
Fish and seafood are of environmental health
interest because of the biomagnification of per-
sistent toxicants in freshwater and marine food
chains, thereby providing an important path-
way for human exposures. At the same time,
fish may also constitute an important source of
energy, protein, and essential micronutrients,
thus providing health benefits. For these rea-
sons, risk managers and health communicators
must reconcile advisories against pollutants
and recommendations on nutrient intakes
(Gochfeld and Burger 2005; Levenson and
Axelrad 2006; Smith and Sahyoun 2005).
Thus, an international expert committee (Joint
Expert Committee on Food Additives 2003)

Recommended that nutritional benefits be
weighed against the possibility of harm when lim-
its on the methylmercury concentrations in fish or
on fish consumption are being considered. 

Less attention has been paid to this challenge
in regard to the underlying epidemiologic
documentation, where exposures to contami-
nants and beneficial nutrients may be highly
correlated in frequent fish-eaters (Sakamoto
et al. 2004). On one hand, methylmercury
exposure may adversely affect the neurobe-
havioral development in children (Grandjean
et al. 2005b), and mercury contamination is
now the main reason for fishing advisories in
the United States [U.S. Environmental
Protection Agency (EPA) 2004]. On the

other hand, nutrients in fish and seafood,
especially long-chained n-3 polyunsaturated
fatty acids, may affect the same type of out-
comes, although in the opposite direction
(Daniels et al. 2004; Willatts and Forsyth
2000). Unfortunately, the great majority of
cohort studies in this field has focused either
on contaminant risks or on nutrient benefits. 

This situation appears to constitute a
classical example of confounding, where the
factors that affect the same outcome are asso-
ciated—in this case because they derive from
the same type of food items. If confounding is
not addressed in the epidemiologic study
design or the data analysis, the effect of both
the contaminant exposure and the nutrient
intake will be underestimated. 

Only a few studies have aimed at examin-
ing the effects of both nutrient and contami-
nant intakes at the same time as predictors of
developmental outcomes. One small study of
neurodevelopment in infants suggested that
maternal mercury exposure and fish intake
had opposite effects on a visually mediated
neurobehavioral test (Oken et al. 2005). In
another study, Daniels et al. (2004) saw a
beneficial association with fish intake and no
clear effect of low mercury concentrations in
umbilical cord tissue. In a small Faroese birth
cohort, Steuerwald et al. (2000) found that
prenatal methylmercury exposure adversely
affected neonatal neurologic function, but

selenium and n-3 fatty acid status did not
affect this outcome. All of these results were
probably affected by the imprecision of the
mercury exposure parameters, which may bias
the findings toward the null hypothesis and
exaggerate the effects of confounding (Budtz-
Jørgensen et al. 2003). 

To examine the possibility of segregating
benefits and risks, we have analyzed data from
a prospective birth cohort study carried out in
the Faroe Islands to assess the developmental
neurotoxicity of methylmercury from seafood
(Debes et al. 2006; Grandjean et al. 1992,
1997). 

Methods

Cohort formation and clinical follow-up. A
birth cohort of 1,022 subjects was formed
from consecutive births between 1 March
1986 and the end of 1987 at the three Faroese
hospitals (Grandjean et al. 1992). In connec-
tion with each birth, we collected umbilical
cord blood and maternal hair for mercury
analysis. A questionnaire was administered by
the midwife to obtain basic information on
the general course of the pregnancy and nutri-
tional habits, including the average number of
fish dinners per week during pregnancy.
Follow-up of this cohort included an extensive
neurobehavioral examination at 7 years of age
(Grandjean et al. 1997) and 14 years of age
(Debes et al. 2006), at which neurobehavioral
tests were administered by clinical profes-
sionals. About 90% of the cohort children
participated in the follow-up. Parents of the
children gave written informed consent, and
the study was carried out in accordance with
the Helsinki convention and related regula-
tions with the approval of the ethical review
committee for the Faroe Islands and the insti-
tutional review board in the United States. 

