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A salient feature of normal wound healing is the de-
velopment and resolution of an acute inflammatory
response. Although much is known about the func-
tion of inflammatory cells within wounds, little is
known about the chemotactic and activation signals
that influence this response. As the CC chemokines
macrophage inflammatory protein-1� (MIP-1�) and
monocyte chemotactic protein-1 (MCP-1) are abun-
dant in acute wounds, wound repair was examined in
MIP-1��/� and MCP-1�/� mice. Surprisingly, wound
re-epithelialization, angiogenesis, and collagen syn-
thesis in MIP-1��/� mice was nearly identical to wild-
type controls. In contrast, MCP-1�/� mice displayed
significantly delayed wound re-epithelialization, with
the greatest delay at day 3 after injury (28 � 5% versus
79 � 14% re-epithelialization, P < 0.005). Wound
angiogenesis was also delayed in MCP-1�/� mice,
with a 48% reduction in capillary density at day 5
after injury. Collagen synthesis was impeded as well,
with the wounds of MCP-1�/� mice containing signif-
icantly less hydroxyproline than those of control
mice (25 � 3 versus 50 � 8 �g/wound at day 5, P <
0.0001). No change in the number of wound macro-
phages was observed in MCP-1�/� mice, suggesting
that monocyte recruitment into wounds is indepen-
dent of this chemokine. The data suggest that MCP-1
plays a critical role in healing wounds, most likely by
influencing the effector state of macrophages and
other cell types. (Am J Pathol 2001, 159:457–463)

Chemokines are small molecular weight proteins that
possess chemoattractant properties for a number of im-

mune cells. Induction of inflammatory infiltration by the
CC chemokine family is generally monocyte- and lym-
phocyte-specific. Two well-studied CC chemokines that
are strongly chemotactic for macrophages are monocyte
chemotactic protein-1 (MCP-1) and macrophage inflam-
matory protein-1� (MIP-1�). MCP-1 mediates the recruit-
ment of monocytes in several inflammation models and
diseases.1,2 The absence of MCP-1 leads to attenuated
monocyte influx in thioglycolate-induced peritonitis and in
delayed-type hypersensitivity response.3 Mice lacking
the MCP-1 receptor, CCR2, cannot recruit macrophages
to the inflamed peritoneum,4 are not able to clear Listeria
monocytogenes infection,5 or to develop granulomas.6

MCP-1 is abundant in atherosclerotic lesions, leading to
the postulation that MCP-1 and other chemokines, such
as MIP-1�, may be involved in monocyte recruitment and
the subsequent development of these lesions.7

Similar to MCP-1, MIP-1� can mediate the recruitment
of monocytes in several inflammatory diseases.8–12

MIP-1� also leads to a local accumulation of neutrophils
when it is subcutaneously injected.13,14 MIP-1� has been
shown to play a role in several inflammatory diseases. For
example, bleomycin-induced pulmonary fibrosis is de-
creased when MIP-1� is inhibited,15 and influenza-in-
duced pneumonitis is dependent on the presence of
MIP-1�.16 These many studies support the notion that
both MCP-1 and MIP-1� are key molecules in macro-
phage trafficking into inflammatory foci.

A number of studies have demonstrated the expres-
sion and function of chemokines in healing wounds.17–20

Overall, the expression pattern of chemokines in wounds
has been shown to correlate well with the known se-
quence of neutrophil, macrophage, and lymphocyte re-
cruitment in wounds.19 In particular, studies in our own
laboratory have demonstrated that both MCP-1 and
MIP-1� are expressed in high levels in murine full-thick-
ness dermal wounds at time points preceding and coin-
cident with maximal macrophage infiltration.21,22 Taken
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together, these and other studies have established a role
for chemokines in wound inflammation.

