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Abstract

The honey bee queen and worker castes are a model
system for developmental plasticity. We used estab-
lished expressed sequence tag information for a Gene
Ontology based annotation of genes that are differen-
tially expressed during caste development. Metabolic
regulation emerged as a major theme, with a caste-
specific difference in the expression of oxidoreduct-
ases vs. hydrolases. Motif searches in upstream regions
revealed group-specific motifs, providing an entry
point to 

 

cis

 

-regulatory network studies on caste genes.
For genes putatively involved in reproduction, meiosis-
associated factors came out as highly conserved,
whereas some determinants of embryonic axes either
do not have clear orthologs (

 

bag of marbles

 

, 

 

gurken

 

,

 

torso

 

), or appear to be lacking (

 

trunk

 

) in the bee

genome. Our results are the outcome of a first
genome-based initiative to provide an annotated
framework for trends in gene regulation during female
caste differentiation (representing developmental
plasticity) and reproduction.

Keywords: caste development, oogenesis, meiosis,
UCR motifs, AlignACE.

Introduction

 

The evolution of social organization in the Hymenoptera is
intricately linked to the division of reproductive activities
between highly fertile queens and functionally sterile workers
(Wilson, 1971). Ontogenetically, these alternative pheno-
types primarily reflect the differential feeding of larvae,
a mechanism that is especially pronounced in the honey
bee, 

 

Apis mellifera

 

. Queen-destined larvae are fed large
amounts of royal jelly during the entire larval feeding phase,
whereas larvae destined to become workers receive an
altered diet during the last larval instars (Haydak, 1970).
This differential feeding program, in turn, acts on the endo-
crine system where it generates caste-specific signatures
in juvenile hormone (JH) and ecdysteroid titres (Hartfelder
& Engels, 1998; Rachinsky 

 

et al

 

., 1990). These metamorphic
hormones are part of the endocrine programme that drives
morphogenesis into either of the two alternative pathways.

The major differences between an adult honey bee
queen and a worker reside in the reproductive system. A
queen usually has close to 200 ovarioles per ovary and is
capable of producing several hundred eggs per day.
Workers in contrast have between two and 12 ovarioles
per ovary (Snodgrass, 1956), which do not show signs of
ongoing oogenesis as long as the queen is present. If the
queen is lost, a number of workers can activate their
ovaries and produce haploid eggs that will develop into
drones (Kropácová & Haslbachová, 1971; Page & Erickson,
1988; Moritz 

 

et al

 

., 1996).
In order to come to an understanding of the molecular

nature and the signal transduction pathways underlying
these developmental and ovary activation signals, differential
gene expression profiling in honey bee caste development
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was initiated in the late nineties. The main body of currently
available data resulted from a cDNA library generated by
suppression subtractive hybridization (SSH) that con-
trasted queen and worker larvae (Evans & Wheeler, 1999).
Subsequent macroarray analyses (Evans & Wheeler, 2000)
revealed a clustering of these expressed sequence tags
(ESTs) into three distinct groups: genes overexpressed in
young (bipotent) larvae, genes overexpressed in fifth-instar
queen larvae, and genes overexpressed in fifth-instar worker
larvae. A second study focusing on oxidative metabolism
identified a set of differentially expressed mitochondrial
genes (Corona 

 

et al

 

., 1999). The third approach was a DDRT-
PCR screen for hormone responsive genes to investigate
the mode of action of ecdysteroids in the differentiation of the
larval ovary (Hepperle & Hartfelder, 2001). Many of these
EST sets could not be properly annotated at that time, either
because of a limited number of fully sequenced insect
genomes, or because the libraries contained large numbers
of transcripts in 3

 

′

 

-gene regions, including poorly con-
served untranslated regions (UTRs). The draft assembly for
the honey bee genome (Honey Bee Genome Sequencing
Consortium, 2006) now permits a much more reliable anno-
tation of this unique set of experimentally validated genes.

Reproductive activity of honey bees is determined in a
two-step process. The basic differences in reproductive
capacity between queen and workers manifest themselves
during larval development by a wave of programmed cell
death that leads to the destruction of over 95% of the ovariole
primordia in the larval ovary of workers (Schmidt-Capella &
Hartfelder, 1998). In the adult life cycle of each caste, the
co-ordinated flux of egg production through previtellogenic
and vitellogenic growth will require the activity of other sets
of genes. Some of these act as determinants of the major
egg and also embryonic axes. As the fruit fly is the most well
developed insect model for axis determination (St Johnston
& Nüsslein-Volhard, 1992), and maternal factors have not
yet been functionally characterized in the honey bee, search-
ing the genome assembly (Honey Bee Genome Sequenc-
ing Consortium, 2006) provides the first major opportunity
to explore putative patterning networks in honey bees.

