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The Fast Marching Method is a numerical algorithm for solving the
Eikonal equation on a rectangular orthogonal mesh in O(M log M)
steps, where M is the total number of grid points. The scheme relies
on an upwind finite difference approximation to the gradient and
a resulting causality relationship that lends itself to a Dijkstra-like
programming approach. In this paper, we discuss several exten-
sions to this technique, including higher order versions on unstruc-
tured meshes in Rn and on manifolds and connections to more
general static Hamilton–Jacobi equations.

Fast Marching Methods (1) are numerical algorithms for
solving the nonlinear Eikonal equation

i¹u~x!i 5 F~x! in V, F~x! . 0 [1]

u 5 g~x! on G

on a Cartesian mesh in O(M log M) steps, where M is the total
number of grid points in the domain. Here, V is a domain in Rn,
and the right-hand side F(x) . 0 is typically supplied as a known
input to the equation, as is the boundary condition that u equals
a known function g(x) given along a prescribed curve or surface
G in V. The technique hinges on using numerically consistent
upwind finite difference approximations to the operators in the
Eikonal equation that select the correct viscosity solution. The
structure of this finite difference approximation to the gradient
yields a resulting causality relationship that lends itself to an
efficient programming approach.

The Fast Marching Method is connected to Huyghen’s prin-
ciple, which is a construction involving expanding wavefronts,
and Dijkstra’s method, which is an algorithm for computing
smallest cost paths on a network. The viscosity solution to the
Eikonal equation i¹u(x)i 5 F(x) can be interpreted through
Huyghen’s principle in the following way: circular wavefronts are
drawn at each point on the boundary, with the radius propor-
tional to F(x). The envelope of these wavefronts is then used to
construct a new set of points, and the process is repeated; in the
limit the Eikonal solution is obtained. The Fast Marching
Method mimics this construction; a computational grid is used
to carry the solution u, and an upwind, viscosity-satisfying finite
difference scheme is used to approximate the wavefront.

The order in which the grid values produced through these
finite difference approximations are obtained is reminiscent of
Dijkstra’s method, which is a depth-search technique for com-
puting shortest paths on a network (2). Dijkstra’s method keeps
track of the ‘‘current smallest cost’’ for reaching a grid point and
fans out along the network links to touch the adjacent grid
points. The Fast Marching Method exploits the same idea in the
context of an approximation to the underlying partial differential
equation, rather than the discrete network links.

The Fast Marching Method is intertwined with some earlier
work on front propagation, including work on curve and surface
evolution in ref. 3, the suggestion to use schemes from hyperbolic
conservation laws to approximate front motion in ref. 4, the
introduction of level set methods by Osher and Sethian (5), and
the narrow band level set method (6). In fact, the Fast Marching
Method came in part from examining the limit of the narrow
band method as the band was reduced to one grid cell. In this

paper, we discuss several extensions to Fast Marching Methods,
including higher order versions on Cartesian grids and unstruc-
tured meshes, on manifolds and in Rn; we also explore the
connections to more general static Hamilton–Jacobi equations.
For the sake of notational simplicity, the discussion below is
limited to R2, R3, and two-dimensional manifolds; the results
hold for arbitrary dimension.

Fast Marching Methods. We begin by finding a discretized version
of the Eikonal Eq. 1 on the Cartesian grid. The easiest way to
obtain such a discretization is to replace the gradient by the
first-order approximation (see ref. 7):

Fmax~Dij
2xu, 2Dij

1xu , 0!2 1

max~Dij
2yu , 2Dij

1yu , 0!2 G 1/2

5 Fij , [2]

where we have used standard finite difference notation Dij
2xu 5

ui, j 2 ui21, jyh and Dij
1xu 5 ui11, j 2 ui, jyh. Here, uij is the value

of u on a grid at the point ih,jh with grid spacing h. The forward
and backwards operators D2y and D1y in the other coordinate
direction are similar. This approximation is consistent and
stable, and ensures that the viscosity solution is chosen.