Statistical analysis. We carried out a struc-
tural equation model analysis as previously
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described (Budtz-Jørgensen et al. 2002). In
these models, observed variables are consid-
ered manifestations of a limited number of
causally related latent variables. This approach
is useful for analyzing multidimensional epi-
demiologic data. Although multiple regression
analysis provides an effect estimate for each
pair of exposure and outcome variables, it is
prone to multiple testing problems and chance
findings. In contrast, the structural equation
model pools information from variables mea-
suring the same underlying quantity to obtain
a stronger and more parsimonious analysis of
the dose–response relationship. Furthermore,
this model class allows for measurement error
in observed variables. In the current applica-
tion, log-transformed mercury concentrations
in cord blood and maternal hair were consid-
ered indicators of the unobserved true expo-
sure level. Using a factor analysis approach,

each marker of mercury exposure (M-Hg) is
assumed to depend linearly on a latent true
exposure (Hg) and a random measurement
error (εm):

log(M-Hg) = µm + λm log(Hg) + εm. [1]

Based on a priori neurobehavioral knowl-
edge and supported by exploratory factor
analysis, the outcome variables were grouped
into major nervous system functions, as previ-
ously described (Budtz-Jørgensen et al. 2002;
Debes et al. 2006). Using equations similar to
Equation 1, test scores belonging to the same
function group were assumed to reflect a com-
mon latent outcome function. For each group
of neurobehavioral tests, we estimated the
effect of mercury by regression of the latent
exposure on the latent outcome (Figure 1).
The mercury effect was expressed in terms of

the change in the latent response variable (in
percent of its SD) associated with a doubling
in the latent mercury exposure, as has been
done previously for outcomes on different
scales (Grandjean et al. 1999). The statistical
significance of the mercury effect was evaluated
using likelihood ratio testing. Children with
incomplete information—mainly due to miss-
ing maternal Raven score (Budtz-Jørgensen
et al. 2002; Debes et al. 2006)—were included
by a missing data analysis based on the maxi-
mum likelihood principle (Little and Rubin
2002). 

Confounders included a series of covari-
ates as previously described (Budtz-Jørgensen
et al. 2007; Grandjean et al. 1997); polychlo-
rinated biphenyl (PCB) exposure was not
considered a covariate because it had a limited
impact on the mercury effects and was
unavailable for the majority of the cohort
members (Debes et al. 2006; Grandjean et al.
2001). As an extension of the previous analy-
ses, the log-transformed number of maternal
fish dinners during pregnancy was included as
a covariate that was allowed to affect both
prenatal exposure and outcomes. However,
this questionnaire parameter provides only an
error-prone reflection of the nutrient intake.
The analysis described above does not
account for the confounder imprecision and
may therefore not properly separate the effects
of mercury and nutrients from fish. Thus,
ignoring the confounder imprecision can lead
to biased estimates not only for the con-
founder effect but also for the effect of the
exposure. Consider a regression model with
exposure X and true confounder Z, that is,

Y = β0 + βx X + βz Z + ε. [2]

Instead of the true confounder Z, we observe
an error-prone proxy variable V. Here we
assume that V has an additive error, that is, V
= Z + U, where U is a nondifferential measure-
ment error. If this error is ignored and Z is
naively replaced by V in the regression analysis,
then the regression coefficient for the exposure
estimate is biased. As the number of observa-
tions increase, the least-squares estimator will
not converge to the true effect βx , but to 

βx + βz αx var (U ) ⁄

[var(U ) + (1 – corr(X,Z )2)var(Z )], [3]

where αx is the coefficient of X in the regres-
sion of Z on X, and corr(X,Z) is the correlation
between X and Z. In the special case where X
is mercury exposure and Z is nutrient intake
from fish, the effect of Z on Y(βz) is positive,
and so is the slope in the relation between
mercury exposure and nutrients intake αx.
Therefore, the bias term is positive, and the
adverse effect of mercury is underestimated.
As can be seen from Equation 3, this bias will
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Figure 1. Path diagram for a structural equation model that links mercury exposure to adverse effects,
while taking into account confounders, including fish intake. The exposure (Hg) is modeled as a latent
parameter based on available exposure indicators, and the latent effect parameter [neurologic function
(Neuro func)] is likewise based on clinical test outcomes. Each of the exposure indicators and clinical out-
comes is associated with imprecision (ε). 
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Figure 2. Path diagram for a structural equation model that links mercury exposure to adverse effects,
while taking into account confounders, including nutrient supply based on fish intake. The exposure (Hg) is
modeled as a latent parameter based on available exposure indicators, and the latent effect parameter
[neurologic function (Neuro func)] is likewise based on clinical test outcomes. Each of the exposure indi-
cators and clinical outcomes is associated with imprecision (ε).
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be stronger for an increased imprecision
var(U), a stronger association between expo-
sure and confounder [αx, corr(X,Y)], and a
stronger effect of the confounder βz. 

