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CD40 is a protein on microglia that is up-regulated
with interferon (IFN)-� and is engaged by CD40L,
found on CD4� T cells, B cells, and monocytes. These
interactions may be important in central nervous sys-
tem inflammatory diseases. Microglia have been
shown to be a source of chemokines, whose expres-
sion plays a key role in central nervous system pa-
thologies. We examined the expression of CD40 on
microglia in human immunodeficiency virus (HIV)
encephalitic brain, and the effects of CD40-CD40L
interactions on the expression of chemokines by cul-
tured microglia. We found significantly increased
numbers of CD40-positive microglia in HIV-infected
brain tissue. Treatment of cultured microglia with
IFN-� and CD40L increased expression of several che-
mokines. IFN-�- and CD40L-induced MCP-1 protein
was mediated by activation of the ERK1/2 MAPK path-
way, and Western blot analysis demonstrated phos-
phorylation of ERK1/2 upon stimulation of microglia.
In contrast, IFN-�- and CD40L-induced IP-10 protein
production was mediated by the p38 MAPK pathway.
Our data suggest a mechanism whereby CD40L� cells
can induce microglia to secrete chemokines, amplify-
ing inflammatory processes seen in HIV encephalitis
and multiple sclerosis, and implicate CD40-CD40L in-
teractions as a target for interventional strategies.
(Am J Pathol 2002, 160:559–567)

CD40 is a phosphorylated 48-kd glycoprotein expressed
on the surface of various cells including monocytes1,2

and microglia.3 CD40 is a member of the tumor necrosis
factor (TNF) receptor superfamily that also includes
TNFR1, TNFR2, and FAS (CD95). The receptor for CD40,
CD40 ligand (CD40L), is expressed on several cell types,
including activated CD4� T cells4,5 and monocytes/mac-
rophages.6 CD40-CD40L interactions were originally be-

lieved to be necessary specifically for B-cell isotype
switching,7 but are now known to play a more general
role in immune regulation and inflammatory processes.8

A role for CD40-CD40L interactions has been sug-
gested for a variety of central nervous system (CNS)
inflammatory models. CD40L knockout animals cannot
be induced to develop experimental autoimmune en-
cephalomyelitis (EAE), a T-cell-dependent autoimmune
disease of the CNS used as an animal model for multiple
sclerosis (MS).9 Antibody to CD40L blocks the develop-
ment of clinical disease progression and CNS inflamma-
tion in EAE.9,10 CD40L� cells have been detected in MS
tissue by immunohistochemistry, and these co-localized
with CD40� cells of the monocytic/microglial lineage.9

Activated T cells may enter the CNS under a variety of
pathological conditions, including MS,11–13 simian immu-
nodeficiency virus,14,15 and early HIV encephalitis.16

These T cells secrete interferon (IFN)-�, which is a medi-
ator of a number of proinflammatory effects. It has been
demonstrated that IFN-� can up-regulate CD40 on a
number of cell types, including mouse17 and human18

microglia in culture.
Chemokine production plays a major role in CNS in-

flammation. Chemokines are low-molecular weight cyto-
kines that function in leukocyte recruitment as well as in
cell activation.19 The chemokines can be divided into
different families based on the position of their N-terminal
cysteine residues. The C-X-C family contains IFN-induc-
ible protein (IP)-10 (CXCL10) among others, which is
chemotactic for monocytes and activated T cells.20 Mem-
bers of the CC family include monocyte chemoattractant
protein (MCP)-1 (CCL2), macrophage inflammatory pro-
tein (MIP)-1� (CCL3), MIP-1� (CCL4), and regulated
upon activation, normal T-cell expressed and secreted
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(RANTES; CCL5), which also attract monocytes and ac-
tivated T cells.