One method for solving Eq. 2, described by Rouy and Tourin
(7), is through iteration, which in three dimensions leads to an
O(N4) algorithm, where N is the number of points in each
direction. The key to the Fast Marching Methods lies in the
observation that the upwind approximation possesses a specific
causality relationship. By ‘‘causality,’’ we mean that the solution
of Eq. 2 at each grid point depends only on the smaller adjacent
values. Thus, we can systematically build the solution in the order
of increasing values of u.

Suppose, at some time, the solution to the Eikonal equation
is known at a set of points (denoted Accepted points). For every
not-yet accepted grid point, such that it has an accepted neigh-
bor, we compute a trial solution to the above quadratic Eq. 2 by
using the given values for u at accepted points and values of `
at all other points. We now observe that the smallest of these trial
solutions must be correct, because it depends only on accepted
values that are themselves smaller. This causality relationship
can be exploited to compute the solution efficiently and system-
atically as follows.

First, tag points in the initial conditions as Accepted. Then tag
as Considered all points one grid point away and compute values
at those points by solving the Eq. 2. Finally, tag as Far all other
grid points. Then the loop is:

1. Begin loop: Let Trial be the point in Considered with the
smallest value of u.
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2. Tag as Considered all neighbors of Trial that are not Accepted.
If the neighbor is in Far, remove it from that set and add it
to the set Considered.

3. Add Trial to Accepted; remove from Considered.
4. Recompute the values of u at all Considered neighbors of

Trial by solving the piecewise quadratic equation according
to Eq. 2.

This procedure is the Fast Marching Method as described in ref.
1. Some early applications include photolithography (12), a
comparison of this approach with volume-of-f luid techniques
(13), and a fast algorithm for image segmentation (8); see also
ref. 9 for a different Dijkstra-like algorithm, which obtains the
viscosity solution through a control-theoretic discretization,
which hinges on a causality relationship based on the optimality
criterion.

The key to an efficient implementation of the Fast Marching
Method lies in a fast way of locating the Considered grid point
with the smallest value for u. An efficient scheme for doing so,
discussed in detail in ref. 10, can be devised by using a min-heap
structure, similar to what is done in Dijkstra’s method. Given M
elements in the heap, this structure allows us to change any
element in the heap and reorder the heap in O(log M) steps.
Thus, the computational efficiency of the total Fast Marching
Method for the mesh with M total points is O(M log M); it takes
M steps to touch each mesh point, where each step is O(log M),
because the heap has to be reordered each time the values are
changed.

Two extensions to the basic technique have added to the
capabilities of this method. First, Kimmel and Sethian (11)
moved the basic first-order scheme to unstructured acute trian-
gulated meshes in R2 and on two-dimensional surfaces and used
this technique to compute shortest path geodesics on triangu-
lated manifolds. Second, higher order versions of the Cartesian
Fast Marching Method were developed by Sethian in ref. 10;
these techniques replaced the basic first-order upwind operators
by double-backwards second-order approximations to the first
derivatives in each coordinate direction in such a way that a
one-pass nature of the method was preserved. For details of
these second-order extensions, see ref. 10.

In this paper, we build second-order methods for arbitrary
unstructured meshes on manifolds and in Rn and show how
certain static Hamilton–Jacobi equations in the plane can be
recast as Eikonal equations on appropriately chosen manifolds.

Our interest in unstructured meshes stems from our intent to
solve Hamilton–Jacobi equations on manifolds.

Unstructured Mesh Methods. Derivative approximations. Because
there is no natural choice of the coordinate system for an
unstructured mesh, we compute the gradient as a linear com-
bination of n directional derivatives. For any grid point x, the
difference approximation of the directional derivative is obvi-
ously available for each direction x 2 xr, where xr is any grid point
adjacent to x.

