0.05 < 0.0001 < 0.0001 NSD < 0.005 < 0.005
Heart NSD < 0.05 < 0.05 < 0.01 < 0.0001 < 0.0001 NSD < 0.01 < 0.01
Kidney < 0.05 NSD NSD < 0.005 < 0.0001 < 0.0001 < 0.05 NSD NSD
Testis NSD NSD < 0.05 < 0.0001 NSD < 0.0001 < 0.05 NSD < 0.005
Muscle < 0.05 NSD < 0.05 < 0.001 < 0.0001 < 0.0001 < 0.05 NSD < 0.05
Spleen NSD < 0.05 < 0.01 < 0.0001 < 0.0001 < 0.0001 < 0.05 < 0.05 < 0.005
Plasma NSD NSD NSD < 0.00055 NSD5 < 0.00015 NSD NSD NSD

1 Type III P values are shown; NSD = no statistical difference.
2 Comparison between Se-D/MC, Se-M/MC and Se-N/MC guinea pigs killed at week 5 and 12, 48 and 24 hrs post AA dosing, respectively (n = 31).
3 Comparison between Se-N/MC and Se-N/NC guinea pigs killed at week 5 and 12, 48 and 24 hrs post AA dosing, respectively (n = 22).
4 Analyses to determine a decreasing or increasing trend with decreasing Se in the diet. Comparison of Se-D/MC, Se-M/MC and Se-N/MC guinea 
pigs killed at week 5 and 12, 48 and 24 hrs post AA dosing, respectively (n = 31). All significant values indicate a decreasing trend with decreasing Se 
in the diet, except for liver DHAA which indicates an increasing trend.
5 n = 20.
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mulation of DHAA in liver, perhaps due to slower elimi-
nation of DHAA in liver compared to other tissues.

The observed sparing effects of Se on vitamin C may be
explained by Se's role as a component of selenoproteins.
It has been reported that the Se-dependent enzyme thiore-
doxin reductase (TR) can regenerate AA from DHAA [7]
and the ascorbyl free radical [8]. Although we were unsuc-
cessful in developing an assay to measure TR activity in
guinea pig tissues, it is possible that the low Se diets
reduced TR activity which may have contributed to lower
concentrations of vitamin C. Decreased antioxidant activ-
ity due to decreased activity of Se-dependent enzymes
may also have contributed to the lower vitamin C and AT
concentrations in tissues, since demand for their antioxi-
dant activity may have been increased. The observed spar-
ing effects of Se on AT may also be partly explained by a
secondary effect of Se on AT given that vitamin C may play
a role in the regeneration of vitamin E [37,38]. In this

regard, marginal AA intake reduced AT concentrations in
liver, kidney and spleen.

A reduction in AT with decreased Se or AA intake was only
observed in week 12 guinea pigs suggesting that longer-
term Se or AA deficiency is more detrimental to tissue AT
status than short-term deficiency. Previous studies with
guinea pigs failed to observe reductions in AT in tissues
with Se [24] or vitamin C [39] deficiency, including liver,
which was depleted in AT in this study. However, in con-
trast to these previous studies, this study was of longer
duration and Se-deficient guinea pigs were also fed a mar-
ginal AA diet.

AT concentrations were lower in tissues of Se-D/MC com-
pared to Se-M/MC guinea pigs, but not Se-N/MC guinea
pigs. Given the absence of significant differences between
guinea pigs fed the Se-M/MC or Se-N/MC diets, these data
are likely explained by the large variability in tissue AT

Table 4: Effects of Se and AA intakes on α-tocopherol concentrations in guinea pig tissues1

Animals Liver Heart Kidney Testis Muscle Spleen Plasma2

Week 53 μg AT/g
Se-D/MC (n = 5) 6.50 ± 1.57a 2.22 ± 0.67a 2.68 ± 0.88a 2.42 ± 0.65a 1.46 ± 0.36a 3.71 ± 0.86a 1.26 ± 0.28a

Se-M/MC (n = 5) 12.13 ± 3.42a 3.20 ± 0.86a 2.77 ± 0.81a 2.61 ± 0.84a 1.11 ± 0.42a 5.53 ± 1.22a 1.11 ± 0.18a

Se-N/MC (n = 6) 10.30 ± 2.88a 2.71 ± 1.12a 2.92 ± 1.11a 3.07 ± 0.92a 1.19 ± 0.49a 5.53 ± 1.23a 1.00 ± 0.31a

Se-N/NC (n = 5) 14.78 ± 4.11a 3.70 ± 1.41a 4.91 ± 1.15a 2.74 ± 0.63a 1.38 ± 0.34a 6.75 ± 1.63a 1.13 ± 0.33a4

Week 123

Se-D/MC (n = 4) 10.35 ± 3.58a 2.64 ± 0.77a 3.90 ± 0.92a 2.34 ± 0.59a 0.95 ± 0.32a 5.32 ± 1.58a 0.59 ± 0.27a

Se-M/MC (n = 5) 20.71 ± 1.54bc 6.79 ± 0.72b 5.46 ± 0.72a 2.98 ± 0.35a 1.68 ± 0.31a 8.75 ± 1.02bc 1.10 ± 0.15ab