Microglia, the resident macrophages of the brain, are
believed to function as the primary antigen-presenting
cell of the CNS,21 and have been shown to express
chemokines.22 Chemokines play an important role in
CNS pathologies. Antibodies against MIP-1� inhibited
adoptively transferred EAE and reduced inflammation in
the CNS, whereas antibodies against MCP-1 inhibited
relapses.23 An increase in RANTES and IP-10 protein
levels has been detected in the cerebrospinal fluid of MS
patients.24 Expression of several CC chemokines has
been demonstrated within MS lesions, including MCP-1,
MCP-2, MCP-3,25 RANTES,24 MIP-1�, and MIP-1�.26 A
role for chemokines in HIV encephalitis and HIV dementia
has also been established. MCP-1, MIP-1�, and MIP-1�
expressions have been detected in the CNS of individu-
als with HIV.27,28

The importance of chemokines in the development of
CNS pathologies led us to determine whether ligation of
CD40 on microglia can induce these cells to secrete
various chemotactic factors. In this study, we analyzed
the expression of CD40 in HIV encephalitic brain tissue
and the response of cultured microglia to CD40 ligation.
We demonstrated up-regulation of CD40 expression in
HIV-infected brains co-localized with CD68, a microglial
marker. CD40 expression on cultured microglia was also
up-regulated after treatment with IFN-�. Treatment of cul-
tured microglia with IFN-�- and CD40L-induced expres-
sion of the chemokines MCP-1, IP-10, MIP-1�, MIP-1�,
and RANTES. IFN-� and CD40L induction of MCP-1 pro-
tein was mediated by the extracellular regulated kinase
(ERK)1/2 mitogen-activated protein kinase (MAPK) path-
way, whereas IP-10 protein induction was mediated via
the p38 MAPK pathway. These results suggest a mech-
anism for the increase in chemokine production seen in
the CNS in certain inflammatory diseases, such as MS
and HIV encephalitis, and may indicate novel pathways
for therapeutic intervention.

Materials and Methods

Cell Culture and Reagents

Human fetal CNS tissue (16 to 24 weeks) was obtained at
the time of elective abortuses from healthy females. The
tissue was used as part of an ongoing research protocol
approved by the Albert Einstein College of Medicine.
Microglia were established according to a modified pro-
tocol.29 Briefly, the meninges were removed; the tissue
was minced and shaken for 45 minutes at 37°C in 1�
Hepes-buffered salt solution (Life Technologies, Inc., Bal-
timore, MD), 1� trypsin-ethylenediaminetetraacetic acid
(Boehringer-Mannheim, Indianapolis, IN) and DNaseI
(Life Technologies, Inc.). The slurry was passed through
a 250-�m nylon mesh filter followed by a 150-�m filter,
washed once with Hepes-buffered salt solution, and then
with complete Dulbecco’s modified Eagle’s medium
(DMEM plus 25 mmol/L Hepes, 10% fetal calf serum, 1%
penicillin-streptomycin, 1% nonessential amino acids).

Cells were resuspended in complete DMEM, seeded at
9 � 107 per 150-cm2 flask, and maintained at 5% CO2,
37°C for 12 days. After this time, the media (containing
microglia) was removed and centrifuged for 5 minutes at
220 � g. The microglia were resuspended in complete
DMEM and seeded at 5 � 105 per well of a 24-well plate.
The media was changed after 6 to 8 hours. Twenty-four
hours after plating, microglia were treated with 200 �l of
DMEM without fetal calf serum containing either 100 U/ml
IFN-� (R&D Systems, Minneapolis, MN), 5 �g/ml soluble
trimeric human CD40 ligand (a generous gift from Immu-
nex Corporation, Seattle, WA), both IFN-� and CD40L, or
left untreated for 24 and 48 hours. For inhibitor studies,
microglia were pretreated with 10 or 30 �mol/L of the
ERK1/2 MAPK inhibitor, PD9805930 (Sigma-Aldrich, St.
Louis, MO) or 5, 10, or 20 �mol/L of the p38 MAPK
inhibitor, SB20358031 (Sigma-Aldrich) for 1 hour, fol-
lowed by treatment with IFN-� and CD40L for 24 or 48
hours. Supernatants were then collected.