Suppose the directional derivative approximations are avail-
able for the directions defined by the linearly independent row
unit vectors P1, . . . , Pn. (If x is a vertex of simplex xx1. . . xn, then
we will chose Pr 5 x 2 xryix 2 xri for r 5 1, . . . , n.) Consider
the n by n nonsingular matrix P having vectors Pr (r 5 1, . . . , n)
as its rows. Let vr(x) be the value of the directional derivative for
the direction Pr evaluated at the point x. Assuming that the
function u is differentiable at x, we have P¹u(x) 5 v(x), where
v(x) is a column vector of vr(x) values. Combining this equation
with the Eikonal equation, we can now write an equation for v(x):

v~x!T~PPT!21v~x! 5 F2~x!. [3]

The particular difference operator used to approximate vr will
depend on the type of the mesh and will determine the order of
convergence of the numerical method. However, if the differ-
ence approximations depend linearly on u(x) (i.e., on the value
of the function at the point where the approximation is per-
formed), then the resulting discretized version of the Eikonal
equation will always be quadratic in terms of u(x) regardless of
the number of dimensions.

To obtain the discretized equation, we now replace each vr
with the corresponding difference approximation: vr ' aru 1 br,
where br linearly depends on values of u (and possibly of ¹u for
higher order schemes) at the grid points around x. For conve-
nience let Q 5 (PPT)21 and use v ' ua 1 b. Then, the discretized
version of Eq. 3 for the grid point x is the quadratic equation:

~aTQa!u2 1 ~2aTQb!u 1 ~bTQb! 5 F2. [4]

Upwinding criteria. Suppose we are computing the value of u(x)
from some simplex having x as one of its vertices. If u is known
at the other vertices of that simplex, then u(x) can be computed
by solving the quadratic Eq. 4. Now we can strictly define our
upwinding criterion: the computed value of u(x) can be accepted,
if the update is coming from within that simplex, i.e., only if the
computed approximate (2¹u(x)) lies inside the simplex (see Fig.
1). This restriction is equivalent to requiring that all of the
components of the vector Qv ' Q(ua 1 b) are nonnegative. If
this condition is satisfied, we say that x is updated from this
simplex and that this simplex is defining for x. The upwinding
condition for an arbitrary triangle xx1x2 is equivalent to two
inequalities: (ua1 1 b1) $ (P1zP2

T)(ua2 1 b2) and (ua2 1 b2) $
(P1zP2

T)(ua1 1 b1), where Pr 5 x 2 xryix 2 xri. Thus, for the
first-order difference approximation on the equilateral triangle
xxAxB, the upwinding requirement means that we will accept u(x)
only if u(x) $ 2u(xB) 2 u(xA) and u(x) $ 2u(xA) 2 u(xB).

It is possible that selecting a different simplex to define P will
result in a different value of u(x). To avoid the difficulty, we
always choose the defining simplex that produces the smallest new
value for u(x); this choice corresponds to a scheme similar to
Godunov’s method on a Cartesian grid.

Extension to obtuse meshes. The original Fast Marching
Method requires solving Eq. 4 for all of the simplexes adjacent
to the grid point x. But what should be done if one or more of
the vertices are not yet Accepted? Previous versions of the Fast
Marching Method handled this difficulty by using the values at
the Considered (as well as Accepted) points for updates andyor by
computing updates based on the available partial information
(values of u andyor ¹u only at the Accepted vertices of the
simplex; ref. 10). Even though this technique is quite useful for
‘‘nice’’ acute triangulations, it can lead to numerical instability of
the scheme when used for arbitrary unstructured meshes (see
ref. 11). Computing updates based on partial information (i.e.,

Fig. 1. Examples of acceptable (Left) and unacceptable (Right) approxima-
tions for ¹u(x). In the latter case, the upwinding requirement is not satisfied,
and the update for the point x should be computed by using other simplexes.

5700 u www.pnas.org Sethian and Vladimirsky



using some but not all vertices) can be particularly dangerous for
higher accuracy methods, because the obtained estimate for ¹u
might be very different from the true gradient.

The causality relationship requires u(x) to depend only on the
smaller values of u at the grid points adjacent to x, which means
that if u(x) is updated from simplex xx1x2 [i.e., u(x) is produced
by solving Eq. 4 corresponding to that simplex], then both u(x1)
and u(x2) should be smaller than u(x). This condition is necessary
for using the Fast Marching Method, because that method
accepts the values at the grid points in ascending order; thus, if
either x1 or x2 has a larger value than x, then it will not be
Accepted at the time when we are evaluating x and cannot be used
for computing u(x). For the Cartesian grid, the causality rela-
tionship is the result of using upwind difference approximations.
Previously, we defined the upwinding criteria for an arbitrary
triangulated mesh: if u(x) is updated from simplex xx1x2, then the
vector 2¹u(x) should point into that simplex. It is easy to show
that the causality still follows from the upwinding requirement,
provided the simplex has only acute angles.