The vitellogenic growth phase of the honey bee oocyte
has long been the centre of attention as a means of
describing differential fertility of the female castes (Engels,
1974). The synthesis of large amounts of vitellogenin by the
queen fat body is intimately related to her high reproductive
rate. The equally high vitellogenin titres in haemolymph of
nonreproducing young worker bees, however, have been
an enigma as their ovaries are inactive in the presence of
the queen. Vitellogenin expression has apparently become
uncoupled from oocyte growth during the evolution of the
sterile worker caste and has acquired secondary functions.
It became involved in the production of royal jelly (Amdam

 

et al

 

., 2003) and in the regulation of worker lifespan
(Amdam 

 

et al

 

., 2004) through an inhibitory effect on the

endocrine system (Guidugli 

 

et al

 

., 2005). Along with such
unique life-history traits related to socially organized repro-
duction, honey bees also promise to answer new questions
involving meiosis, as the honey bee genome exhibits
recombination rates that exceed those of all other higher
organisms (Hunt & Page, 1995; Solignac 

 

et al

 

., 2004) and
as honey bee males, being haploid, forego meiosis I in
producing gametes.

The honey bee genome sequence database (Honey Bee
Genome Sequencing Consortium, 2006) has become an
extremely valuable resource not only for comparative genom-
ics, but also for functional genomics. One of the oldest, and
for evolutionary biologists most challenging question in
social insect biology is the development of a reproductive
and a nonreproductive caste (Darwin, 1859). Apart from its
implications on evolutionary theory in terms of kin selection
(Hamilton, 1964), this is essentially a question of how
developmental pathways diverge to shape distinct pheno-
types, and how oogenesis is regulated to achieve levels of
extremely high (queen) and extremely low (worker) fertility.

The annotation of genes related to caste development
and differential reproduction in the honey bee has impli-
cations well beyond this species. It represents the first
genome-wide annotation of a molecular architecture behind
reproductive division of labour. In the light of current dis-
cussions on the importance of alternative phenotypes in
the evolution of novelties (West-Eberhard, 2003) the honey
bee genome information is certainly one of the most valuable
resources. In the present manuscript we delineate a strategy
on how to transcend from a straightforward gene annota-
tion approach to functional studies based on motif analysis
of upstream regulatory regions.

 

Results and discussion

 

From caste to BLAST: differentially expressed genes in 
caste development

 

The full list of genes that are overexpressed in fifth-instar
queen or worker larvae, is made available online in the
Supplementary material (Table 1S). This list includes
scaffold number, corresponding EST number(s), GLEAN3-
predicted protein sequence, similarity and identity indices
to corresponding 

 

Drosophila melanogaster

 

 orthologs, as
well as protein domain information (Pfam).

A general result was that a relatively large subset of
genes (nine of 34) overexpressed in honey bee queen
larvae is represented by putative 

 

Drosophila

 

 orthologs for
which no Gene Ontology (GO) term for Biological Process
is indicated in Flybase. In contrast, all worker genes corre-
spond to functionally relatively well-defined 

 

Drosophila

 

genes. Even when taking into consideration the conceptual
limits in attributing GO terms on biological process from

 

Drosophila

 

 orthologs to honey bee genes, this finding could
have a bearing on basic questions in socioevolution,
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namely, which caste is the novelty, the queen or the
worker(s)? Phrased in other terms, the genome sequence
information now permits to address at a molecular level
questions that are fundamental to understand the role of
(and evolutionary trends in) ontogenetic processes that
structure insect societies, especially in hymenopterans.
Such basic questions are (1) how many degrees of
freedom (or release from constraints) may actually have
been gained from splitting the functions normally performed
by a solitary ancestral hymenopteran female into two or
more castes, and (2) how was this release from constraints
integrated into postembryonic differentiation processes
to generate truly alternative phenotypes. A second obser-
vation of potential interest to functional genomics was that
a relatively large subset of the caste-related genes maps
to chromosome 2 (seven of 51 unique sequences).

Most genes in the caste gene list are represented by one
or two EST hits, except for a predicted 

 

hexamerin 70b

 

 gene
(GB10869-PA). This gene was evidenced by 10 ESTs, one
in a 5

 

′

 

-located exon and nine in the 3

 

′

 

 region (five ESTs
comprising parts of exon 7 and parts of the 3

 

′

 

-UTR, the
other four ESTs landing in exons 6 and 7). The macroarray
data (Evans & Wheeler, 2000) established this gene as
overexpressed in the worker caste. Hexamerins are an
important class of storage proteins that show interesting
expression patterns related to caste and reproduction in
many social insects (Martinez 

 

et al

 

., 2001; Hunt 

 

et al

 

.,
2003; Zhou 

 

et al

 

., 2006a,b). A cDNA encoding the honey
bee Hexamerin 70b subunit has recently been cloned and
sequenced (Cunha 

 

et al

 

., 2005), and hormone manipula-
tion experiments showed that the abundance of 

 

hexamerin
70b

 

 transcripts in larval development is positively cor-
related with high levels of JH and ecdysteroids. This

could actually reflect a regulatory feedback function in JH
titre regulation, as exemplified in the termite 

 

Reticulitermes
flavipes

 

, where the Hex1/Hex2 ratio controls JH availability
for caste-specifically differentiating tissues (Zhou 

 

et al

 

.,
2006b).