Immunohistochemistry

Immunohistochemical studies were performed on brain
tissue taken at autopsy. Six patients with HIV, HIV en-
cephalitis, or HIV dementia were studied. Three control
brains with non-CNS pathologies were included (Table
1). The post mortem interval for all cases was between 12
and 24 hours, with the exception of case 2, which was 37
hours. Paraffin-embedded tissue was dehydrated and
deparaffinized. After rehydration, the sections were
placed in 10 mmol/L of sodium citrate at 95°C for 20
minutes. Sections were cooled and washed in Tris-buff-
ered saline, quenched in 0.8% H2O2 in methanol, incu-
bated in 2% normal horse serum/Tris-buffered saline
(Vector Laboratories, Burlingame, CA) for 1 hour at 37°C,
and incubated overnight at 4°C in primary antibody
(mouse anti-human CD68, KP1, 0.82 �g/ml; DAKO,
Carpinteria, CA) or an isotype-matched antibody (mouse
IgG1; Cappel, Los Angeles, CA). The sections were
washed, incubated with a biotinylated secondary anti-
body (1:750, Vector Laboratories), followed by incubation
in avidin-biotin complex (Vector Laboratories). Slides
were developed with 3�3�-diaminobenzidine (Sigma-Al-
drich) to give a brown reaction product. Slides were then
requenched and reblocked in 2% normal goat serum/1%
bovine serum albumin/Tris-buffered saline. Sections were
incubated overnight at 4°C with primary antibody (rabbit
anti-human CD40, 1 �g/ml; Santa Cruz Biotechnology,
Santa Cruz, CA), or with rabbit IgG (Santa Cruz Biotech-
nology). Sections were washed and incubated with per-
oxidase-coupled goat anti-rabbit secondary antibody (1:
500; Southern Biotechnology Associates, Pittsburgh, PA).
Slides were developed with Vector-VIP (Vector Laborato-
ries), which results in a purple reaction product, dehy-
drated, and mounted with Cytoseal (VWR Scientific, Wil-
lard, OH).

Fluorescence-Activated Cell Sorting Analysis

Microglia were plated at 1 � 106 cells/100-mm dish for 36
hours, and were either left untreated or treated with IFN-�
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(100 U/ml). Microglia were washed once in Hepes-buff-
ered salt solution, once in 0.5 �mol/L of ethylenediami-
netetraacetic acid/phosphate-buffered saline (PBS), and
were detached with 0.5 �mol/L of ethylenediaminetet-
raacetic acid/PBS. Microglia were collected and centri-
fuged for 5 minutes at 220 � g at 4°C. Microglia were
then incubated for 30 minutes on ice with primary anti-
body (mouse anti-human CD40, 0.25 �g/106 cells; Santa
Cruz Biotechnology) or an isotype-matched negative
control antibody (mouse IgG1, 0.25 �g/106 cells; Cap-
pel). Cells were washed with block buffer (2% horse
serum/1% bovine serum albumin/0.1% NaN3/PBS) and
incubated with a biotinylated secondary antibody (1:750,
Vector Laboratories) for 30 minutes on ice, washed, and
incubated with StreptAvidin-conjugated CyChrome (1:50,
PharMingen, San Diego, CA) for an additional 30 min-
utes, covered, on ice. After a final wash, the cells were
transferred to fluorescence-activated cell sorting tubes
and analyzed with a FACScan Flow Cytometer (Becton
Dickinson, San Jose, CA) using WinMDI 2.8 software
(Scripps Research Institute, La Jolla, CA).

Chemokine Enzyme-Linked Immunosorbent
Assay

Supernatants were analyzed for chemokine proteins us-
ing a sandwich enzyme-linked immunosorbent assay ac-
cording to the manufacturer’s protocol. MCP-1, MIP-1�,
MIP-1�, and RANTES enzyme-linked immunosorbent as-
say antibody pairs were purchased from R&D Systems.
The antibody pairs for IP-10 were from Pharmingen. The
sensitivities for these assays are 4 pg/ml, 8 pg/ml, 1
pg/ml, 3 pg/ml, and 5 pg/ml, respectively.