However, if the triangulated mesh contains simplexes with
obtuse angles, then the causality relationship might not hold even
in the limit. Consider, for example, the front advancing with unit
speed in the direction (1,1) (suppose we are solving i¹ui 5 1 in
R2 with the boundary condition u 5 0 on the line y 5 2x).
Consider the simplex xx1x2 from Fig. 2. The update for the grid
point x should clearly be coming from this simplex, because
2¹u(x) points into it. However, it is also clear that u(x1) , u(x) ,
u(x2); thus, u(x2) will not be available for computing u(x).

One possible solution is to build locally numerical support at
obtuse angles, as was suggested in ref. 11. For an obtuse angle
x1xx2 (see Fig. 2a), consider its splitting section—an angle such
that any ray inside it will split x1xx2 into two acute angles. Find
the closest Accepted grid point in the splitting section and then

use that point as if it were adjacent to x. Thus, we would use
simplex x1xx6 in Fig. 2a.

There are some disadvantages to this method. First of all, the
implementation for higher dimensions is rather cumbersome.
Second, implementing it for triangulated surfaces requires an
additional step of ‘‘unfolding’’ (11). Third, the method is no
longer confined to considering the grid points immediately
adjacent to x, because we need to look back for an Accepted point
in the splitting section. The upper bound for how far back we
need to look in the splitting section is available but depends on
the maximum angle of the triangulation—the wider angle cor-
responds to the narrower splitting section that is less likely to
contain a grid point near x.

We observe that the splitting section method can be improved
further by noting that the cause of the problem is not just the
obtuse angle in the defining simplex but also the fact that some
of the vertices of that simplex are not yet Accepted. Thus, it is not
necessary to find an Accepted node in the splitting section; it is
enough to find an Accepted node such that the resulting virtual
simplex intersects the splitting section. This strategy often allows
us to look back much less; thus, in Fig. 2b, for example, the grid
point x3 is the first Accepted point found such that xx3 intersects
the splitting section. Therefore, the virtual simplex x1xx3 will be
used to compute the update for u(x).

We note that our construction works equally well on mani-
folds. As an example, in Fig. 3, we show offsets equidistant from
the bounding box on a manifold that represents a complex
machine part; the triangulation is obtained by mapping a regular
triangular mesh in the xy plane onto the surface, thereby creating
a large number of obtuse and near-degenerate triangles, includ-
ing some with angles bigger than 160°.

Higher Order Versions. We now create higher accuracy Fast
Marching Methods by using higher order difference approxima-
tions for the directional derivatives. It would seem that such
approximations can be used only if the solution u is sufficiently

Fig. 2. Splitting strategies. (a) Constructing splitting section for an obtuse
angle. (b) Modified construction of splitting section.

Fig. 3. Obtuse triangulated Fast Marching Method.
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smooth; nonetheless, the fact that at some points ¹u is undefined
does not prevent us from using this approach: u is differentiable
almost everywhere, and characteristics never emanate from the
shocks, i.e., no information is created at the shock. However, the
order of the difference approximation does not always corre-
spond to the order of convergence of the method. Still such
methods converge faster than the ones that use the first-order
approximations (10). We further discuss the rate of convergence
of the higher accuracy methods in Numerical Tests.

Cartesian higher order methods. A higher order Fast Marching
Method on Cartesian grid was first presented by Sethian in ref.
10. Herein, we show that such methods can also be obtained from
the directional derivative approximation perspective, as de-
scribed in Derivative approximations.

For a Cartesian grid, the natural choice of the coordinate
system will be aligned with the grid lines. Then, for any grid point
x, a direction vector Pr is always equal (up to the sign) to one of
the canonical basis vectors. Thus, for x inside the grid (i.e., away
from the boundary), both points xr,1 5 x 2 hPr and xr,2 5 x 2 2hPr
are also present in the grid. Then we can use the well known
second-order difference approximation for the directional
derivative

vr~x! <
3u~x! 2 4u~xr,1! 1 u~xr,2!

