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Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using
a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during
foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however,
unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel
immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain
neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this
method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently
increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron
subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive
location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is
associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an
essential basis for dance communication.
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INTRODUCTION
A variety of animals, from nematode to human, show social

behavior [1,2]. The social behaviors allow for individuals to create

an entity greater than the sum of the individuals and provide the

key to successful adaptation to the environment. One of the most

striking features of the highly-ordered animal society is the ability

to share information among individuals. In turn, higher commu-

nicative ability is a fundamental basis that enables animals to

maintain a more evolved society [3].

Honeybees (Apis mellifera L.) organize a highly-ordered society

and have a sophisticated communicative ability known as the

‘dance communication’ [4–7]. Worker honeybees that find a rich

food source return to the hive and might transmit the information

on the location of the food source to their nestmates using a

symbolic dance. The dance information is decoded into the spatial

information of the food source by the other worker bees (followers)

that follow the dancers [4–7]. During foraging flights, worker

honeybees integrate the incoming sensory information: they

estimate the distance of food sources based on the amount of

optic flow they perceive, and direction based on the position of the

sun [5,8,9], which are the essential bases for the expression of

dance communication. Although there is a considerable amount of

research concerning the sensory basis of these remarkable abilities

[8–11], almost nothing is known about the underlying neural

mechanisms.

As a first step in elucidating the neural mechanisms of these

remarkable abilities, it is important to identify active brain regions

in dancing and foraging honeybees that might be involved in

dance communication and/or information integration during

foraging flight. Although methods to detect the expression of

immediate early genes (IEGs) as markers of neural activity are

widely used in vertebrates [12–15], neural IEGs have not yet been

identified in insects. In the present study, we identified a novel IEG

that can be used as a neural activity marker and found that the

neural activity of a mushroom body (MB) neuron subtype is

preferentially increased in foraging honeybees, suggesting its

involvement in information integration during foraging flight.

RESULTS

A novel non-coding IEG, kakusei, can be used as

a marker to visualize neural activity in the honeybee

brain
To identify IEGs, we used the differential display method to search

for honeybee genes that are immediately induced in the brain by

neural activity. To evoke strong neural activity in the brain,

seizures were induced by awakening workers from ice-cold

induced anesthesia, because some of the IEGs were identified by

inducing seizures in the animals [16,17]. When the workers are

awoken from anesthesia, they show seizure-like movement with

their legs and body shaking. Using differential display screening of

approximately 6500 bands, which were derived from mRNAs

extracted from the brains of seizure-induced and non-treated bees,

49 candidate bands were identified. Among them, we selected nine

candidates that showed a pronounced difference in band intensity

between the seizure-induced and non-treated bees. After pre-
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liminary Reverse transcription-polymerase chain reaction (RT-

PCR) analysis of these candidates, we finally focused on a single

candidate that showed the most prominent and reproducible

seizure-induced transcript increase. As a result, we identified

a novel IEG that we named kakusei after the word ‘awakening’ in

Japanese (the whole sequence of kakusei was deposited as DDBJ

accession number AB252862). To examine the size of the kakusei

transcript, we performed Northern blot analysis using total RNA

isolated from whole brains of bees anesthetized with CO2 and bees

awakened from CO2-induced anesthesia. The results indicated

that the induced kakusei transcript was approximately 7 kb long

(Figure 1A). There was no significant open reading frame in any of

the three possible reading frames of the kakusei cDNA sequence,

suggesting that the kakusei transcript functions as a non-coding

RNA (Figure 1B). RT-PCR experiments and sequence analysis

also confirmed that the contig kakusei sequence is expressed as

continuous transcripts (Figure 1C).

Kakusei expression was transiently induced in the whole brain

after awakening the workers from anesthesia induced by either

CO2 [Figure 1D; Sz (seizure)-induced] or ice-cold (data not

shown). Real-time RT-PCR revealed that kakusei is expressed

predominantly in the brain, suggesting a brain-specific function

(Figure 1E). In situ hybridization revealed that kakusei expression

can be detected in every brain region, including the MBs, optic

lobes (OLs), and antennal lobes (ALs) in a seizure induction-

dependent manner (Figure 2C–J), suggesting that kakusei can be

used as a marker in broad brain regions. In addition, kakusei signals

(purple) were detected exclusively in the nuclei (green) of brain

neurons (Figure 2K–O), reflecting the characteristics of the kakusei

transcript as a non-coding RNA. This notion was clearly

demonstrated when the kakusei transcript localization was com-

pared to that of actin, which is transported to the cytoplasm to be

translated into protein and is detected as a broadly-distributed

signal in the cytoplasm (Figure 2P). This characteristic kakusei

signal staining enabled us to count and quantify the number of

kakusei-positive neurons.