The generation of the MIP-1�- and MCP-1-deficient
mice (MIP-1��/� and MCP-1�/�) provided an opportu-
nity to test the requirement of these chemokines for
wound repair in a genetically defined system. Given the
central role of these chemokines in many different inflam-
matory responses, as well as their established presence
in early wound healing, we hypothesized that mice defi-
cient in either MCP-1 or MIP-1� would display altered
wound repair. This study characterizes and compares
wound healing in MCP-1 and MIP-1� genetically defi-
cient mice.

Materials and Methods

Animals and Wound Model

MIP-1��/� (B6.Scya3)16 and MCP-1�/� (Scya2)3 mice
were generated as previously described. The genetic
background of the MIP-1��/� mice is C57BL/6, and the
genetic background of MCP-1�/� mice is �93% C57BL/6
and �7% SJL.23 The mice were maintained and bred at
Loyola University Medical Center animal facilities. Control
C57BL/6 mice were purchased from Harlan Sprague-
Dawley, Inc. (Indianapolis, IN). For wounding studies,
mice were anesthetized by inhalation of methoxyflurane
(Metofane; Schering-Plough Animal Health Corp., Union,
NJ.). Full-thickness excisional wounds of 3 mm in diam-
eter were made on the shaved dorsum of 6- to 7-week-old
mice with a standard biopsy punch (Acuderm, Inc., Ft.
Lauderdale, FL). At various time points after injury, the
mice were euthanized by halothane inhalation (Halocar-
bon Laboratories, Riveredge, NJ), and the wound with its
surrounding tissue were removed. Wounds were either
flash-frozen in liquid nitrogen for hydroxyproline analysis
or embedded in TBS Tissue Freezing Medium (Triangle
Biomedical Sciences, Durham, NC) for histological anal-
ysis. All samples were stored at �80°C until the time of
analysis. Sex- and age-matched mice were used for all
experiments. Animal protocols used in this study were
reviewed and approved by the Loyola University Institu-
tional Animal Care and Use Committee.

Histology and Immunohistology

Ten-�m sections were prepared from frozen embedded
tissues. To visualize general wound morphology, slides
were stained with hematoxylin and eosin (Sigma Chemi-
cal Company, St. Louis, MO). For immunohistochemical
staining, the sections were fixed in acetone for 15 min-
utes. All incubations and washes were performed at room
temperature. After three 5-minute washes in phosphate-
buffered saline (PBS), pH 7.4, sections were treated with
0.3% (v/v) H2O2 in methanol to quench endogenous per-
oxidase. The slides were washed in PBS, and blocked
with a 1:10 dilution of normal mouse serum (Harlan Bio-
products for Science, Inc., Indianapolis, IN) in PBS for 30
minutes. To detect endothelial cells, sections were incu-
bated in 1.0 �g/ml of MEC 13.3 primary antibody (anti-

CD31; Pharmingen International, San Diego, CA). For the
detection of macrophages, 1.7 �g/ml of rat anti-mouse
MOMA-2 antibody (Sertotec Inc., Raleigh, NC) was used.
This antibody recognizes an intracellular antigen in
monocytes and macrophages.24 After a 30-minute incu-
bation with the primary antibody, the slides were washed
for 5 minutes, three times, in PBS and incubated with 13.0
�g/ml of biotinylated mouse anti-rat IgG antibody (Jack-
son Laboratories, West Grove, PA) for another 30 min-
utes. After three 5-minute washes in PBS, slides were
incubated with avidin-biotin-horseradish peroxidase
complex (ABC-HRP; Vector Laboratories, Burlingame,
CA) for 30 minutes. After the final set of washes, slides
were incubated in an HRP substrate, 3,3�-diaminobenzi-
dine (Kirkegaard and Perry Laboratories, Gaithersburg,
MD) for 10 minutes and the sections were counterstained
with Harris hematoxylin (Sigma Chemical Company, St.
Louis, MO). Slides were mounted with Cytoseal (Ste-
phens Scientific, Kalamazoo, MI). To quantify macro-
phages, wound bed areas were outlined and measured
using Scion Image beta 3b acquisition and analysis soft-
ware (Scion Corp., Frederick, MD). MOMA-2-positive
cells were counted within the wound bed, and the num-
ber of macrophages per mm2 determined. For each
group, two wound sections from each of four individual
mice were analyzed. All counting was performed in a
blinded manner.