Se-N/MC (n = 6) 15.10 ± 1.81ab 5.49 ± 0.67ab 5.12 ± 0.64a 2.49 ± 0.21a 1.53 ± 0.25a 7.37 ± 0.87ab 0.73 ± 0.11ab

Se-N/NC (n = 5) 23.87 ± 3.86c 6.37 ± 1.59b 7.98 ± 1.03b 3.63 ± 0.62a 1.66 ± 0.23a 10.76 ± 0.98c 1.48 ± 0.47b

1 AT concentrations in tissues from guinea pigs killed at week 5 and 12, 48 and 24 hrs post AA dosing, respectively.
2μg AT/mL.
3 For week 5 and week 12, values in a column without a common letter differ, P < 0.05. Values are means ± SEM.
4 n = 4.
5 n values are in parentheses.

Table 5: Protein carbonyl and lipid peroxide concentrations in liver cytosol and plasma of guinea pigs after 12 weeks on the 
experimental diets1

Protein Carbonyl Lipid Peroxide

Diet Group Liver cytosol (μmol/g protein) Plasma (μmol/g protein) Liver cytosol (nmol/g wet wt) Plasma (nmol/mL)

Se-D/MC 3.4 ± 0.1 3.5 ± 0.3 91 ± 13 4.1 ± 0.5
(n = 9) (n = 9) (n = 9) (n = 7)

Se-M/MC 3.3 ± 0.1 3.1 ± 0.3 87 ± 13 3.9 ± 0.6
(n = 11) (n = 11) (n = 11) (n = 8)

Se-N/MC 3.4 ± 0.2 3.3 ± 0.2 78 ± 10 2.7 ± 0.6
(n = 11) (n = 11) (n = 11) (n = 8)

Se-N/NC 3.5 ± 0.2 3.8 ± 0.2 84 ± 8 3.3 ± 0.4
(n = 11) (n = 11) (n = 11) (n = 8)

1 Data from guinea pigs killed at both 24 and 48 hrs post AA dosing.
2 Values within each column were not significantly different at P < 0.05. Values are means ± SEM.
3 n values are in parentheses.
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concentrations between individual guinea pigs. However,
these data suggest that marginal amounts of Se are suffi-
cient to maintain tissue AT concentrations.

In most tissues, a large proportion of the total vitamin C
was detected in the oxidised form. The large DHAA/AA
ratios reported here are consistent with data from an ear-
lier study by Hidiroglou et al [40] that reported compara-
bly large DHAA/AA ratios in tissues of guinea pigs dosed
with 1 mg AA/day. In addition, a study by Martensson et
al [41] that used different methodology to measure vita-
min C detected most of the total vitamin C in liver, lung,
kidney and brain of control guinea pigs fed a standard
guinea pig chow (Purina) diet as AA; however, when
guinea pigs were fed an ascorbate-deficient diet for 21
days, 46 and 45% of the total vitamin C was detected as
DHAA in liver and kidney, respectively. It should be noted
that liver and kidney vitamin C concentrations reported in
this study and that of Hidiroglou et al [40] are comparable
to those of the ascorbate-deficient guinea pigs in the study
by Martensson et al [41] showing large DHAA/AA ratios in
tissues. The low tissue vitamin C concentrations reported
in this study reflect the relatively low amounts of AA
administered to the guinea pigs. Given these data, it is
conceivable that reduced vitamin C intakes and conse-
quently tissue vitamin C concentrations promote an
increase in the DHAA/AA ratio in guinea pig tissues.

Se-GSHPx activity decreases with a reduction in Se status
and is often used as a measure of Se nutriture in experi-
mental animals, including guinea pigs [24,42,43]. Inter-
estingly, guinea pigs dosed with marginal AA had lower
Se-GSHPx activity compared to guinea pigs dosed with
normal AA demonstrating a sparing effect of AA on Se-
GSHPx activity. It remains to be determined whether the
decrease in Se-GSHPx activity reflects a decrease in Se sta-
tus or change in some other metabolic process that influ-
ences Se-GSHPx activity.

Lastly, since decreased antioxidant status can lead to oxi-
dation of cellular components, we examined liver and
plasma for oxidative modifications of proteins and lipids.
We failed to detect any differences in protein carbonyl and
lipid peroxide concentrations in liver cytosols or plasma
between guinea pigs fed the different diets. Although
these data indicate the absence of severe oxidative modifi-
cations to proteins and lipids in these tissues, we cannot
rule out the presence of subtle changes that may be
detected with more sensitive assays or differences in other
markers of oxidative stress.

Conclusion
In this study, we performed a comprehensive analysis of
the sparing effects of Se and AA on vitamin C and AT in
guinea pigs, an animal model that is similar to humans

and cannot synthesise vitamin C. Dietary restriction of Se
and AA decreased both the reduced and oxidised forms of
vitamin C as well as AT in tissues. Given these findings
and recent studies indicating inadequate Se intakes in cer-
tain population groups [44-46], further studies evaluating
the health implications and biological significance of
reduced vitamin C and E status attributed to a low Se or
AA diet are warranted.
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