We next examined whether kakusei expression reflects physio-

logical neural activity by testing whether kakusei expression was

induced in the brain upon light exposure. First, workers were dark-

adapted by keeping them in the dark overnight. The next day,

experimental bees (light-exposed) were exposed to white light for

30 min, and then used for in situ hybridization. Dark-adapted bees

were used as a control. Kakusei expression was detected in the OL

and MB neurons of the light-exposed bees (Figure S1A–F). The

expression of kakusei was particularly prominent in the lamina

neurons, which receive direct input from retinal neurons (Figure

Figure 1. Identification and characterization of a novel non-coding immediate early gene, kakusei. (A) Northern blot analysis was performed using
RNAs extracted from the brains of workers collected 15 min after seizure induction (Sz-induced lane) and workers anesthetized with CO2 for 15 min
(Control lane). Using the same membrane, actin was detected as a loading control. The approximately 7-kb long signal is indicated by a triangle. (B)
Overview of kakusei cDNA contig and open reading frame analysis. Arrows indicate cDNA subclones identified by 59-and 39-rapid amplification of
cDNA ends (RACE) methods. The thin red bar in the middle of the arrows shows the DNA fragment identified by differential display screening (DD
fragment). The solid bar indicates the full-length consensus kakusei cDNA. Lower box indicates open reading frame analysis in each reading frame of
the consensus kakusei DNA. Note the lack of significantly long open reading frames. (C) Actual expression of the assembled cDNA sequence was
confirmed by RT-PCR using primers designed to amplify the regions shown in (B). Bands of the expected size were detected for both regions (a) and
(b), and the sequence was the same as the consensus sequence. Experiments were repeated five times, and performed with (+) or without (2) the RT
(reverse transcriptase) reaction, confirming that there is no genomic DNA contamination in the samples. (D) Time course of kakusei expression
investigated by real-time RT-PCR. (E) Kakusei expression in various body parts investigated by real-time RT-PCR (*, P = 0.0487; **, P = 0.0036; Student’s
t-test). All data are shown as the means6SEM.
doi:10.1371/journal.pone.0000371.g001
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S1C and D). In contrast, there was no strong kakusei expression in

the AL neurons (Figure S1G and H). These results indicate that

kakusei can be used as a marker to visualize physiological neural

activity in the honeybee brain.

To further examine whether kakusei expression can be detected

in the brains of bees that exhibit physiologic behaviors, we studied

kakusei expression in the brains of bees exhibiting phototactic

behavior. According to a previous report [18], we collected

foragers that moved to the lighted side and nurse bees that did not

move to the lighted side 30 min after the start of the phototactic

behavior, and investigated kakusei expression in the brains (see

Figure S2 for the experimental procedures). Almost the same

kakusei expression pattern was observed in the brains of both the

foragers and nurse bees: a large number of neurons in the optic

lobes were kakusei-positive (Figure 3), which was similar to the

findings in the light-exposed bees (Figure S1). These results suggest

that kakusei expression is not so sensitive as to be induced by the

neural activity specific to phototactic behavior, and that the

activity in the optic lobes, which could be induced by visual inputs

upon light illumination, is predominant even in the brains of bees

that exhibited phototaxis. The fact that kakusei expression was

observed in the optic lobes of bees that were not dark-adapted and

had natural phototactic behavior strongly suggests that kakusei

expression reflects neural activity under normal physiologic

conditions, although we still cannot exclude the possibility that

light-exposure is a stressor to the honeybee.