RNA Extraction and Analysis

Microglia were plated at 1 � 106 cells/100-mm dish for 12
hours. Total RNA was extracted using Tri-Reagent (Mo-
lecular Research Center, Cincinnati, OH). Chemokine
mRNA expression was analyzed using the human che-
mokine ribonuclease protection assay kit hCK5 from
Pharmingen. Densitometry was performed using Ambis
QuantProbe software, with values normalized to glycer-
aldehyde-3-phosphate dehydrogenase.

Western Blot Analysis

Microglia were plated at 5 � 105 cells/well of a 24-well
plate. Cells were pretreated with or without inhibitor for 1
hour, after which some cells were left untreated, and
others were treated with IFN-� and CD40L for 10 minutes.
Microglia were washed and lysed (62.5 mmol/L Tris-HCl,
pH 6.8, 2% sodium dodecyl sulfate, 10% glycerol, 50
mmol/L dithiothreitol, 0.1% bromophenol blue, PA, 10
mmol/L, protease inhibitor cocktail 50 �l/ml, okadaic
acid, 1:5000, 10 �l/ml; Sigma-Aldrich). The slurry was
passed through an 18-gauge needle five times and
heated at 95°C for 5 minutes. Equal amounts of whole-
cell lysates (15 �l) were loaded onto each lane of a 12%
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis gel. Proteins were transferred electrophoretically to
Protran nitrocellulose (Schleicher & Schuell, Keene, NH).
Membranes were blocked with 5% nonfat dry milk in
0.1% Tween-20/Tris-buffered saline and incubated with
primary antibodies (p44/42 MAP kinase Ab, phospho-
p44/42 MAP kinase Ab, p38 MAP kinase Ab, phospho-
p38 MAP kinase Ab; Cell Signaling, Beverly, MA) at a
concentration of 1:1000 overnight at 4°C. After washing,
membranes were incubated with anti-rabbit horseradish
peroxidase secondary antibody (1:2000, Cell Signaling)
for 1 hour at room temperature. Proteins were visualized
using an enhanced chemiluminescence detection kit
(ECL; Amersham-Pharmacia, Piscataway, NJ). Densitom-
etry was performed using Ambis QuantProbe software,
with values normalized to total protein levels.

Statistical Analysis

The paired Student’s t-test (one-tailed) was used to de-
termine statistical significance. A value of P � 0.05 was
considered to be significant.

Results

CD40/CD68 Double-Positive Cells Are
Increased in Sections of HIV-Infected Brain
Tissue

Sections of normal brain and HIV-infected brain were
analyzed for reactivity with antibodies to CD40 as well as

Table 1. Pathological Analysis of Brain Tissue Taken at Autopsy Used for Immunohistochemical Study

Case HIV status Age/gender Brain pathology Cause of death

1 � 52 yr/F Normal brain Cardiac arrest
2 � 22 yr/F Normal brain Sickle cell disease
3 � 13 yr/F Normal brain Osteogenic sarcoma
4 � 23 mo/F HIVE,* CST† degeneration, microglial nodules AIDS-associated pneumonia
5 � 20 mo/F HIV, CST degeneration, large cell lymphoma AIDS-associated pneumonia
6 � 9 yr/F AIDS, septic shock Endstage AIDS
7 � 22 yr/F HIVE, sepsis Endstage AIDS
8 � 40 wk/M AIDS, HIV leukoencephalopathy Endstage AIDS
9 � 6 yr/M HIVE, microglial nodules AIDS-associated pneumonia

*HIV encephalitis.
†Corticospinal tract.
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CD68, a marker of cells of the monocyte/macrophage
lineage that includes microglia, using immunohistochem-
istry (Table 1). There was some reactivity with both re-
agents in the three normal brains tested (Figure 1A, case
2). It is not possible to distinguish microglia from mono-
cytes/macrophages on the basis of surface markers.
However, activated microglia have been identified by
their enlarged cell bodies and stout processes,32 as well
as by their location within the cortex.33–35 HIV-infected
CNS tissue is characterized by a large number of acti-
vated microglia.36 This activation was apparent in all six
of the HIV-infected brains analyzed. All HIV-infected tis-
sues had significant double staining with CD40 and
CD68. An example of this reactivity is illustrated (Figure
1B, case 9). The CD68-positive cells with the phenotype
of activated microglia (brown) were reactive and were
also double-stained for CD40 (purple). CD40�/CD68�
microglia are illustrated in two other HIV-infected brain
sections (Figure 1C, case 6; Figure 1D, case 4). As
shown, the CD40 staining was localized to the surface of
the cell body, whereas the CD68 staining was punctate
and localized to the processes. One of the hallmarks of
HIV infection is the microglial nodule. Staining of the
nodule demonstrated that there were many double-la-
beled microglia within it (Figure 1E, case 9). There was
little background or nonspecific reactivity with isotype-
matched negative control antibodies in the HIV-infected
brain (Figure 1F, case 9).