Analysis of Re-Epithelialization

To analyze the degree of re-epithelialization, the central
portion of the wound was viewed under �100 or �400
power. The width of the wound, and the distance that the
epithelium had traversed were measured. The percent
re-epithelialization was calculated with the following
formula:

% Re-epithelialization �

Distance covered
by epithelium

Width of wound bed
� 100%

Analysis of Angiogenesis

To analyze blood vessel density in wound samples, en-
dothelial cells were visualized by CD31 immunohisto-
chemistry. Images of CD31-immunostained wound sec-
tions were captured and analyzed using Scion Image
beta 3b acquisition and analysis software (Scion Corp.).
The wound bed was outlined using a freehand drawing
tool and the area was measured. CD31� area within the
wound was highlighted with false coloring and the inten-
sity and pattern of the captured image was adjusted to
match those of the slide. Background signals were elim-
inated either with a picture-editing function in the pro-
gram or by setting a higher threshold that includes
CD31� signals while excluding those from the hematox-
ylin counterstain. The CD31-positive area within the
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wound bed was measured and the percent vasculariza-
tion was calculated as:

% Vascularization �
CD31-positive area

Total wound bed area
� 100%

Collagen Analysis

Collagen content of wounds was assessed by determin-
ing the amount of hydroxyproline.25 Frozen wound tissue
was hydrolyzed in 2.0 ml of 6 N HCl for 3 hours at 130°C
or overnight at 110°C. The reaction was neutralized with
2.5 N NaOH and diluted 40-fold with deionized H2O. One
ml of a 0.05 mol/L N-chloro-p-toluene-sulfonamide solu-
tion was added to 2 ml of the neutralized/diluted solution
and incubated for 20 minutes at room temperature. One
ml of 3.15 mol/L perchloric acid was added to the solution
and was incubated for 5 more minutes at room temper-
ature. One ml of 20% solution of p-dimethylaminobenzal-
dehyde was then added and the resulting mixture was
incubated for 20 minutes at 60°C. The samples were
cooled with cold tap water. Absorbance was measured at
557 nm, and the amount of hydroxyproline determined by
comparison to a standard curve. All reagents in this
assay were purchased from Sigma Chemical Company.

Statistical Analysis

Data were analyzed using GraphPad Prism, version 2.01
(GraphPad Software Inc, San Diego, CA). The means and
SEM were calculated for each data set. For the compar-
ison of two groups, an unpaired t-test was used. For data
from time-course experiments, a two-way analysis of vari-
ance was used. This method determines if there are
significant variations in the healing response as a result of
genetic strain and/or time. For both tests, significance
was taken as P � 0.05.

Results

Comparison of Wound Closure in MCP-1�/�

and MIP-1��/� Mice

We first examined the degree of re-epithelialization in
wounds from MCP-1�/�, MIP-1��/� and control mice at 3
days after injury. This time point was previously charac-
terized as the mid-point of re-epithelialization in this mod-
el.26 At 3 days after injury, wounds from MCP-1�/� mice
showed a significant delay in re-epithelialization (28 �
6% re-epithelialization versus 79 � 14% in controls, P �
0.005; Table 1 and Figure 1). Although day 5 wounds
from control mice were primarily re-epithelialized, those
from MCP-1�/� mice were still incomplete (Figure 1). In
contrast to the delay in wound closure seen in the MCP-
1�/� mice, re-epithelialization of wounds in MIP-1��/�

mice was similar to wild-type control (70 � 27%, MIP-
1��/� versus 80 � 2%, control, on day 3 after injury, not
significant; Table 1 and Figure 1).