In the absence of validation data, we car-
ried out sensitivity analyses to assess the
dependence of the results on the imprecision
of fish intake as a confounder. In a separate
structural equation model, the fish variable
was assumed to be a sum of true nutrient
intake and a random measurement error
(Figure 2). Four different imprecision levels
were then chosen to cover a realistic range and
expressed in terms of the reliability ratio,
namely, the ratio between the variance of the
true variable and the total variance observed
{i.e., [var(V)–var(U)]/var(V)}. The percentage
of the total variation caused by measurement
error is 1 – reliability ratio. 

Results 

Half of the mothers had fish for dinner at least
three times per week during pregnancy, and
only 2% ate fish for dinner less than once per
week. The mercury concentrations varied
considerably, covering a span of almost
1,000-fold. Although mercury exposure in this
population mainly originated from ingestion
of whale meat (Grandjean et al. 1992), the
log-transformed frequency of fish dinners cor-
related significantly with log-transformed mer-
cury concentrations in cord blood (r = 0.25,
p < 0.0001) and maternal hair (r = 0.26,
p < 0.0001). Because intake of seafood nutri-
ents essential for nervous system development
would be associated with the dietary intake
level, this parameter was therefore treated as a
confounder in regard to neurobehavioral
development outcomes in this cohort. 

After adjustment for fish intake in a struc-
tural equation model (Figure 1), previously
reported mercury regression coefficients
(Budtz-Jørgensen et al. 2002; Debes et al.
2006; Grandjean et al. 1997) changed toward
a larger mercury effect. At the same time, the
p-values for the mercury effect decreased
(Table 1). Fish intake had a beneficial effect
on all seven outcome functions considered.
However, this effect was statistically signifi-
cant only for the motor function outcomes,
both at 7 and 14 years of age, and spatial
functioning at 14 years. For these outcomes,
the effect of increasing the weekly number of
fish dinners from 0 to 1 (or from 1 to 3) led
to improved test performance between 17%
and 25% of the SD of the outcome. If
included in the model without mercury expo-
sure, the beneficial effects of fish intake were
weaker and less significant; one outcome
parameter (verbal at 7 years of age) showed a
fish effect in the opposite direction, thus
indicating an adverse effect.

The estimated regression coefficients may
be biased because of imprecision of the fish

variable. The extent of this bias was explored
by including nutrient intake as a latent
confounder variable, which—together with a
random error—affected the questionnaire
response on fish dinners (Figure 2). Because
the degree of imprecision of the proxy variable
is unknown, a range of imprecision levels were
entered to explore the effect on the mercury
regression coefficients. When the imprecision
of the fish variable increased, the adverse mer-
cury effects became stronger and more signifi-
cant. In accordance with Equation 3, the
results were most sensitive for outcomes with a
strong fish effect (i.e., motor and spatial func-
tions) (Table 2). At a reliability ratio < 43%,
the mercury effects on motor function dou-
bled, compared with the unadjusted results.
For the spatial function, the mercury coeffi-
cient became negative, indicating an adverse
effect, but even for the highest level of impreci-
sion considered, the p-value remained > 5%.
Similarly, the other outcomes showed stronger
mercury effects when the imprecision in the
fish variable was increased. However, because
of the weaker impact of the fish parameter, the
increases in the mercury effect were less dra-
matic. Thus, even when reliability ratio was
only 27% percent, the mercury coefficients
increased by ≤ 5% of the outcome SD, and the
p-values remained stable.

Discussion

These results support the notion that con-
founding may be of importance when exposure
to a toxicant occurs from a food source that
is also associated with essential or otherwise

beneficial nutrients. Such confounding does
not assume that toxicants and nutrients affect
the same molecular target, only that they affect
the same epidemiologic outcomes. The Faroes
study would seem to be particularly suited for
such considerations because the correlation
between fish intake and methylmercury expo-
sure is relatively low, due to the fact that whale
meat, rather than fish, is the main source of
methylmercury exposure (Grandjean et al.
1992). Because fish intake and mercury expo-
sure do not show a close correlation, separa-
tion of positive and negative effects on brain
development would be possible by structural
equation modeling. Still, although the effects
of fish intake were in the direction predicted,
statistically significant associations were
observed only for spatial and motor function.
However, the power to identify an effect of this
confounder is limited by the imprecision of the
crude questionnaire variable. This imprecision
also causes an underestimation of the fish-
adjusted mercury effect. 