IFN-� Up-Regulates CD40 Expression on
Cultured Human Fetal Microglia

Others have demonstrated that IFN-� can up-regulate
CD40 on both mouse17,37–39 and human18 microglia in
culture, therefore, we determined whether IFN-� would
also up-regulate CD40 expression on microglia isolated
using our methods and tissue source. Microglia were
either left untreated or treated with IFN-� for 36 hours
after which CD40 expression was detected by flow cy-
tometry. There was constitutive expression of CD40 on
untreated microglia (Figure 2, thin black line), compared
to IgG-stained microglia (Figure 2, light line). After treat-
ment with IFN-�, CD40 expression was up-regulated on
cultured microglia (Figure 2, thick black line).

IFN-� and CD40L Induce Chemokine Protein
Secretion by Microglia

We analyzed purified human microglial cells for their
expression of chemokines in response to CD40L. IFN-�
and CD40L stimulation of microglial cultures induced
protein secretion of MCP-1, IP-10, MIP-1�, MIP-1�, and
RANTES (Figure 3, a to e). The IFN-�- and CD40L-in-
duced increase in chemokine secretion is significant at
both the 24-hour treatment compared to untreated, IFN-�
treatment alone, and CD40L treatment alone (P � 0.04)

Figure 1. HIV infection increases the number of CD40/CD68 double-positive cells. CD68 is visualized with 3�3�-diaminobenzidine (brown) and CD40 is visualized
with Vector VIP (purple). A: Normal brain with little CD68 or CD40 staining (original magnification, �82.5; case 2). B: Reactive microglia in an HIV-infected brain
(original magnification, �82.5; case 9). There are numerous double-labeled cells. C and D: Reactive microglia staining for CD68 on their processes and for CD40
on their cell bodies (original magnifications, �165; C is case 6 and D is case 4). E: Prominent staining seen in a microglia nodule, which is a hallmark of HIV
(original magnification, �165; case 9). There is abundant CD68 reactivity and many of these cells are also staining intensely for CD40. B to E demonstrate increased
expression of CD40 on microglia after HIV infection when compared to A, which is a normal brain. F: Reactivity of isotype-matched control antibodies for CD40
and CD68 (original magnification, �82.5; case 9). There is little background or nonspecific staining with either antibody.
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and the 48-hour treatment compared to untreated, IFN-�
treatment alone, and CD40L treatment alone (P � 0.04).

IFN-� and CD40L Treatment Induce Chemokine
mRNA

We analyzed microglial chemokine mRNA expression by
ribonuclease protection assay after a 12-hour treatment
with IFN-�, CD40L, or IFN-� and CD40L treatment (Figure
4a). The densitometric analysis of these data shows that
IFN-� and CD40L treatment increases MCP-1, IP-10,
MIP-1�, MIP-1�, and RANTES mRNA expression com-
pared to untreated, IFN-� treatment, or CD40L treatment
alone (Figure 4b).