Wound Healing in MIP-1��/� Mice

To confirm that MIP-1��/� mice heal normally, we exam-
ined two additional aspects of wound healing in this
strain. Wound angiogenesis, assessed as vascular den-
sity, was comparable for MIP-1��/� and control wild-type
mice at all time points examined (Figure 2). Wound col-
lagen content, as measured by the level of hydroxypro-
line, was nearly identical in MIP-1��/� and control mice
(Figure 2). Analysis of healing in larger excisional wounds
(8-mm diameter) unveiled no significant differences in
healing between MIP-1��/� and control mice (data not
shown). Taken together, the data reinforce the concept that
wound healing proceeds normally in MIP-1��/� mice.

Wound Healing in MCP-1�/� Mice

The delay in wound healing that had been detected in the
MCP-1�/� mice was examined in further detail. Time
course analysis of re-epithelialization revealed a pro-
found delay in epithelial regrowth in the MCP-1�/� strain.
When compared to wild-type, MCP-1�/� mice displayed
a significant delay in wound re-epithelialization on days 1,
3, and 5 after injury (Figure 3). The wounds of MCP-1�/�

mice ultimately reached closure at day 10, taking approx-
imately twice as long as those of control animals to
achieve complete re-epithelialization. A time course anal-
ysis of angiogenesis established that the vascular density
of wounds from MCP-1�/� mice was also significantly
decreased from control (Figure 3). This decrease in vas-
cularity was most pronounced on day 5 after injury and
differences from wild-type disappeared by day 10 after
injury. The influence of MCP-1 deficiency on the level of
wound hydroxyproline, an indirect measure of collagen,
was also determined (Figure 3). When compared to
wounds from control mice, a significant retardation in
collagen production was observed in wounds of MCP-
1�/� mice. The greatest delay occurred on day 5 after
injury. By day 10, the hydroxyproline level in MCP-1�/�

mice reached a level similar to that of wild-type controls.

Macrophage Content in Wounds of MCP-1�/�

and MIP-1��/� Mice

The number of macrophages in the wound increases
during healing because of their local recruitment from
peripheral blood. Both MCP-1 and MIP-1� chemokines
may participate in this process as chemotactic factors.
The number of macrophages in day 3 after injury wounds
was not significantly different between MCP-1�/� mice,

Table 1. Effects of MIP-1� or MCP-1 Deficiency on Day 3
Wound Re-Epithelialization

Strain n Percent re-epithelialization

MCP-1�/� 6 28 � 6*
Control 6 79 � 14
MIP-1��/� 4 70 � 27
Control 4 80 � 2

*P � 0.005 versus controls.
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MIP-1��/� mice, and wild-type controls (Table 2). Enu-
meration of wound macrophages with an antibody spe-
cific for mature macrophages, F4/80,27 yielded similar
results to those obtained using the MOMA-2 antibody
(data not shown).

Discussion

Among the ever-growing list of chemokines, two CC fam-
ily members, MIP-1� and MCP-1 are found in high levels
in the early phase of wound repair.18–22 The presence of
these two chemokines precedes and coincides with max-
imal macrophage infiltration, suggesting that they may
mediate the recruitment of these inflammatory cells. The
availability of genetically deficient mice allowed for an
assessment of the role of MIP-1� and MCP-1 on wound
healing in a defined system. In MIP-1��/� mice, exami-
nation of the degree of epithelial growth, wound angio-
genesis, and collagen synthesis, demonstrated no signif-
icant delay in repair when compared to control. Given
that MIP-1� is actively transcribed in early wounds, and
that MIP-1� protein is abundant during the inflammatory
phase of wound repair, the lack of an observable pheno-
type in the MIP-1� genetically deficient strain is a most
surprising finding.22 The data seem to suggest that
MIP-1� production is inconsequential in normal wounds.
A second possibility is that compensatory activity is gen-
erated in the MIP-1��/� mice. In these mice, the chemo-
kine system may have accommodated to MIP-1� defi-

Figure 1. Histological comparison of wounds from C57BL/6 controls (A and B), MCP-1�/� (C and D), and MIP-1��/� (E and F) mice on day 3 (A, C, and E)
and day 5 (B, D, and F) after injury. H&E-stained sections were photographed at �25 power. The wound margins are indicated by upward arrows. In C and
D, the margins of the advancing epithelial layer are indicted by downward arrowheads. By 3 days after injury, most wounds from control and MIP-1��/� mice
showed complete re-epithelialization (A and E). In contrast, day 3 wounds from MCP-1�/� mice showed delayed re-epithelialization (C). At day 5, wounds from
MCP-1�/� mice still exhibited incomplete re-epithelialization (D).