In the absence of detailed data on nutrient
absorption levels, the validity of the question-
naire response on fish-dinner frequency can-
not be determined. However, the imprecision
is likely to be substantial. Previous studies of
prenatal methylmercury exposure biomarkers
have shown that imprecision varies from
about 25% (cord blood) to about 50%
(maternal hair) when expressed as the coeffi-
cient of variation (Budtz-Jørgensen et al.
2002; Grandjean et al. 2005a). The impreci-
sion was even greater for the questionnaire
response on whale-meat–dinner frequencies as
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Table 1. Mercury effects on neurobehavioral tests at 7 and 14 years of age, as determined in structural
equation analysis with covariate adjustment before and after addition of the frequency of maternal fish
dinners during pregnancy.

Mercury without Mutual adjustment
adjustment for fish intake Fish intake Mercury

Age/test group Effecta p-Value Effect p-Value Effect p-Value

7 Years
Motor –9.74 0.034 25.1 0.010 –12.2 0.0092
Verbal –10.4 0.0018 3.62 0.61 –10.8 0.0017

14 Years
Motor –7.41 0.033 19.9 0.006 –9.37 0.0082
Attention –8.40 0.029 12.2 0.13 –9.54 0.016
Spatial 2.60 0.50 17.3 0.031 1.04 0.79
Verbal –5.97 0.080 9.85 0.16 –6.87 0.049
Memory –2.86 0.39 3.15 0.64 –3.05 0.37

aEffect of true exposure doubling expressed in percent of SD of latent response.

Table 2. Mercury effects on neurobehavioral tests at 7 and 14 years of age, as determined in structural
equation analysis with covariate adjustment that includes maternal fish intake during pregnancy at differ-
ent levels of precision (indicated by the reliability ratio).

Precision of 7 Years 14 Years
fish nutrient Motor function Motor function Spatial function
intake (%) Mercury effecta p-Value Mercury effect p-Value Mercury effect p-Value

100 –12.2 0.0092 –9.37 0.0082 1.04 0.78
68 –13.7 0.0048 –10.7 0.0036 0.088 0.96
43 –17.0 0.0017 –13.6 0.0009 –1.57 0.73
27 –23.7 0.0006 –20.1 0.0003 –4.18 0.51
aEffect of true exposure doubling expressed in percent of SD of latent response.
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a predictor of mercury exposure. The impre-
cision value for hair mercury corresponds to a
reliability ratio of 0.68 (Budtz-Jørgensen et al.
2004). A greater imprecision (and lower relia-
bility ratio) would seem plausible for the
questionnaire response on fish dinners as a
proxy for nutrient intakes. As illustrated by
Equation 3, ignoring fish error in the stan-
dard analysis of outcomes with a strong fish
effect will yield mercury effect estimates that
underestimate the adverse effect. 

In regard to motor function outcomes,
inclusion of fish intake as a confounder with a
realistic reliability ratio of 43% doubled the
mercury effect compared with results unad-
justed for fish intake. For the spatial function,
which in the unadjusted analysis seemed to
benefit slightly from mercury exposure, the
adjustment resulted in a negative regression
coefficient in accordance with the anticipa-
tion of mercury toxicity. Other outcomes
were not significantly associated with fish
intake, and the adjustment was therefore of
less importance. Still, an attenuation of mer-
cury effects on functional domains other than
motor function would be plausible. For
example, previous studies of fish intake have
suggested beneficial effects mainly on visually
mediated functions and, possibly, general
intelligence (Daniels et al. 2004; Oken et al.
2005; Willatts and Forsyth 2000). However,
because of the absence of better nutrient sup-
ply data, the present study cannot further
elucidate this potential.

Two other long-term prospective studies
of developmental methylmercury neurotoxic-
ity have been carried out and have been used
for risk assessment [National Research
Council (NRC) 2000]. In New Zealand,
groups of mothers with the same high fish
intake were compared in regard to different
levels of methylmercury exposures (Kjellström
et al. 1989). Because this study incorporated
matching for fish intake, it may be affected to
a lesser degree by confounding from nutrient
intakes. In the Seychelles, where the average
fish intake is high and causes average methyl-
mercury exposures higher than in the Faroes
(Shamlaye et al. 1995), the confounding may
be greater (Clarkson and Strain 2003). In this
regard, the New Zealand results (Kjellström
et al. 1989) suggested a stronger mercury
effect than the Faroes study (before adjust-
ment for fish intake), whereas the Seychelles
study showed some associations that suggested
a beneficial effect of mercury exposure
(Davidson et al. 1998). However, comparisons
between these studies must also take into
account differences in exposure assessment,
sources of bias, and the sensitivity of the out-
come parameters to subclinical neurotoxicity
(Grandjean et al. 2005b). Although the find-
ings of these three studies are not necessarily
conflicting (Keiding et al. 2003; NRC 2000),

perhaps the results would be more similar if
the (confounding) effects of nutrients could be
separated from the effects of methylmercury. 