Neural activity is increased in the small-type Kenyon

cells of the dancer brain
The workers shift their tasks from nursing their brood (nurse bees)

to foraging for nectar and pollen (foragers) according to the

number of days after eclosion [4,7]. When foragers successfully

find food sources, some of them perform a dance to enroll

Figure 2. Kakusei can be used as a marker to visualize neural activity in the honeybee brain. (A and B) Schematic drawings of the rostral (A) and caudal
(B) brain hemisphere of worker honeybees. Positions of neuron somata are shown in color. (C–J) Expression of kakusei was detected by in situ
hybridization using coronal brain sections of control (C, E–G) or seizure-induced (Sz-induced) (D, H–J) bees. Areas corresponding to panels (E–J) are
boxed in (C) and (D). (K–O) Subcellular localization of kakusei was investigated by fluorescent in situ hybridization. Nuclei were visualized by SYTOX
Green, which stains DNA. Numbers of each picture indicate time after seizure. Actin mRNA was detected as a control that is translated into protein in
the cytoplasm (P). AL, antennal lobe; Class II KCs, class II Kenyon cells; DL, dorsal lobe; dOL, dorsal OL; lKCs, large-type Kenyon cells; MB, mushroom
body; OL, optic lobe; PL, protocerebral lobe; sKCs, small-type Kenyon cells; vOL, ventral OL.
doi:10.1371/journal.pone.0000371.g002
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followers to forage [7]. Therefore, we next examined kakusei

expression in the brains of the dancers, followers, and nurse bees to

identify the brain regions involved in dance communication

(Figure 4). The individual workers were caught immediately after

confirming their behaviors in the observation hives, and used for in

situ hybridization. The bees caught from the observation hives

were immediately anesthetized by ice-cold water and kept on ice

until use for in situ hybridization to maintain the current state of

the kakusei transcripts in the brain. There was a characteristic

kakusei expression pattern in the dancer brains, especially in the

MBs (Figure 4B). The honeybee MBs consist of three types of

intrinsic neurons termed large-type Kenyon cells (lKCs), small-

type KCs (sKCs), and class II KCs (Figure 4E) [19–22]. The most

prominent kakusei expression was observed in the sKCs (Figure 4B

and F), whose somata are located in the center of the MBs

(Figure 4A and E). In contrast, only a small number of positive

cells were detected in the brains of followers and nurse bees

(Figure 4C, D, G, and H). Kakusei expression in the central

complex neurons was not clear, as we could not identify the central

complex neurons in our in situ hybridization experiments.

Quantitative analysis revealed that the number of kakusei-

positive cells in the sKCs was approximately 20 times higher in the

dancers than in the followers or nurse bees (Figure 4I). In addition,

kakusei expression was also weakly induced in the lKCs and class II

KCs, as well as in the dorsal and ventral OL neurons (dOL and

vOL, respectively) (Figure 4I). A three-factor ANOVA [F1: bee

type; F2: brain region (repeated measure); F3: brain hemisphere

(repeated measure)] revealed that there was a significant difference

between the bee type and brain region (F1 and F2: P,0.0001,

respectively; significant interaction between F1 and F2: P,

0.0001). In contrast, there was no significant difference between

the right and left hemispheres (F3: P = 0.9455). Significant

differences between bee types were observed in the dOL, vOL,

lKCs, sKCs, and class II KCs (Figure 4I; *, P,0.05; **, P,0.01;

Tukey-Kramer’s test). These results indicate that the neural

activity in these brain regions, especially the sKCs, is increased in

the dancer brain. The differences in kakusei expression between

dancers and followers could not be due to their different develop-

mental stages but only to their behavioral differences, because

both the dancers and followers are thought to be of the same

behavioral stage [5,7]. Thus, the prominent neural activity in the

sKCs observed in the dancer brains is likely due to their

characteristic behaviors.

Neural activity of the small-type Kenyon cells is also

increased in the forager brain
According to the expression profile (Figure 1D and Figure 2K–O),

kakusei expression reflects neural activity that occurred 15 to

60 min prior to sampling of the bees. In our observation, dancers

repeated the dance every 5 to 7 min and the foraging every 10 to

15 min. Thus, the neural activity detected in the dancer brains

might be due not only to the dancing behavior, but also to the

preceding foraging behavior. To address this question, we

examined kakusei expression in the brains of foragers. Only some

of the foragers that succeed in finding food display dance behavior

[7,23]. Thus, when we analyze foragers, only some of them are

expected to be dancers.