Within the honey bee caste genes for which GO infor-
mation was imported and deduced from their 

 

Drosophila

 

orthologs we noted a predominance of terms clustering
as ‘cellular physiological process’ (95%; GO:0050875) and
‘metabolism’ (90%; GO:0008152) in the ‘Biological Process’
(GO:0008150) category (Fig. 1A). GO-statistics differences
between queens and workers became apparent in terms
clustering as ‘cell differentiation’ (0% for queen and 28.5%
for workers; GO:0030154) and ‘metabolism’ (96% for
queen and 78.5% for worker; GO:0008152) in the ‘Biological
Process’ (GO:0008150) (Fig. 2A).

With respect to ‘Molecular Function’ (GO:0003674),
most terms were related to mRNA translation (‘nucleic acid
binding’ (38%; GO:0003676), ‘structural constituent of
ribosome’ (24%; GO:0003735), ‘protein binding’ (12%;
GO:0005515), ‘nucleotide binding’ (12%; GO:0000166),
‘translation factor activity, nucleic acid binding’ (7%;
GO:0008135). Further important terms were ‘oxidoreductase
activity’ (19%; GO:0016491) and ‘hydrolase activity’
(16.5%; GO:0016787) (Fig. 1B). For these latter two terms
we noted potentially interesting differences related to caste,
with ‘hydrolase activity’ being overrepresented by worker
transcribed genes, whereas ‘oxidoreductase activity’ was
exclusively represented by queen genes (Fig. 2B). Even
though these GO assignments on Molecular Function are
based on evidence from 

 

D. melanogaster

 

, without experi-
mental evidence for 

 

Apis mellifera

 

, the corresponding
genes are well conserved in sequence and show the

Figure 1. Dominant gene ontology terms for (A) 
Biological Process and (B) Molecular Function in 
honey bee genes with an experimentally validated 
caste-specific expression pattern during the last 
larval instar. The graph was generated by a 
FatiGO analysis set at level 3. Frequencies 
indicate the appearance of GO terms in the total 
set of queen and worker differentially expressed 
genes.
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relevant protein domains (Supplementary material,
Table 1S

 

)

 

, and thus, are indicative of functional trends.
In general terms, the caste-specific separation into

metabolic pathway preferences, oxidoreductases vs.
hydrolases, may reflect the switch in diet that a worker
larva experiences during the fourth and fifth larval instar.
This represents a switch from a protein/lipid-rich diet to
a more carbohydrate-rich diet (Haydak, 1970), and this
switch apparently is accompanied by an increase in the
expression of genes coding for proteins with hydrolase
activity. Similar switches in gene expression patterns
have recently been reported for 

 

D. melanogaster

 

 in an
experiment where larvae were shifted from a cornmeal
diet to a banana diet (Carsten 

 

et al

 

., 2005), resulting in
the up- or downregulation of 55 genes of a test population
of 6000. Among these are five genes with dehydrogenase/
oxidoreductase activity. These parallels in dietary switch
responses are indicative of conserved coregulated gene
networks. An open question is, of course, how these can be
co-opted to generate different phenotypes, such as the
castes of social insects. In this respect, social insects clearly
go a big step beyond the simple metabolic switch response
seen in 

 

Drosophila.

 

 They have apparently incorporated
divergent metabolic regulation into a network architecture
consistent with morphogenetic differentiation. This required
that metabolic regulation became integrated through
the endocrine system with developmental patterning
processes.

The importance of metabolic regulation on caste devel-
opment has also come to light in a recent Representational
Difference Analysis (RDA) study on caste development in
the highly eusocial stingless bee 

 

Melipona quadrifasciata

 

(Judice 

 

et al

 

., 2006)

 

.

 

 This is particularly interesting because
in this genus, caste development is thought to be based on
a genetic predisposition (Kerr, 1950). Metabolic regulation
may, thus, be a 

 

sine qua non

 

 for caste development, and

caste-specific metabolic pathways may be set in motion
rather independently of the nature of the initial switch
(nutritional or genetic). The question of how this metabolic
switch may integrate with the resultant endocrine signature
characteristic for each caste is still a widely open field, but,
recent studies in 

 

Drosophila

 

 showing an interaction between
ecdysone and insulin signalling in the determination of
body size (Colombani 

 

et al

 

., 2005; Mirth 

 

et al

 

., 2005) may
provide a lead.

This is also the point to reflect on how justified it is to
heuristically rely on 

 

Drosophila

 

 orthologs and to use their GO
attributes in a developmental context (caste differentiation)
that has no parallel in 

 

Drosophila.

 

 A recent gene expression
profiling study in the ant 

 

Camponotus festinatus

 

 employing
a microarray set-up of 384 clones showed significantly
different expression levels for larval vs. adult ants in 91
genes (21 confirmed by qRT–PCR), including an 

 

Apis
hexamerin 70b

 

 ortholog (Goodisman 

 

et al

 

., 2005). When
comparing the temporal expression patterns of these ant
genes with expression profiles for their respective 

 

Drosophila

 

orthologs (Arbeitsman 

 

et al

 

., 2002) relatively little accord
was noted for the two species, leading to the suggestion
that these genes may have taken on distinct functions
due to the long divergence time between dipterans and
hymenopterans (Goodisman 

 

et al

 

., 2005). Differences
aside, these examples show that in practically all studies on
large-scale functional considerations in gene expression, we
are strongly wedded with 

 

Drosophila

 

, and even though
functional divergence in orthologs may have occurred,
there is little experimental gene-by-gene evidence available
for any of the major insect orders outside of Diptera.