MCP-1 Induction by IFN-� and CD40L Is
Regulated through the ERK1/2 MAPK Pathway

MCP-1 protein expression induced by IFN-� and CD40L
(24 hours) was significantly decreased (P � 0.0001) by
the ERK1/2 MAPK pathway inhibitor, PD98059 at both 10
�mol/L and 30 �mol/L (Figure 5A). The inhibitor alone
had no effect on microglial MCP-1 expression compared
to untreated cells. To confirm that MCP-1 protein produc-
tion was occurring through the ERK1/2 MAPK pathway,
microglia were pretreated with the highly specific ERK1/2
MAPK inhibitor, U0126. U0126 treatment at 10 �mol/L
significantly reduced (P � 0.0001) IFN-�- and CD40L-
induced MCP-1 protein production, bringing the levels of
MCP-1 to baseline (Figure 5B). Pretreatment with the p38
MAPK inhibitor, SB203580, did not significantly change
MCP-1 protein expression as compared to IFN-� and
CD40L treatment. We analyzed phosphorylated ERK1/2
levels by Western blot (Figure 6). Densitometric analysis
demonstrated that IFN-� and CD40L treatment induced
phosphorylation of ERK1/2 after 10 minutes, and pretreat-
ment with PD98059 at 30 �mol/L abrogated this induction
(data not shown).

IP-10 Induction by IFN-� and CD40L Is
Regulated through the p38 MAPK Pathway

IP-10 protein expression was analyzed at 24 hours after
pretreatment with both PD98059 and the p38 MAPK in-

hibitor, SB203580. No difference in IP-10 protein expres-
sion by microglia was detected when pretreated with
PD98059 at either 10 �mol/L or 30 �mol/L, but there was
a small decrease in IP-10 protein expression when pre-
treated with SB203580 (data not shown). Therefore, these
experiments were repeated for an expanded time frame
of 48 hours. Pretreatment of microglia at 10 �mol/L mod-

Figure 2. IFN-� up-regulates CD40 expression of human fetal microglia in
culture. CD40 expression was analyzed on untreated microglia, and micro-
glia treated with 100 U/ml IFN-� for 36 hours. Shown is a representative
histogram with cell number (y axis) versus log fluorescence intensity (x axis).
Positive (CD40-expressing) cells are displayed. Fluorescence-activated cell
sorting analysis was repeated three times with similar results. Light line, IgG
stained; thin black line, untreated microglia stained with CD40; thick
black line, IFN-�-treated microglia stained with CD40.

Figure 3. IFN-� plus CD40L induces chemokine protein secretion by micro-
glia. Microglia were incubated with media alone, IFN-�, CD40L, or both
IFN-� and CD40L. Graphs represent the means of four to six experiments �
SEM. a: MCP-1 protein was induced by IFN-� and CD40L after 24 hours and
48 hours. b: IP-10 protein was induced by IFN-� and CD40L after 24 hours
and 48 hours. c: MIP-1� protein was significantly induced by IFN-� and
CD40L only after 48 hours. d: MIP-1� protein was induced by IFN-� and
CD40L after 24 hours and 48 hours. e: RANTES protein was induced by IFN-�
and CD40L after 24 hours and 48 hours. *, P � 0.04 compared to untreated,
IFN-� treatment alone or CD40L treatments alone.
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estly inhibited IP-10 protein production compared to
IFN-� and CD40L, and pretreatment with 20 �mol/L of the
inhibitor significantly decreased (P � 0.001) IP-10 protein
expression compared to IFN-� and CD40L alone (Figure
7). The inhibitor alone had no effect on microglial IP-10
expression compared to untreated cells. Phosphorylation
of p38 after treatment with IFN-� and CD40L was ana-
lyzed by Western blot (Figure 8). Densitometric analysis
demonstrated that IFN-� and CD40L treatment induced
phosphorylation of p38 after 10 minutes compared to
untreated cultures (data not shown).

Discussion

We studied the expression of CD40 in HIV encephalitic
brains as well as the effect of CD40 ligation in cultured
primary human fetal microglia using recombinant human
CD40L. We showed by immunohistochemistry that there
is an abundance of CD40/CD68 double-positive cells.
These cells stain brightly in HIV-infected brains as com-

pared to normal brains that show minimal reactivity. Us-
ing cultured microglia we demonstrated an increase in
CD40 expression after treatment with IFN-�, a product of
activated T cells. We also demonstrated that when mi-
croglia were co-treated with IFN-� and CD40L, chemo-
kine expression was increased at both 24 hours and 48
hours. Our immunohistochemical and chemokine data
demonstrate that as microglia become activated, they
increase their expression of CD40. This would facilitate
their interaction with infiltrating CD40L-positive leuko-
cytes, promoting the secretion of chemokines by micro-
glia and further infiltration of leukocytes, thereby amplify-
ing the inflammatory processes characteristic of HIV
encephalitis and MS.