Therefore, we collected foragers with pollen loads (an indication

that they were successful in finding food) in front of the hive

entrance before we checked whether or not they danced in the

hive. The results indicated that every forager (N = 12) had a kakusei

expression pattern similar to that of the dancers (N = 6). In

addition, there was no significant difference in the density of

kakusei-positive cells in the MB neurons, including in the sKCs,

between these bees [Figure 5; P.0.05, two-factor ANOVA (F1:

bee type; F2: brain hemisphere)]. Thus, these results suggest that

the increased sKC neural activity in the dancer brain is associated

with foraging behavior rather than dancing behavior, although we

cannot exclude the possibility that the foragers we examined also

exhibited the dance behavior shortly before the observation

period.

Re-orienting bees showed different kakusei

expression patterns from foragers and dancers
Foraging behavior might involve multiple behavioral processes,

such as visual, olfactory, tactile, and gustatory experiences, flying,

landmark learning and memory, information processing for the

dance communication, etc. We next examined whether the sKC-

preferential kakusei expression is associated with forager-specific

behavioral components or components that are common to the

other behaviors, such as flying, visual experience, or landmark

learning and memory. We investigated kakusei expression in the re-

orienting bees, which were collected as the workers that fly around

the hive to re-orient themselves to the hive when the location of

the hive has changed. For this, we moved the hives at night with

the entrance closed. The next morning, we opened the entrance

Figure 3. Kakusei expression in the brains of bees that exhibited
phototaxis. In situ hybridization was performed using thin sections
(10 mm) of the brains of nurse bees that did not move to the light side
(N = 4, A–D) and foragers that had phototactic behavior (N = 5, E–H). (C
and G) Magnified views of boxed regions in panels (B) and (F),
respectively. Bars indicate 100 mm. Arrows indicate kakusei-positive
cells. Kakusei expression was detected both in the mushroom bodies (A
and E) and optic lobes (B, C, F and G) of nurse bees (A–C) and foragers
(E–G), and not in the antennal lobes (D and H).
doi:10.1371/journal.pone.0000371.g003
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for 5 min and then caught the bees flying around the hive 0, 15,

and 30 min later. Kakusei expression was increased in the MBs in

a time-dependent manner in the re-orienting bees (Figure 6A–C

and E), suggesting that this neural activity is induced by re-

orienting behavior. One-way ANOVA among re-orienting bees

revealed that the time effect was significant for every MB neuron

type (Figure 6E: P’s,0.0001–0.003). In contrast to sKC-

preferential kakusei expression in the foragers, however, kakusei

was induced in all KC types in the re-orienting bees (Figure 6A–C

and E). The proportion of kakusei-positive cells in the sKCs

compared to that in the lKCs was significantly higher in the

foragers than in the re-orienting bees (Figure 6F). To exclude the

possibility that the neural activity in the re-orienting bees is due to

the increased light exposure when they leave the hive, a similar

experiment was performed using re-orienting bees from trans-

parent observation hives (Figure 6G and H). In this experiment,

a significant time-dependent increase in kakusei expression was

observed in every MB neuron subtype in the re-orienting bees

(P,0.0001, one-way ANOVA), like in the re-orienting bees from

the normal hives, indicating that the increased kakusei expression in

the re-orienting bees is due to re-orienting behavior, and not

merely to light-exposure (Figure 6G and H). Here, the workers

Figure 4. Neural activity of the sKCs is prominently increased in the dancer brain. (A and E) Schematic drawings of the caudal hemisphere (A) and MB
(E). (B–D and F–H) In situ hybridization of kakusei in the dancer (B and F), follower (C and G), or nurse bee (D and H) brains. (I) Quantification of
kakusei-positive cells in various brain regions. Asterisks indicate significant difference from other behavioral groups (*, P,0.05; **, P,0.01; Tukey-
Kramer’s test after ANOVA). Arrows indicate the kakusei-expressing neurons.
doi:10.1371/journal.pone.0000371.g004
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that performed re-orientation flights were probably foragers, also

suggesting that the differences in the kakusei expression pattern

between the brains of re-orienting bees and foragers/dancers

are due to differences in behavior, but not age. These results

demonstrate that the active brain regions are different between the

re-orienting bees and foragers/dancers, suggesting that the sKC-

preferential kakusei expression in forager/dancer brains is not due

to behavioral components in common with those of re-orienting

bees, like visual experience, flying, or landmark learning and

memory. Rather, the forager-specific behavioral components are

likely to be responsible for the sKC-preferential kakusei expression.