2h
. [5]

Using the notation introduced in Derivative approximations, we
can write

ar 5
3

2h
; br 5

24u~xr,1! 1 u~xr,2!

2h
. [6]

Because this approximation is valid only inside the domain, we
need to have the exact values of u for the grid points near the
boundary to start the algorithm. If these values are not available,
we can use the first-order Fast Marching Algorithm with much
smaller mesh size to obtain the second-order accurate approx-
imations of u at those points. Because this approximation is
second-order only away from a singularity, we note that the exact
(or second-order accurate) values of u are also needed for the
grid points in the narrow band around any singularities at the
boundary. Finally, we note that the same higher order difference
approximations can be used even for non-Cartesian grids pro-
vided all of the grid points lie on the straight lines and are
equidistant on those lines.

Higher order methods. Typically, we do not have orthogonal
difference operators on an unstructured mesh. Fortunately, we

can still build higher order directional derivative approximations
by using the gradient information at the grid points adjacent to x.

Consider a grid point xr adjacent to x and the corresponding
directional vector Pr 5 x 2 xryix 2 xri. Supposing that both u(xr)
and ¹u(xr) are known, we can write a second-order approxima-
tion for the directional derivative

vr~x! < 2
u~x! 2 u~xr!

ix 2 xri
2 Pr z ¹u~xr!. [7]

Using the notation introduced in Derivative approximations, we
can write

ar 5
2

ix 2 xri
; br 5

22u~xr!

ix 2 xri
2 Pr z ¹u~xr!. [8]

We can also compute the second-order accurate approximation
for the gradient at x, namely ¹u(x) 5 P21v ' P21[u(x)a 1 b],
provided u(x) is known with at least the second-order accuracy
as well. Thus, as the algorithm runs, we will store for each
Accepted grid point the computed values of both u and ¹u to be
used later when recomputing the Considered points.

Because this approach requires information about the gradi-
ent, we need to have the exact values of ¹u for the grid points
on the boundary to start the algorithm. If these values are not
available, we can use the first-order Fast Marching Algorithm
with much denser mesh in the narrow band near the boundary
to obtain the accurate approximations of ¹u at the points in that
narrow band.

Finally, we note that an additional step of ‘‘gradient mapping’’
is required to use this higher order method on nonsmooth
triangulated surfaces (J.A.S. and A.V., unpublished work).

Numerical tests. Next, we test the methods by finding the
numerical solutions for the Eikonal equation i¹u(x)i 5 1 in R2

with different boundary conditions. The viscosity solution of this
equation taken with zero boundary condition is the ‘‘distance
from boundary’’ function. Two examples with shocks are con-
sidered: one where the shock line occurs along the grid lines and
another where the shock line is not aligned with the grid. Both
the L2 and L` errors are computed on the grid. Note that the rate
of convergence in the L2 norm generally corresponds to the
order of the difference approximations. However, the rate of
convergence in the L` norm might be lower (depending on the
location of shocks relative to the grid). This phenomenon is due
to the fact that the higher order approximations are meaningful
only where the solution is sufficiently smooth. Fortunately,
viscosity solutions are differentiable almost everywhere, and no

Fig. 4. First- and “second-order” computations of distance from two points.
The shock line runs along the edges of simplexes.

Fig. 5. First- and “second-order” computations of distance from two points.
The shock line is not aligned with the edges of simplexes.

Table 1. Errors for first- and “second order” schemes for
example shown in Fig. 4.

Grid

L2 error L` error

First-order Second-order First-order Second-order

212 0.00818 0.00753 0.01500 0.02161
412 0.00432 0.00142 0.00785 0.00559
812 0.00213 0.00024 0.00386 0.00130
1612 0.00108 0.00004 0.00195 0.00031

Table 2. Errors for first- and “second-order” schemes for
example shown in Fig. 5

Grid

L2 error L` error

First-order Second-order First-order Second-order

212 0.00645 0.00533 0.01221 0.02034
412 0.00339 0.00117 0.00642 0.00644
812 0.00165 0.00022 0.00315 0.00203
1612 0.00084 0.00005 0.00159 0.00071
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information emanates from the shocks. The upwinding differ-
ence approximations used in our methods help the numerical
solution to mimic this useful property of the true solution; thus,
the L2 norm convergence is not affected by the larger errors
committed near the shocks.