Figure 2. Effects of MIP-1� deficiency on dermal wound repair. A: Deter-
mination of wound angiogenesis in MIP-1��/� mice. Vessel density was
measured in wounds at 5 and 7 days after injury. CD31-stained tissues were
analyzed by image analysis and CD31� areas quantified and compared to
total wound area (100%). Data are expressed as mean � SEM (n � 4). B:
Determination of wound hydroxyproline content as an indicator of collagen
levels. Hydroxyproline content per wound (�SEM) was measured at days 5
and 7 after injury. Day 5, n � 4 for C57BL/6 and n � 6 for MIP-1��/�. Day
7, n � 4 for both strains.
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ciency during development. The large degree of
permissive binding between chemokines and their re-
ceptors suggests that chemokine compensation might
easily occur. MIP-1� is known to be a ligand for CCR1,

CCR5, and CCR9,28,29 yet these three receptors bind
to several chemokines other than MIP-1�. For example,
CCR1 also binds to RANTES and MCP-3, and the li-
gands for CCR5 include RANTES and MIP-1�. CCR9 is
a receptor for MCP-1, -2, and -4; MIP-1�; RANTES;
eotaxin; and HCC-1. At least two pieces of evidence
support the concept that MIP-1��/� mice have devel-
oped a compensatory mechanism that overcomes the
loss of this single chemokine. First, although normal
healing is observed in MIP-1��/� mice, treatment of
normal mice with neutralizing anti-MIP-1� antiserum
results in significantly delayed wound healing.22 Neu-
tralization of MIP-1� by antiserum seems likely to rep-
resent the abrogation of MIP-1� activity in a situation in
which chemokine compensation has not developed. A
second and comparable example of possible compen-
sation for MIP-1� has been demonstrated in a murine
experimental autoimmune encephalomyelitis model.30

Whereas treatment of normal mice with neutralizing
anti-MIP-1� antiserum inhibits EAE development,31

MIP-1��/� mice are fully susceptible to the disease.
Both of these examples suggest that MIP-1��/� mice
produce other factors, perhaps other chemokines,
which fully compensate in some inflammatory cir-
cumstances.

In contrast to the normal healing observed in MIP-
1��/� mice, MCP-1�/� mice did not display overt com-
pensation, and exhibited an observable delay in multiple
parameters of healing. In these mice, re-epithelialization,
angiogenesis, and collagen production were remarkably
decreased. Although delays were apparent and often
dramatic in the early phases of repair, by day 10 the
differences were no longer significant, and the values of
the wounds from MCP-1�/� mice were similar to those
of control animals. Thus, although there is a delay
during the healing process, the ultimate endpoints are
similar in wounds from both knockout and control ani-
mals. The transient but significant nature of the delay is
very similar to those observed in wounds from mice
deficient in basic fibroblast growth factor32 and in
wounds of aged mice.26

Although there is a delay in the repair process, no
reduction in macrophages, as identified by MOMA-2 an-
tibody, was seen in wounds of the MCP-1�/� mouse.
Because MOMA-2 detects nearly all monocytes and
macrophages, without distinction as to activation status,
the possibility exists that specific subsets of macro-
phages, such as activated populations, are decreased in
the MCP-1�/� mice. The finding of normal levels of mac-
rophages in MCP-1�/� mice, in the face of altered heal-
ing, is consistent with the notion that it is not only the
presence, but also the appropriate activity of these cells