DISCUSSION
In the present study, using novel methods to visualize neural activity

in the honeybee brain, we demonstrated that neural activity in the

MBs, especially the sKCs, is prominently increased in the brains of

dancer and forager honeybees. In contrast, the neural activity of both

the sKCs and lKCs was increased in the brains of re-orienting

workers. These findings strongly suggest that sKC-preferential

activity, but not mere MB-preferential activity, is associated with

behavioral components that are specific to foraging flight.

The MBs are believed to be important for higher sensory

integration in the insect brain [24,25]. Partial ablation of the MBs

impairs only complex olfactory learning without affecting simple

olfactory learning [26,27]. In addition, in the honeybee brain, all

sensory modalities investigated (visual, olfactory, gustatory, and

mechanosensory) project to the MBs [19,20,28–32]. Furthermore,

foraging experience greatly influence the MB neuropile volume

increase and the MB neuron outgrowth [33,34]. Although these

findings imply that the MBs are the appropriate brain regions to

process complex information during foraging behavior, such as the

calculation of distance and direction, there was no direct evidence

whether the MB neurons are actually active in forager brains. The

methods that we established in this study provide the first opportunity

to investigate neural activity in the brains of naturally behaving

honeybees and revealed that the MB neurons are active in the

dancers and foragers, although these methods are limited to labeling

only cell bodies and not the neuropile because kakusei encodes a non-

coding RNA whose expression is confined to the nuclei.

Our study demonstrated that neural activity of the sKCs, one of

the MB neuron subtypes, was prominently increased in the dancer

and forager brains. Although the inputs and outputs of the sKCs

have been well investigated, the role of the neural circuitry

composed by the sKCs is unknown [19,20,28,29,32]. The calyx

(input region) of the honeybee MB is divided into three zones: lip,

collar, and basal ring. The sKCs project dendrites to the basal ring

zone, whereas the lKCs project to the lip or collar zone [19]. On

the other hand, all sensory modalities investigated (visual, olfac-

tory, gustatory, and mechanosensory) project to both the basal ring

and lip/collar zones, which are then relayed to both sKCs and

lKCs [19,20,28–32]. Studies of the anatomy of the bee brain

suggest that the basal ring zone receives multi-modal (visual,

olfactory, gustatory, and mechanosensory) inputs and extensive

recurrent inputs from extrinsic MB neurons, whereas the lip and

collar zone receive mono-modal (olfactory and visual, respectively)

inputs [19,30,31]. In addition, the sKCs are composed of neurons

with different morphologies [19]. Thus, we speculate that the

sKC-preferential neural activity observed in the forager/dancer

brains reflects the complex activity within the MB neural networks

required for sensory integration during the foraging flight. Recent

studies suggest functional differences among the KC types based

on their gene expression patterns [21,22,35–38]. For example,

activation of Amfor, one of the genes preferentially expressed in the

sKCs, affects the onset of foraging behavior [18,38]. These

findings are also consistent with our notion that the sKCs play

roles in higher integration of the complex information that

accompanies foraging experience.

Prominent kakusei expression was detected only in the forager

brains, not in the follower brains (Figure 4), possibly due to the

differences in their foraging experience during the hour before

sampling. The followers often show reduced foraging activity

before they start following the dance [7,23]. Thus, considering the

short half-life of kakusei expression, it is possible that this behavioral

difference is reflected in the kakusei expression in the follower

brains. In addition, there were strikingly different kakusei

expression patterns in the MBs between the re-orienting and

foraging workers. Because the re-orienting bees fly around to form

spatial memory regarding their hive location [39], they have

several behavioral components in common with the foragers. How

then are the differences in kakusei-expression between re-orienting

and forager/dancer bees explained? Foraging behavior is different

from orienting behavior in some ways: for example, foragers need

to calculate the distance and direction of food sources, memorize

them in association with food information, and recall them

repetitively to repeat foraging, which involves much broader and

multi-modal sensory integration than just orienting [39–41]. Thus,

it is possible that the increased activity in the sKCs in the forager

brains is associated with these behavioral components and reflects

such sensory integration. Alternatively, it is also possible that the

sKC activity is important for both the foraging and re-orienting

behaviors and the relative repression of the lKC activity is

important for the foraging behaviors. If this is the case, the

integration of sensory information during foraging flight might

result from interactions between active sKCs and inactive lKCs.