The present analysis therefore emphasizes
that the opposite effects of beneficial nutrients
and toxic contaminants should not be ignored
by epidemiologic studies in this field. Because
of the positive correlation between beneficial
and hazardous exposures, confounding will
invariably occur. Depending on the correla-
tion between exposure and confounder, and
the impact of the confounder on the outcome
parameters, underestimation of the effects of
one factor will occur if adjustment for the
other is not included. Furthermore, an unbi-
ased assessment of the contaminant toxicity
also requires that account is taken of the
imprecision, both of the contaminant expo-
sure and of the proxy variable that reflects the
confounding factor. 

The confounding issue has only recently
surfaced in publications on the advantages of
seafood diets and the risks of marine contami-
nants (European Food Safety Authority
2005). Also, the claim has been made that
adverse effects of methylmercury on children’s
neurobehavioral functions do not occur when
the mercury originates from a diet based on
ocean fish (Clarkson et al. 2003). The present
study suggests that uncontrolled confounding,
and imprecision of the confounder, will bias
the mercury toxicity findings toward the null,
and that the extent of this bias will be study
dependent. 

This issue may be relevant beyond child-
hood neurobehavioral development. Thus, in
regard to cardiovascular health, a small num-
ber of epidemiologic studies have assessed
both fatty acid intakes and mercury exposures.
Thus, evidence on cardiovascular mortality
suggests that fatty acids and methylmercury
from fish act in different directions and that
mercury exposure may cancel the benefits
from a fish diet (Guallar et al. 2002; Virtanen
et al. 2005). This issue was also examined in a
U.S. cohort of health professionals, including
dentists with occupational exposure to mer-
cury vapor; support for a mercury effect was
seen only in the nondentists (Yoshizawa et al.
2002). Because of misclassification of methyl-
mercury exposure (e.g., based on mercury
concentrations in toenails), these studies also
most likely underestimate the true effect of
methylmercury exposure. 

We recommend that future studies assess
both beneficial and detrimental effects of
seafood intake at the same time, in an attempt
to separate opposite impacts on the outcomes.
Further, some cautious judgment is possible at
this time. The analyses presented here suggest
that previously published results from the
Faroes prospective study (e.g., Grandjean et al.
1997) underestimate the true extent of
developmental methylmercury neurotoxicity.

Although previous reviews have emphasized
the possibility of overestimation of toxicity
(National Toxicology Program 1998; Smith
and Sahyoun 2005), only minor bias in this
direction has been subsequently identified
(Budtz-Jørgensen et al. 2002, 2007; Grandjean
et al. 2001). In contrast, because of the
imprecision of the exposure parameters, the
mercury effect is underestimated and the
benchmark dose results are overestimated
(Budtz-Jørgensen et al. 2004), thereby possibly
resulting in exposure limits with less protection
than intended. The present study shows that
bias from lack of confounder adjustment for
nutrient intakes further adds to the underesti-
mation of methylmercury neurotoxicity. 

A final issue deserves attention in regard to
fish advisories and dietary recommendations.
Although these statements may seem difficult
to reconcile because of the presence of both
mercury and beneficial nutrients in fish and
seafood, both deserve attention, perhaps even
more so, because the health impact of both is
most likely underestimated. The consumer is
therefore well advised to include seafood and
freshwater fish in the diet in order to obtain
the benefits, but to choose fish and seafood
low in contaminants. Fortunately, fish with a
high content of beneficial fatty acids do not
necessarily contain much mercury (Gochfeld
and Burger 2005; Levenson and Axelrad
2006; Mahaffey 2004; Smith and Sahyoun
2005), and a prudent choice is therefore possi-
ble, given appropriate guidance. In the Faroe
Islands, the health authorities issued an advi-
sory that recommends women in fertile age
groups to abstain from eating whale meat,
and this advisory has resulted in decreased
exposure levels (Weihe et al. 2005). 
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