Functional studies are clearly profiting from the now
available honey bee genome sequence, as evident from
the increasing number of RNAi experiments in honeybees
(see citations in Honey Bee Genome Sequencing Consor-
tium, 2006). This is still a small number compared with

Figure 2. Gene Ontology categories with caste-
specific expression patterns for Biological 
Process (A). Genes classified as part of cell 
differentiation processes are significantly 
overexpressed in workers, whereas genes related 
to metabolism are overexpressed in queen larvae. 
In the Molecular Function categories (B) we 
observed an apparent split indicating differential 
enzyme preferences in queens (overexpress 
oxidoreductases) and in workers (overexpress 
hydrolases). The graph was generated by a 
FatiGO analysis set at level 3. Frequencies 
indicate the appearance of GO terms in the queen 
(black bars) and worker differentially expressed 
genes (grey bars).
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the large-scale RNAi assays established for 

 

Drosophila

 

(Boutros 

 

et al

 

., 2004), but the development of cell culture
approaches in the honey bee (Bergem 

 

et al

 

., 2006) repre-
sents a step in this direction.

Alternatively, regulatory functional associations between
genes and their integration into networks can be inferred
from the presence of response elements in upstream
control regions. In our analysis of differentially expressed
genes in queen-worker development we took a bioinformatics
approach for a first look into the molecular architecture of a
developmental polyphenism.

 

Motif search in upstream regions of differentially expressed 
genes

 

The genes related to caste development are among the
first honey bee genes for which experimentally validated
expression data were generated (Corona 

 

et al

 

., 1999;
Evans & Wheeler, 1999, 2000; Hepperle & Hartfelder,
2001; Guidugli 

 

et al

 

., 2004). Certainly, these 51 genes do
not comprise all the genes involved in caste development
but they are expected be prominent players as they were
the ones that stood out in the SSH and DDRT-PCR
approaches. The 51 caste genes do not represent gene
families but rather fall into many very different molecular
function categories. This made us ask whether the
observed overexpression pattern of different genes in
either queen or worker larvae may be associated with the
occurrence of specific regulatory motifs in the upstream
control regions (UCR) of these genes.

Three different algorithms, AlignACE (Roth 

 

et al

 

., 1998),
MEME (Bailey & Elkan, 1995) and MDscan (Liu 

 

et al

 

.,
2002) were used to construct a pipeline for detecting
overrepresented motifs in the two unaligned sets of UCR
sequences for the caste-specifically expressed genes. This
pipeline was run on a ‘top-10’ set of 12 genes (six for each
caste), which showed the most pronounced caste differ-
ences in expression (Evans & Wheeler, 2000) and also
on a randomly selected set of UCRs (background control).
We calculated four different metrics for each motif: MAP
score (Roth 

 

et al

 

., 1998), a group-specificity score (Church
score) (Hughes 

 

et al

 

., 2000), and a ROC AUC and MNCP
metric (Clarke & Granek, 2003). A first set of filters was
used to detect motifs with a potential for regulatory functions
(MAP score 

 

≥

 

 5; ROC AUC 

 

≥

 

 0.7). This resulted in 46 motifs
out of 123 total UCR motifs found in the queen UCR set
and in 71 motifs out of 261 total found in the worker UCR
set (Supplementary material, Table 2S

 

)

 

.
A parametric statistical test (

 

MANOVA

 

; 

 

P

 

 = 0.0001;
Wilks’ = 0.78; 

 

F

 

 = 7.2) and a nonparametric statistical test
(Kolmogorov–Smirnov; Table 1) on ROC AUC and MNCP
indices showed that these two sets of filtered motifs are
significantly different from a randomly selected set of
motifs. The rank-order metrics, ROC AUC and MNCP, have
previously been used to compare the association of short

regulatory sequence features with gene expression data
(microarray analyses on coregulated genes) and they have
been useful in flagging false positives erroneously included
in ‘top-10’ sets of differentially expressed genes (Clarke &
Granek, 2003).

To select highly specific motifs found in each data set we
used the group-specificity score (Church score 

 

≤

 

 1e

 

−

 

05

 

;
Hughes 

 

et al

 

., 2000) to identify the most likely motifs
involved in decision making for pathways leading to queen
(two motifs, Fig. 3A) or to worker development (12 motifs
with Church score 

 

≤

 

 1e

 

−

 

07

 

, Fig. 3B). As the SSH and DDRT-
PCR approaches on caste development can be expected
to retrieve only a subpopulation of such genes, these motifs
represent only a partial scenario of the transcriptional
regulatory network underlying caste development. The
motifs can now be used to screen other GLEAN3-predicted
genes to integrate a candidate list of putatively coregulated
genes in caste development that can be submitted to
further experimental validation.