Here we identified the transcript of novel IEG, kakusei, as a non-

coding nuclear RNA. Although microRNA, which is expressed in

response to neural activity, has been reported in vertebrates

[42,43], kakusei is the first example of a long non-coding nuclear

RNA that shows an immediate early response to neural activity.

Long nuclear RNAs regulate gene expression [44,45], whereas

microRNA post-transcriptionally regulates gene expression [46].

In general, vertebrate IEGs encode transcription factors and have

roles in modulating neural functions in an activity-dependent

manner [47]. Thus, kakusei might regulate gene expression as a long

non-coding RNA to modulate neural function.

Figure 5. Foragers showed similar kakusei expression pattern to the
dancers. Quantification of kakusei expression in the brains of foragers
and dancers. Foragers also showed the sKC-preferential kakusei
expression pattern. There was no significant difference in the number
of kakusei-positive cells (P.0.05; two-factor ANOVA). Note that we
repeated the experiments for the ‘dancer’ group here, and bees used in
the ‘dancer’ group for this experiment were different from those used in
the previous experiment (Figure 4).
doi:10.1371/journal.pone.0000371.g005
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Although methods using IEGs as markers of neural activity are

widely applied in vertebrates [12–15], no IEG has yet been

reported in the insect brain. Thus, this is the first use of an IEG to

identify an active brain region in the insect. Future studies

examining kakusei expression after a well-defined experience of

various sensory modalities such as gustatory, tactile, olfactory, and

visual (colors, patterns, etc.) should dramatically enhance our

ability to interpret the present data. Moreover, in future studies,

the link between kakusei expression and neural activity will need to

be clarified to reveal the kind of neural activity that is reflected by

kakusei expression.

Due to limitations of the experimental methods, detailed

behavioral components that induce kakusei expression in the sKCs

remain to be examined. Nonetheless, the present study provides

important insight into the neural basis of sensory integration

during foraging flight, which might be related to the dance

communication. It also describes a useful method for mapping

active brain regions involved in behaviors of interest in the

honeybee.

MATERIALS AND METHODS

Bees
European honeybees (A. mellifera L.) were purchased from a local

dealer and maintained at the University of Tokyo. Observation hives

were made as previously described with some modification [7].

Figure 6. Re-orienting bees and foragers showed different kakusei expression patterns. (A–D) Representative in situ hybridization pictures of kakusei
expression in re-orienting bees and foragers. Arrows indicate the kakusei-positive neurons. Note that kakusei expression pattern is different between
the re-orienting bees and foragers. (E) Quantification of kakusei expression in the brains of re-orienting bees and foragers. (F) Ratio of kakusei density
in the sKCs to lKCs. (G) Quantitative data of kakusei expression in re-orienting bees and dancers caught from transparent observation hives. Note the
different kakusei expression pattern between re-orienting bees and dancers. (H) Ratio of kakusei density in the sKCs to lKCs. Asterisk indicates
significant difference between foragers/dancers and the other groups (*, P,0.01; Tukey-Kramer’s test after ANOVA).
doi:10.1371/journal.pone.0000371.g006
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Differential display
Worker honeybee brains were dissected out from each of 10 bees

anesthetized on ice and bees awakened from ice-induced anesthesia,

which showed a seizure-like phenotype. Total RNA was isolated with

TRIzol (Invitrogen), treated with DNase I, and reverse transcribed

with SuperScript II (Invitrogen). The differential display method was

performed as described previously using a Fluorescent Differential

Display Kit and LA Taq polymerase with a combined total of 216

primer sets (Takara) [21,22]. Bands of interest were excised,

reamplified, and subcloned into a pGEM-T vector (Promega).

Northern blotting
Whole brain total RNA was isolated from each of 10 bees

anesthetized by CO2 and bees awakened from CO2-induced

anesthesia. RNA was subjected to 1% formaldehyde-agarose gel

electrophoresis, transferred to a nylon membrane, and hybridized

with 32P-labeled riboprobes. 32P-labeled riboprobes were synthe-

sized by T7 polymerase with Strip-EZTM RNA Kit (Ambion) from

a template containing the fragment isolated by differential display

(DD fragment; from+4511 to+5159).

cDNA cloning
To identify the whole length of kakusei cDNA, 59-and 39-rapid

amplification of cDNA ends (RACE) methods were performed

repeatedly using the SMART RACE cDNA Amplification Kit

(Clontech).