In several CNS pathologies there is an abundance of
inflammation resulting from the transmigration of mono-
cytes/macrophages and T cells across the blood-brain
barrier.40 In MS, SIV encephalitis, as well as early HIV
encephalitis, one of the cells that enters the CNS is the
activated T cell that is able to secrete IFN-�. In fact, in
individuals infected with HIV, there is an increased num-
ber of CD8�CD28�T cells, and these cells have been

Figure 4. IFN-� plus CD40L induces chemokine mRNA expression from
microglia. a: Microglia were incubated with media alone (lane 1), IFN-�
(lane 2), CD40L (lane 3), or both IFN-� and CD40L (lane 4). b: Densito-
metric analysis confirms that IFN-� and CD40L treatment increases RNA
expression for every chemokine tested. Shown is a representative ribonucle-
ase protection assay of two experiments. Filled bars, untreated; hatched
bars, IFN-� treated; stippled bars, CD40L treated; open bars, IFN-� and
CD40L treated.

Figure 5. MCP-1 protein expression is ERK 1/2 MAPK-dependent. MCP-1
protein expression was determined as percent change compared to IFN-�
and CD40L (set to 100%). A: MCP-1 protein expression after treatment with
either the ERK1/2 MAPK inhibitor or the p38 MAPK inhibitor for 24 hours.
Shown are the means of five separate experiments � SEM. B: MCP-1 protein
expression after treatment with the ERK1/2 MAPK inhibitor U0126 for 24
hours. Shown are the means of four separate experiments. *, P � 0.0001
compared to IFN-� and CD40L. PD10, PD30 � PD98059 at 10 �m and 30
�mol/L, respectively; SB5, SB10 � SB203580 at 5 �mol/L and 10 �mol/L,
respectively; U010 � U0126 at 10 �mol/L.

Figure 6. IFN-� and CD40L induces phosphorylation of ERK1/2, and
PD98059 pretreatment abrogates phosphorylation. Western blot analysis
demonstrates the phosphorylation of ERK1/2 (top) and total ERK1/2 expres-
sion (bottom). Shown is a representative blot of three experiments. Lane
1,untreated; lane 2, untreated plus PD30; lane 3, IFN-� and CD40L; lane 4,
IFN-� and CD40L plus PD30. PD30 � PD98059 at 30 �mol/L.
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demonstrated to secrete IFN-�.41 Others have demon-
strated that IFN-� can up-regulate CD40 on various cell
types, and infiltrating T cells are the major source of IFN-�
in the CNS. CD40L is expressed on T cells and mono-
cytes, and CD40 is expressed on microglial cells and
astrocytes.42 HIV-infected patients on highly active anti-
retrovial therapy (HAART) have higher counts of CD40L-
expressing CD4� T cells43 and many exhibit an abun-
dance of macrophages within the CNS, suggesting the
possibility that these cells could interact with microglia
via CD40. Our data are the first to our knowledge to
demonstrate expression of CD40 in HIV-infected CNS
tissue.

The role of CD40-CD40L interactions in the develop-
ment of EAE has been studied extensively. Treatment of
mice with anti-CD40L antibodies blocked or attenuated
the development of EAE. CD40L knockout mice express-
ing a myelin basic protein-specific transgene could not
be induced to develop EAE, whereas the wild-type trans-
genic animals did develop disease.44 CD40 was shown
to be expressed in the CNS of individuals with MS.
CD40L� cells were found in active MS lesions that co-
localized with CD40� cells, and these CD40� cells were
of the monocytic lineage (macrophages and microglia).9