Each motif found in UCRs of queen (46) and worker (71)
overexpressed genes was compared with the entire set
of 

 

D. melanogaster cis

 

-regulatory motifs contained in the
TRANSFAC database (version 4.0; Wingender 

 

et al

 

., 2000).
Only alignments passing 80% identity for each position-
specific site matrix (PSSM) were considered as significant
matches. Whereas none of the most specific motifs for
each caste showed similarity to any of the 

 

D. melanogaster

 

motifs, some of the more ubiquitous ones did resemble
binding sites of transcription factors, such as 

 

Antennapedia,
Ultrabithorax

 

, 

 

zerknüllt

 

, 

 

even skipped

 

, 

 

trithorax-like

 

, 

 

tailless

 

,

 

paired

 

, 

 

fushi tarazu

 

 and 

 

Adh transcription factor 1

 

 (Supple-
mentary material, Table 2S).

When we plotted the positions of the two queen and the
12 worker motifs in the UCRs of the caste-specifically
expressed genes (Fig. 4) an interesting pattern emerged
for the worker-specific motifs. Some of the worker motifs
appeared to be clustered and occurring in tandem; further-
more, they were positioned relatively close to the predicted
translation start sites in some of the genes that are over-
expressed during worker development (annotation results
of these genes are listed in Supplementary material,
Table 1S). A position close to the predicted translation start

Table 1. Kolmogorov–Smirnov analysis of ROC AUC and MNCP metric for 
statistical significance of putative regulatory motifs in upstream control 
regions of genes with queen or worker-specific expression patterns. These 
motifs were contrasted with a random set of motifs detected in a random set 
of UCRs of GLEAN3-predicted honey bee genes.

Group pairs ROC AUC MNCP

Random × (Queen + Worker) P > 0.1 P < 0.001
Random × Queen P > 0.1 P < 0.005
Random × Worker P > 0.1 P < 0.001
Queen × Worker P < 0.1 P > 0.1
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sites is generally taken as a sign of strong regulatory effect
(Davidson, 2001).

As caste development is highly dependent on changes
in haemolymph titres of JH and ecdysteroids we also
screened the UCRs of the differentially expressed genes
for putative nuclear receptor binding sites. Regulatory
elements involved in the JH response are not well under-
stood yet, so any prediction in this direction would be
elusive (Wheeler & Nijhout, 2003). Functional ecdysone
response elements (EcRE) have, however, been identified
and it is now well established that the EcR/USP complex
binds to direct or inverted (palindromic) repeats (Riddi-
hough & Pelham, 1987; Antoniewski et al., 1995; Perera

et al., 2005). A PSSM search (Wassermann & Sandelin,
2004) based on a canonical representation (rGkTCAaT-
Gamcy) (Perera et al., 2005) did not reveal any putative
EcRE motif in the UCRs of the 51 caste-differentially
expressed genes. However, this does not rule out that
these genes respond to changes in JH and/or ecdysteroid
titres as these hormones require EcR/USP binding prima-
rily in the expression of early genes, but not necessarily for
the late response genes (Li & White, 2003; Sullivan &
Thummel, 2003).

In conclusion, the predictions from such a combined
strategy that searches for group-specific and for conserved
regulatory motifs in GLEAN3 predicted honey bee genes

Figure 3. Putative regulatory motifs and their consensus sequences in UCRs of queen and worker overexpressed genes. Scores for MAP, Church, ROC AUC 
and MNCP metrics indicate degree of group specificity and significance level.
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represents a major transition from nonhypothesis-driven
high-throughput screens to hypothesis-driven searches for
context-dependent gene expression in honey bees. Such
directed search results can serve as a platform for experi-
mental analyses of genome-wide integration in hormonal
control of caste development in bees. In addition, this study
exemplifies how existent algorithms for detecting shared
regulatory motifs can be joined into a toolkit for predicting
coregulated gene expression patterns in honey bees. These
methods have been shown to be robust and are gaining
acceptance for use in functional and comparative genomics
(Liu et al., 2004; Pritsker et al., 2004; Zhu et al., 2005).

Oogenesis and reproduction

As caste development sets the stage for reproductive
division of labour, genes involved in reproductive processes
are strong candidates for functional analyses. In the present
study we performed BLAST searches to identify honey bee
orthologs for a list of 32 fly genes with the GO attribute
‘oogenesis’ and for four genes specifically related to
‘vitellogenesis’. The list for fly genes involved in nuclear
events in germ cells consisted of 20 genes for ‘female
meiosis’, 12 genes for ‘recombination’ and 21 genes under
the heading ‘chromosome segregation including segregation

distortion’ (Supplementary material, Table 3S). In some cases,
these GO attributes for fly genes, of course overlapped.

BLASTN and BLASTX searches for these fly genes
against the honey bee genome assembly 3.0 and the
GLEAN3 Official Set (aa) retrieved statistically well sup-
ported putative bee orthologs for most of these candidates.
For the genes involved in meiosis, recombination and chro-
mosome segregation this finding, although not unexpected,
is of interest as meiosis in the haploid honey bee drone is
strongly modified when compared with a normal diploid
meiosis. The first meiosis is initiated but the nucleus
remains undivided and only the superfluous centrioles are
eliminated as cytoplasmatic buds (Hoage & Kessel, 1968).
An interesting gene, thelytoky (th), has recently been
mapped in this context (Lattorff et al., 2005). It prevents
almost completely meiotic recombination in the automixis
of laying workers of the Cape honey bee. As an indication
of the interplay between meiosis and later development,
this locus also appears to be an integral part of various
gene cascades involved in caste determination (Lattorff
et al., 2006).