RT-PCR
RT-PCR experiments were performed using LA Taq (Takara)

according to the manufacturer’s protocol and the SMART RACE

cDNA as templates. Primers were designed to amplify the regions

shown in Figure 1B; (a) 59-CACGCTCGTCGTCGTGCCTTG-

CTCAGATAA-39 and 59-TTCAGAGCACGTTGGAACTAATC-

TCGCG-39, (b) 59-ACCTTGGAACGTGAAAGCGCATTTTC-

GA-39 and 59-AACCGTGTCCTTCTGCAGACACCTGACA-39

Quantification of the kakusei transcript
The expression of kakusei was induced by awakening bees from

CO2-induced anesthesia. Control bees were kept in CO2. Total

RNA was extracted from three to five bees for each sample. Real-

time RT-PCR was performed with Light Cycler-DNA master

hybridization probes (Roche) according to the manufacturer’s

protocol, using gene-specific primers (kakusei; 59-GGAAACAGG-

TGGTTTGATGACCATTG and 59-CACGTTCCAAGGTTT-

AACGATGCG, actin; 59-GAAATGGCAACTGCTGCATC and

59-TCCACATCTGTTGGAAGGTG) and fluorescent probes

(kakusei; fluorescein isothiocyanate (FITC) probe, 59-CGCTG-

TAGTGCGTTTTCACTCGGATCGA, and LC-Red640 probe,

59-TCCGAGGAAATCCGAGCAAAGTTCGTTC, actin; FITC

probe, 59-CCATGAAAATTAAGATCATCGCGCCAC, and

LC-Red640 probe, 59-CGAGAAGAAATATTCCGTATGGAT-

TGGTG). The amount of kakusei transcript was normalized with

that of actin and is shown as relative to the value of control bees at

0 min or to the whole brain. There was no significant difference in

the levels of actin expression between control and seizure-induced

bees.

In situ hybridization and image analysis
In situ hybridization was performed as described previously with

some modification [22,48]. Frozen coronal brain sections (10 mm

thick) were fixed in 4% paraformaldehyde in phosphate buffered

saline, pretreated, and hybridized with digoxigen (DIG)-labeled

riboprobes. The DIG-labeled riboprobes were synthesized by T7

or SP6 polymerase with a DIG labeling mix (Roche) from

a template containing the fragment isolated by differential display

(from+4511 to+5159). After stringent washes, DIG-labeled ribop-

robes were detected immunocytochemically with peroxidase-

conjugated anti-DIG antibody (1:500; Roche) and TSA Biotin

System (Perkin Elmer). Sense probes were used as negative

controls and the signals were confirmed to be antisense probe-

specific in every experiment. Micrographs of fluorescent in situ

hybridization were taken using an IX71 confocal microscope

(Olympus). SYTOX Green (Molecular Probes) was used to stain

the nuclear DNA [22]. Intensity and brightness of the micrographs

were processed with Photoshop software (Adobe).

For quantification, the brain regions were defined as shown in

Figure 2A and B. The rostral section was defined as the section

containing the AL, and the caudal section was defined as the

section containing the DL. The numbers of kakusei-positive cells

were manually counted from rostral and caudal sections. For each

animal, one rostral and one caudal section were analyzed. The

area of each brain region was measured using ImageJ analysis

software (NIH, http://rsb.info.nih.gov/ij). The amount of signal

was divided by the area and the values from two sections were

averaged, when there were two data points for one individual (e.g.,

MB and OL neurons). Sections to be counted were randomly

selected from many sections. The density of kakusei-positive cells

was shown as a value relative to 100000 mm2. Micrographs were

numbered and signals were counted by an investigator blind to the

bee type. The number of examined bees is shown in the figure.

Statistical analyses were conducted by F-test and Student’s t-test

using Microsoft Excel (Microsoft) or JMP (SAS) software. Multiple

comparisons were performed using one-way analysis of variance

(ANOVA) and Tukey-Kramer’s test. Statistical comparisons were

made within the same brain hemisphere. Data are shown

means6standard error (SEM) throughout this paper.