The tests are performed on the parallelogram with vertices at
(0,0), (1,0), (0.5,=3y2), and (1.5,=3y2). The exact values for the
distance are used in the narrow band of radius 0.1 around the
initial points to start the algorithm. We use the grid of equilateral
triangles on this domain. The numerical results for a nonacute
triangulation are very similar.

We first use the Fast Marching Method to compute the
distance from two vertices: (0,0) and (1.5,=3y2). The shock line
runs along the edges of simplexes (along the shorter diagonal of
the parallelogram; Fig. 4). Table 1 shows the errors under mesh
refinement.

We now compute the minimal distance from the other two
vertices: (1,0) and (1y2,=3y2). In this case, the shock line is not
aligned with the grid lines (edges of simplexes), and it runs along
the longer diagonal (Fig. 5). Table 2 shows the errors under mesh
refinement. The L2 error is still second-order convergent for the
second-order scheme, whereas its L` error is lower order,
although still much better than the L` error of the first-order

scheme. This effect is to be expected; because of the grid
alignment, the approximation is sometimes performed across the
shock lines, which leads to the first-order errors there.

Eikonal Equations on Surfaces and More General Static Hamilton–
Jacobi Equations. Suppose we are given a graph of a function z 5
f(x,y) and attempt to solve the Eikonal equation i¹ui 5 F(x,y) on
that manifold. To be clear, 1yF(x,y) gives the speed in the
direction normal to the level line u 5 constant on the manifold
z 5 f(x,y). Projecting down onto the xy plane, this Eikonal
equation translates into a particular static Hamilton–Jacobi
equation on the plane. We now use this argument in reverse as
follows. Consider any static Hamilton–Jacobi equation in the xy
plane of the form

a~x, y!ux
2 1 b~x, y!uxuy 1 c~x, y!uy

2 5 g~x, y! [9]

together with boundary conditions for u. Now suppose we can
find functions p(x,y), q(x,y), and F(x,y) such that py 5 qx, F(x,y) .
0, and

a~x, y! 5 ~1 1 q2! b~x, y! 5 22pq
c~x, y! 5 ~1 1 p2! g~x, y! 5 ~1 1 p2 1 q2!F2~x, y!. [10]

It can be then shown (see ref. 10) that the solution of Eq. 9 can
be obtained by solving the Eikonal equation i¹ui 5 F(x,y) on the
manifold z 5 f(x,y) where fx 5 p and fy 5 q. Thus, for any static
Hamilton–Jacobi equation of the form given by the Eq. 9, if we
can find functions p and q satisfying the above, then we can
construct the surface z 5 f(x,y), approximate it with a triangu-
lated mesh, and then solve the straightforward Eikonal problem
on the manifold.

As an example, we consider the following equation.

3
@1 1 g sin2~2px!cos2~2py!#ux

2

2
g

2
sin~4px!sin~4py!uxuy

1 @1 1 g cos2~2px!sin2~2py!#uy
2
4

@1 1 g cos2~2px!sin2~2py! 1 g sin2~2px!cos2~2py!#
5 1,

[11]

where g 5 (0.9p)2, x,y [ [0,1], and the boundary condition is
u(0.5,0.5) 5 0. We can find functions p 5 0.9pcos(2px)sin(2py)
and q 5 0.9psin(2px)cos(2py), which satisfy our compatibility
requirements, and then solve the Eikonal equation i¹ui 5 1 on
the surface f(x,y) 5 0.45sin(2px)sin(2py). Fig. 6 shows the
evolving front on the surface and the solution to the original
problem on the plane.

We have presented techniques for computing certain Hamil-
ton–Jacobi equations on unstructured meshes. Further discus-
sion may be found elsewhere (J.A.S. and A.V., unpublished
work).
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Fig. 6. Non-Eikonal static Hamilton–Jacobi equation.
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