The fly genes retrieved in the GO searches for ‘oogenesis’
represent a much larger range of Molecular Function
categories, such as transcription factors, proteins regulating

Figure 4. Map of the group-specific motifs found in queen and worker UCRs of caste-specifically expressed genes. The coding region is represented by the 
GLEAN3 prediction number (assembly 4.0) with arrows indicating the translation start site. Asterisks mark UCRs of the ‘top10’ set used to find the over-
represented motifs.
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translation by RNA binding, RNA helicases, enzymes
(ubiquitination, transfer of sugar residues, sulfotransferase),
GTPase activity, and several factors binding to cytoskeletal
proteins (Supplementary material, Table 3S). This wide
range of functional categories is expected as these genes
are involved in a series of different steps during oogenesis
in the polytrophic meroistic ovary. Oogenesis starts out with
the maintenance of germline and somatic stem cell identity
in the germline niche in the upper germarium. A key gene
involved in this process is pumilio (Forbes & Lehmann,
1998), which is represented by a highly conserved bee
ortholog, GB10504-PA. The second step is the formation of
germ cell cysts, the determination of an oocyte within each
cyst, and the survival of these cysts, involving genes such
as benign gonial cell neoplasm (Lin et al., 1994), encore
(Hawkins et al., 1996), ovo and ovarian tumour (otu) (Staab
& Steinmann-Zwicky, 1995), all well conserved in the honey
bee genome. Interestingly, we could not find a clear bee
ortholog for bag of marbles (bam), which is one of the prime
early response genes in the cystoblast differentiation
pathway in Drosophila (McKearin, 1997).

The third step comprises previtellogenic growth of the
follicle, and during these stages a number of maternal
factors are deposited and anchored either within the oocyte
or in the perivitelline space that define the egg and the
future embryonic axes (for review see, St Johnston &
Nüsslein-Volhard, (1992). In the list of Drosophila genes
involved in early steps of axis determination a couple of
surprises came up in the search for honey bee orthologs.
A big surprise was that we could not find a gurken ortholog
in the bee, even though this gene sets up both the anterior–
posterior and dorsal–ventral axes in the Drosophila egg
(González-Reyes et al., 1995), whereas downstream
components of the Gurken signalling cascade appear to
be preserved in the bee genome (Honey Bee Genome
Sequencing Consortium, 2006). Similar apparent gaps in
constituents of patterning cascades were noted for the
terminal regions of the embryo, such as a lack of a torso
ortholog, whereas its ligand, torso-like, is represented by a
well conserved ortholog in the bee (GB18663-PA).

With respect to genes involved in the final processes of
oogenesis we primarily looked at genes that play a part
during vitellogenesis. There are four genes of interest in this
class, the primary one coding for the yolk protein precursor
vitellogenin. This gene has already been sequenced for the
honey bee (Piulachs et al., 2003) and, as expected, it is
much more related to vitellogenins of other insects and
even vertebrates than to the Drosophila yolk proteins,
which apparently are derived from lipases (Hagedorn et al.,
1998). The second gene of interest is the bee ortholog to
yolkless, as this (GB16571-PA) could represent a putative
vitellogenin receptor. The other two Drosophila genes with
clear orthologs in the bee are CG18641 and CG12139,
which code for a lipase and an LDL receptor, respectively.

General conclusions

The current analysis made use of previous experimental
analyses on differential transcription during caste develop-
ment of honey bee larvae. In the annotation of these genes,
which includes references to Gene Ontology terms asso-
ciated with their respective Drosophila orthologs, two major
configurations emerged. First of all, worker genes were
better defined in terms of GO attributes, compared with the
relatively large number of queen genes that had no GO
terms associated to their respective Drosophila orthologs.
Even when taking into consideration the conceptual limits
in attributing GO terms on molecular function and biological
process from Drosophila orthologs to honey bee genes,
this finding could have a bearing on general basic
questions in socioevolution, namely, which caste is more
divergent from a nonsocial reproductive female bee proto-
type or reproductive ground plan, the queen or the worker?
Less speculative is the second major conclusion coming
out of the GO analysis for Molecular Function, showing and
confirming (Eder et al., 1983; Corona et al., 1999) the
important role of metabolic regulation in caste development.
This facet is demonstrated especially clearly in the
caste-specific expression of oxidoreductases (queen)
vs. hydrolases (workers).