SUPPORTING INFORMATION

Figure S1 Kakusei expression in response to light-exposure. (A–

H) In situ hybridization of kakusei in the brains of dark-adapted (A,

C, E, and G) or light-exposed after dark-adaptation (B, D, F, and H)

bees. (C and D) Magnified view of the boxed region in panels (A) and

(B), respectively. Kakusei expression was detected only in the OL

neurons (B, D, and H) and MB neurons (F). Arrows indicate the

kakusei-positive neurons. LA, lamina; ME, medulla; RE, retina.

Found at: doi:10.1371/journal.pone.0000371.s001 (6.90 MB TIF)

Figure S2 Schematic drawings of the phototaxis experiments.

First, approximately 20 foragers and 20 nurse bees were fed honey

and kept separately in transparent boxes under room light

conditions for 24 h (A and D: Here, only 4 bees are drawn for

simplicity.). Then, a light (100 W lamp) was set in the one side of

the box and kept for 30 min (B and E). During 30 min radiation,

almost all of the foragers and a part of nurse bees (approximately

10 bees) moved to the light side (C and F). We therefore collected

foragers that moved to the light side and nurse bees that did not

move to the light side, and investigated kakusei expression.

Found at: doi:10.1371/journal.pone.0000371.s002 (0.54 MB TIF)
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32. Schröter U, Menzel R (2003) A new ascending sensory tract to the calyces of the

honeybee mushroom body, the subesophageal-calycal tract. J Comp Neurol 465:
168–178.

33. Farris SM, Robinson GE, Fahrbach SE (2001) Experience-and age-related

outgrowth of intrinsic neurons in the mushroom bodies of the adult worker
honeybee. J Neurosci 21: 6395–6404.

34. Ismail N, Robinson GE, Fahrbach SE (2006) Stimulation of muscarinic

receptors mimics experience-dependent plasticity in the honey bee brain. Proc
Natl Acad Sci U S A 103: 207–211.

35. Paul RK, Takeuchi H, Matsuo Y, Kubo T (2005) Gene expression of

ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. Insect Mol
Biol 14: 9–15.

36. Takeuchi H, Fujiyuki T, Shirai K, Matsuo Y, Kamikouchi A, et al. (2002)

Identification of genes expressed preferentially in the honeybee mushroom
bodies by combination of differential display and cDNA microarray. FEBS Lett

513: 230–234.

37. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Kubo T, Nakajima T (2003)
Identification of a tachykinin-related neuropeptide from the honeybee brain

using direct MALDI-TOF MS and its gene expression in worker, queen and
drone heads. Insect Mol Biol 12: 291–298.

38. Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of

gene action across different time scales on behavior. Science 296: 741–744.

39. Menzel R, Greggers U, Smith A, Berger S, Brandt R, et al. (2005) Honey bees
navigate according to a map-like spatial memory. Proc Natl Acad Sci U S A 102:

3040–3045.

40. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight
paths of honeybees recruited by the waggle dance. Nature 435: 205–207.

41. Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in

a honeybee brain. Curr Opin Neurobiol 13: 726–735.

42. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, et al. (2005) A

cAMP-response element binding protein-induced microRNA regulates neuronal

morphogenesis. Proc Natl Acad Sci U S A 102: 16426–16431.

43. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. (2006) A

brain-specific microRNA regulates dendritic spine development. Nature 439:

283–289.

44. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, et al. (1992) The

human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains

conserved repeats and is highly localized within the nucleus. Cell 71: 527–542.

45. Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila.

Cell 88: 459–469.

46. Klein ME, Impey S, Goodman RH (2005) Role reversal: the regulation of
neuronal gene expression by microRNAs. Curr Opin Neurobiol 15: 507–513.

47. West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors

by neuronal activity. Nat Rev Neurosci 3: 921–931.

48. Yang H, Wanner IB, Roper SD, Chaudhari N (1999) An optimized method for
in situ hybridization with signal amplification that allows the detection of rare

mRNAs. J Histochem Cytochem 47: 431–446.

Activity in Forager Bee Brain

PLoS ONE | www.plosone.org 9 April 2007 | Issue 4 | e371