Chemokines play an important role in CNS inflamma-
tory disease. MCP-1 expression has been demonstrated
in individuals infected with HIV. The HIV transactivator

protein, Tat, has been shown to induce MCP-1 expres-
sion in astrocytes and microglial cells in tissue culture28

and MCP-1 expression has been found in both brain
tissue28,45 and cerebrospinal fluid27 of patients with HIV
encephalitis or dementia. MCP-1 has also been shown to
be important in EAE and MS. There is expression of
MCP-1 at the beginning of acute EAE,46,47 as well as
MCP-1 and IP-10 expression during spontaneous relapse
of the disease.47,48 Anti-MCP-1 antibodies were able to
reduce significantly relapses of EAE,23 and mice defi-
cient for CCR2, the receptor for MCP-1, were resistant to
EAE induction.49 MCP-1 has also been found in active
MS lesions from autopsied brains.25 It has been shown
that there is an increased amount of IP-10 in the cerebro-
spinal fluid of MS patients during active attacks and IP-10
has also been shown to be present in active MS le-
sions.50 Thus, both MCP-1 and IP-10 are important che-
mokines in CNS pathologies.

Chemokines may play multiple roles in the pathogen-
esis of HIV encephalitis. They can recruit inflammatory
cells into the CNS, thereby facilitating the entry of HIV-
infected cells, as well as amplifying the inflammatory
response. Yet they may also act on resident cells within
the CNS to inhibit further infection. For example, certain
strains of HIV use CCR5 as a co-receptor for entry into
cells.51–55 The ligands for this receptor, MIP-1�, MIP-1�,
and RANTES, have been shown to suppress HIV infec-
tion.56 MIP-1� and MIP-1� mRNA57 and proteins28,45,58

were found to be expressed in glial cells in the CNS of
individuals with HIV dementia or encephalitis and not in
normal brains. MIP-1� and MIP-1� elevation was also
demonstrated in the macaque model of SIV encephalitis,
along with increased RANTES and IP-10.59,60 Our data
that CD40L induces MIP-1�, MIP-1�, and RANTES from
microglia suggest that CD40-CD40L interactions within
the CNS could also serve a protective, as well as a
proinflammatory, role during HIV infection of the brain.

Ligation of mouse microglial CD40 results in activation
of ERK1/2 MAPK.37 We demonstrated that IFN-�- and
CD40L-induced MCP-1 protein secretion by human mi-
croglia is dependent on ERK1/2 activation. Inhibition of
the upstream activator of ERK1/2 MAPK with PD98059
and U0126 decreased MCP-1 secretion, and PD98059
pretreatment inhibited ERK1/2 phosphorylation. Interest-
ingly, IP-10 signaling differed from that for MCP-1 in that
it is dependent on p38 MAPK. The specific inhibitor for
the p38 MAPK pathway, SB203580, partially blocked
IFN-�- and CD40L-induced IP-10 secretion, whereas the
ERK1/2 inhibitor had no effect. A role for p38 signaling
after CD40 ligation of dendritic cells and B cells has also
been shown.61 Thus, CD40 seems to induce a variety of
signaling pathways.

Our data suggest a mechanism by which infiltration of
inflammatory cells into the CNS can induce microglia to
secrete chemoattractants. These chemokines may serve
to recruit additional cells into the CNS as well as to
activate resident cells, thereby contributing to CNS pa-
thology. These findings suggest that CD40-CD40L inter-
actions may serve as targets for therapeutic intervention.

Figure 7. IP-10 protein expression is p38 MAPK-dependent. IP-10 protein
expression was determined as percent change compared to IFN-� and CD40L
(set to 100%). IP-10 protein expression was examined after pretreatment with
the p38 MAPK inhibitor for 1 hour, and then treatment with IFN-� and CD40L
for 48 hours. Shown are the means of two separate experiments � SEM. *,
P � 0.001 compared to IFN-� and CD40L. SB10, SB20 � SB203580 at 10
�mol/L and 20 �mol/L, respectively.

Figure 8. IFN-� and CD40L induces phosphorylation of p38. Western blot
analysis demonstrates the phosphorylation of p38 (top) and total p38 ex-
pression (bottom) at 10 minutes. Shown is a representative blot of two
experiments. Lane 1, untreated; lane 2, IFN-� and CD40L. PD30 � PD98059
at 30 �mol/L.
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