The honey bee genome information provided not only a
much improved annotation platform for caste-specifically
expressed ESTs, but, even more so, opens the possibility
to explore putative regulatory features of the honey bee
genome. In the current study we employed modified Gibbs
sampling and expectation-maximization algorithms (Alig-
nACE, MDScan, MEME) to detect group-specific motifs in
gene regions up to 1000 bp upstream of translation start
sites. We detected 14 motifs that were significantly over-
represented in the caste genes, when compared with
corresponding motifs found in a random set of GLEAN3-
predicted honey bee genes. The localization of such
motifs in UCRs of worker-overexpressed genes revealed
a clustering of such motifs close to the predicted basal
promotor regions suggesting strong regulatory effects.
Such search strategies and the detected motifs can provide
the lead to reveal and unravel cis-regulatory networks for
and within specific contexts of honey bee biology.

Caste polyphenism in social insects makes a strong case
for the emergence of novelties at a microevolutionary level
(West-Eberhard, 2003). Without the pretension to discuss
exhaustively the mechanisms underlying this surge of
developmental plasticity, two major themes become
apparent in this and other studies. Regulatory change has
been demonstrated in the shut-down of wing disc pattern-
ing cascades in ants (Abouheif & Wray, 2002) and is
certainly also implicit in observed temporal changes in
gene expression during postembryonic development of
ants and bumble bees (Goodisman et al., 2005; Pereboom
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et al., 2005). Such change would be expected to involve
cis-regulatory elements, that is, change in transcription
factor binding sites in UCRs, as approached in this study,
and also evolutionary change in response thresholds to
circulating morphogenetic hormones (for review see, Hart-
felder & Emlen, 2005). The second and quite unexpected
theme is the acquisition of new systemic functions by
evolutionary rather old proteins, such as vitellogenin and
hexamerins. These apparently unspectacular proteins
have evolved into key players for caste evolution and repro-
ductive division of labour via novel regulatory connectivity
with JH (Amdam et al., 2004; Guidugli et al., 2005; Zhou
et al., 2006a,b).

Experimental procedures

Selection and annotation of ESTs representing differentially 
expressed genes in honey bee caste development

The starting point were 164 entries (mainly 3′-ESTs) in GenBank
(BG101532–BG101697) from an SSH library (Evans & Wheeler,
1999; Evans & Wheeler, 2000). When validated by macroarray
analyses, a clustering into three major classes became apparent:
(I) genes overexpressed in young larvae; (II) genes overexpressed
in last instar queen larvae; and (III) genes overexpressed in last
instar worker larvae. For this study we excluded the class I ESTs
because their expression is not caste-specific, but rather represents
expression differences between young (still bipotent) and older
larvae. To the class II queen ESTs (82) we added one complete
cDNA entry (AY601642) from a DDRT-PCR screen (Corona et al.,
1999), and to the class III set of worker ESTs (40) we added seven
GenBank dbEST entries (BG149167–BG149173) from a DDRT-
PCR screen on ovary development (Hepperle & Hartfelder, 2001).

The EST sequences were submitted to BLASTN searches
(parameters: -G 2 -E 3 -W 15 -F ‘m D’ -U -e 1e-20) against genome
sequence assembly Amel_v3.0 to retrieve matches in linked or
unlinked genomic contigs and to exclude no-matches (seven ESTs
in queen). ESTs that aligned within the same scaffold were
checked for clustering and overlap. This clustering also served to
exclude genes that were represented by non-overlapping ESTs
from both castes. This procedure generated a set of 51 unique
putative gene sequences overexpressed in either queen (34) or in
worker larvae (17). These 51 nonredundant sequences were
submitted to BLASTX searches against the Official Set of GLEAN3-
predicted protein sequences (cut-off value at 1e−20). For ESTs with
no significant protein sequence matches, the genomic regions
adjacent to the mapped EST were searched to find neighbouring
ORFs, especially those nearest to putative 3′ UTRs of predicted
proteins, as the EST libraries have a bias in this direction.

Official Set protein sequences were aligned against Amel_v3.0
sequence assembly using TBLASTN to map protein to genome
and subsequently, they were aligned using BLASTP against the
GenBank nonredundant (nr) and the Flybase protein sequence
databases. The manual features annotation procedure of the
Artemis 7.0 program (Rutherford et al., 2000) was used to map
ORFs, putative splice sites of exons and ESTs to genome coordi-
nates. The final annotation file was generated with a Python script
in GFF format (http://www.sanger.ac.uk/Software/formats/GFF/).

Honey bee sequences annotated as orthologs to D. mela-
nogaster genes were putatively assigned the GO terms listed in

the respective Flybase entry. In addition, the definition of new GO
terms (Biological Process ontology) related to caste development
and polyphenism (GO:0048651 and GO:0048650, respectively)
was co-ordinated with the Gene Ontology Consortium (Ashburner
et al., 2000). The FatiGO web tool (Al-Sharour et al., 2004) was
used to cluster GO terms (level 3 setting) for Biological Process
and Molecular Function.

For the detection of conserved domains, the 51 protein
sequences were screened against the Pfam database (http://
www.sanger.ac.uk/Software/Pfam/) using the HMMER platform
(current release 2.3.2, http://hmmer.wustl.edu/), with a cut-off
value set at 1e−10.