Figure 3. Effects of MCP-1 deficiency on dermal wound repair. A: Time
course of re-epithelialization in MCP-1�/� mice compared to wild-type
controls. Percent re-epithelialization (�SEM) is shown [n � 6 (days 1 to 14),
n � 4 (day 21)]. P � 0.0001 between groups by two-way analysis of variance.
B: Time course of wound angiogenesis in MCP-1�/� mice. Blood vessel
density (�SEM) is shown (n � 6). P � 0.02 between groups by two-way
analysis of variance. C: Collagen content of wounds from MCP-1�/� mice. As
an indicator of collagen amount, hydroxyproline content (�SEM) of wounds
was determined. [n � 6 (days 1 to 10), n � 4 (day 21)]. P � 0.05 between
groups by two-way analysis of variance.

Table 2. Macrophage Content of Day 3 Wounds from MIP-
1��/� and MCP-1�/� Mice

Strain n Macrophage/mm2

MIP-1��/� 4 166 � 20
MCP-1�/� 4 141 � 37
Control 4 183 � 36
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that is important for proper progression of wound heal-
ing.33–35 As macrophages are a rich source of growth
factors, the absence of MCP-1 may have affected the
ability of these cells to produce or secrete the necessary
factors. Additional studies to investigate shifts in wound
macrophage activity in the MCP-1�/� mice are needed to
substantiate this notion.

Our observation of normal inflammatory cell infiltration
in the dermal healing model is somewhat different from
those from other inflammatory models. MCP-1�/�3 and
CCR2�/�4–6 mice had impaired peritoneal inflammation
elicited by thioglycolate because of a lack of monocytes/
macrophages in the peritoneum. In the autoimmune-
prone MRL-faslpr mice that lack MCP-1, the disease was
not manifested, because there was a reduction of auto-
immune cell invasion.36 The MCP-1�/� leukocytes did not
exhibit any delay in proliferation when stimulated in vitro,
suggesting that alterations in chemotaxis itself, rather
than intrinsic cellular defects were responsible. In mouse
models of atherosclerosis,23,37,38 the lack of MCP-1 led to
a reduction in macrophage infiltration, and consequently,
a decrease in plaque formation. These varied observa-
tions suggest a differential requirement for MCP-1 in each
particular inflammatory disease environment. MCP-1�/�

mice exhibited differential deficits in the various param-
eters of wound repair, suggesting specific roles for this
chemokine. First, our results support the hypothesis that
the role of MCP-1 in wounds involves macrophage acti-
vation but not recruitment. Second, in regard to the pro-
liferative aspects of wound healing, MCP-1 seems to
have greater role in the promotion of epithelial and vas-
cular growth than in the induction of collagen synthesis.
Interestingly, among these three proliferative parameters,
collagen synthesis showed the least amount of delay in
the MCP-1�/� mice. Therefore, within wounds, the role of
MCP-1 seems compartmentalized to specific regenera-
tive processes.

A growing body of literature supports the concept that
interconnections exist among the chemokine, cytokine,
and growth factor networks. MCP-1 is known to influence
macrophage activity, and can also stimulate both fibro-
blasts39,40 and endothelial cells.41 Each of these three
cell types is known to produce growth factors and other
cytokines within wounds.42 These studies suggest the
possibility that impaired wound healing, such as that
observed in aged or diabetic patients, may involve per-
turbations in the chemokine network. An argument for
such chemokine dysregulation is supported by a recent
study of patients with chronic nonhealing venous leg
ulcers. Compared to healing wounds, chronic wounds
from these patients exhibited altered chemokine and in-
flammatory cytokine profiles.43 In a more specific exam-
ple of cytokine interaction in wounds, interleukin-10 has
been shown to exert a regulatory role via inhibition of the
expression of MIP-1� and MCP-1, leading to a dimin-
ished wound inflammatory response.44 Additional inves-
tigations will be needed to assess the importance of
chemokine, cytokine, and growth factor alterations to the
problem of impaired wound healing.
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