Annotation of oogenesis and reproduction genes

In order to identify putative honey bee orthologs to D. melanogaster
genes we searched the following GO terms in Flybase: ‘oogenesis’
(GO:0009993), ‘vitellogenesis’ (GO:0007296), ‘female meiosis’
(GO:0007143), ‘DNA recombination’ (GO:0006310), and ‘chromo-
some segregation’ (GO:0007059). Genes related to segregation
distortion were searched for in Flybase in phenotypic descriptions
and mutant effects of D. melanogaster genes as this phenomenon
is not represented by a GO term. Hence this group may be more
heterogeneous than the others. From this list we removed genes
of pleiotropic function (multifaceted GO entries in Biological Process)
and genes that lacked defined transcripts in the Drosophila
genome database.

For the GO terms ‘oogenesis’ and ‘vitellogenesis’ we performed
TBLASTN and BLASTP searches for 42 fruit fly genes against the
Amel_v3.0 genome assembly and the GLEAN3-predicted protein
sequences (Honey Bee Genome Sequencing Consortium, 2006),
respectively. The orthologous D. melanogaster gene was charac-
terized by the same procedure as described above (reciprocal
best hit). For the GO terms ‘female meiosis’, ‘DNA recombination’,
‘chromosome segregation’ and the non-GO group ‘segregation
distortion’, transcripts of D. melanogaster were searched against
nr databases at NCBI using BLASTP. The obtained sequences
were searched against the Amel_v3.0 genome assembly and the
GLEAN3-predicted protein sequences using TBLASTN. Homolo-
gous sequences (threshold 1e−10) were predicted using the BioEdit
software (Hall, 1999). ORFs showing significant homology (BLASTP,
threshold 1e−20) were assembled and used in BLASTP searches
against the nr databases at NCBI.

Motif search in upstream regions in caste-specifically expressed 
genes

In order to detect overrepresented motifs in the upstream control
regions (UCRs) of the two sets of caste-related genes we selected
gene subsets based on two criteria: (1) those that had shown the
highest caste-specificity in the array analyses (Evans & Wheeler,
2000), and (2) those that had a conserved 5′ region when compared
with the Drosophila orthologs. These ‘top10’ genes consisted of six
queen genes (GB13072, GB11628, GB19380, GB14798, GB16047
and GB18242) and of six worker genes (GB10869, GB12371,
GB12239, GB10428, GB19006, GB14758). The motif search was
conducted separately on the two sets of UCR sequences using three
methods: AlignAce (Roth et al., 1998), MEME (Bailey & Elkan,
1995) and MDscan (Liu et al., 2002). Default parameters values
were used in all searches, except that GC content in intergenic
regions was set to 25%, representing the background value estab-
lished for the honey bee UCR database generated in this study.

http://www.sanger.ac.uk/Software/formats/GFF/
http://
http://hmmer.wustl.edu/
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The database containing 10,156 UCR sequences was gener-
ated by parsing the Official Set annotation file (downloaded in GFF
format from http://www.beegenome.hgsc.bcm.tmc.edu/beeftp.html)
to extract upstream regions starting from the terminal 5′-genomic
coordinate of each predicted CDS. The UCRs were arbitrarily set
to a size frame of 1000 nucleotides (Roth et al., 1998), but were
trimmed whenever another predicted ORF was detected in any of
these regions.

The MAP (maximum a priori log likelihood) score, group specificity
score (called Church score in this manuscript) (Hughes et al.,
2000), ROC AUC (area under the curve for a receiver-operator
characteristic plot) metric and MNCP (mean normalized condi-
tional probability) metric (Clarke & Granek, 2003) were used to
detect motifs that most likely correspond to biologically significant
cis-regulatory elements. The filters ran on the UCRs of the subsets
of queen and worker genes were a MAP score cut-off value of 5.0,
followed by a ROC AUC cut-off at 0.7, followed by a group specificity
score cut-off at 1e−05. The UCR database of all GLEAN3 predicted
honey bee genes was used as the background to calculate
these metrics.

A parametric test (MANOVA) and a nonparametric test (Kolmogorov–
Smirnov) were conducted to identify significance levels for the two
sets of filtered motifs found in the UCRs of caste-specifically
expressed genes against filtered motifs found in the random UCR
set. Random motifs were sampled from a motif database (10 391
motifs) generated by running our script 100 times with a random
sets of UCR sequences.

The main criterion for identifying known regulatory motifs among
these caste-specific ones was the alignment of the PSSM for each
bee motif with the Drosophila melanogaster sequences in the
TRANSFAC database (release 4.0) (Wingender et al., 2000). Only
the alignments passing a threshold of 80% identity for each PSSM
were considered as significant matches. In addition, we checked
for a specific binding motif, the EcR/USP motif (rGkTCAaTGamcy-
3′), known to function in the expression of genes responding to
morphogenetic hormone titres (Perera et al., 2005).

Operating system and programming tools

An Ubuntu Linux (version Breezy) operating system was used to
implement all scripts and pipelines designed for annotation proce-
dures and motif discovery. The Python programming language
(http://www.python.org/), Biopython (http://www.biopython.org),
and TAMO (Tools for Analysis of Motifs) packages (Gordon et al.,
2005) were used in program design. Other web applications were
built using the Zope application server (http://www.zope.org)
hosted at http://zulu.fmrp.usp.br/beelab.
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