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The mammalian subtilisin/kexin-like proprotein con-
vertase (PC) family has been implicated in the activa-
tion of a wide spectrum of proteins. These proteins
are usually synthesized as inactive precursors before
their conversion to fully mature bioactive forms. A
large majority of these active proteins such as matrix
metalloproteases, growth factors, and adhesion mol-
ecules are crucial in the processes of cellular trans-
formation, acquisition of the tumorigenic phenotype,
and metastases formation. Inhibition of PCs signifi-
cantly affects the malignant phenotype of various tu-
mor cells. In addition to direct tumor cell prolifera-
tion and migration blockade, PC inhibitors can also
be used to target tumor angiogenesis. In this Review
article we discuss a number of recent findings on the
clinical relevance of PCs in cancer patients, their im-
plication in the regulation of multiple cellular func-
tions that impact on the invasive/metastatic potential
of cancer cells. Thus, PC inhibitors may constitute
new promising agents for the treatment of multiple
tumors and/or in adjuvant therapy to prevent recur-
rence. (Am J Pathol 2002, 160:1921–1935)

To regulate biological activity, a wide variety of proteins
are synthesized as inactive precursors that are subse-
quently converted to their mature active forms by proteo-
lytic enzymes known as proprotein convertases (PCs).
The PCs are usually activating proteases and have not
been reported to inactivate polypeptides, a process usu-

ally performed by degradative enzymes. To date, eight
mammalian members of subtilisin-related PCs have been
identified including, furin, PC1/PC3, PC2, PC4, PACE4,
PC5/PC6, PC7/LPC/PC8, and SKI-1/S1P.1–7 PCs are mul-
tidomain serine proteinases consisting of a signal pep-
tide followed by pro, catalytic, middle, and cytoplasmic
domains. Homology is highest in the catalytic domains
and lowest in the carboxyl-terminal domains. Furin, PC1,
PC2, PC4, PACE4, PC5, and PC7 cleave precursor pro-
teins at basic residues within the general motif (K/R)-(X)n-
(K/R)2, where n � 0, 2, 4 or 6 and X is usually not Cys.1–5

In contrast, the subtilisin kexin isozyme-1 (SKI-1) pro-
cesses precursors at non-basic amino acids within the
motif (R/K)-X-(L,V)-(L,T,K,F)2.1,6–9 Furin, PC5-B, PC7,
and SKI-1 are the only members of the mammalian PCs
with a transmembrane domain and cycle between the
trans-Golgi network and the cell surface. These enzymes
as well as PC5, PACE4, and PC4 are involved in the
processing of proteins secreted via the constitutive path-
way. In contrast, PC1 and PC2 are found within dense
core secretory granules and process proteins secreted
by the regulated secretory pathway.1–9 Like many other
proteases, PCs are synthesized as inactive zymogens
with an N-terminal prosegment extension. This conserved
region is autocatalytically removed during PCs/SKI-1
maturation,1–7 by cleavage either at RXKR2 (for PCs) or
for SKI-1 at the motif RX(V,L)(K,F,L)2. So far the only
known substrates of the novel enzyme SKI-1/S1P6,7 are:
probrain-derived neurotrophic factor,6 sterol regulatory
element-binding proteins,7 the endoplasmic reticulum-
stress response transcription factor ATF6,8 and the sur-
face glycoprotein GP-C of Lassa virus.9 Thus, PCs are
responsible for processing of neuropeptides, receptors,
growth factors (GFs), cell surface glycoproteins, and en-
zymes, whereas SKI-1 cleaves proproteins that control
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cholesterol and lipid metabolism, and are involved in
neural protection and growth and in the endoplasmic
reticulum-stress response pathway. After proteolysis by
the convertases, usually the mature proteins/peptides are
subject to several other modifications necessary to
achieve full bioactivity. The most common being the re-
moval of carboxy-terminal basic residues by car-
boxypeptidase E or D (CPE, CPD).10

PCs in Cancers and Clinical Relevance

Multiple approaches, eg, suppression of gene expres-
sion or enzyme inhibition, support the hypothesis that
PCs play a role in the genesis and progression of differ-
ent proliferative disorders, including cancer.11–22 Al-
though elevated expression of different PCs was reported
for different human cancers and tumor cell lines,23–37 the
relative importance of various PCs in these cancers has
not yet been clarified. Tumor expression of PCs can be
studied at the protein level by techniques such as immu-
nohistochemical staining and Western blot analysis, and
at the mRNA level by reverse transcriptase-polymerase
chain reaction, Northern blot analysis, RNase protection,
or in situ hybridization. Table 1 summarizes the results of
studies on the expression of various PCs in human can-
cers and tumor cell lines. Early studies revealed a high
furin expression in advanced lung tumors.23 Such an
association has subsequently been confirmed in other
malignancies such as breast,24 head, and neck25 can-
cers. Based on these studies furin expression in tumors
may constitute a significant prognostic factor indepen-
dent of other conventional clinicopathological ones.
Other studies described a significant association be-
tween high expression of PC1 and PC2 in neuroendo-
crine tumors, suggesting their involvement in the malig-
nancy of tumor cells with a neural and/or endocrine
phenotype.26–28 Although these studies showed a posi-
tive association between PC1 or PC2 expression and the
extent of tumors, further research is required to elucidate
the importance and the prognostic role of these enzymes
in endocrine-related cancers.

Studies on the prognostic impact of PACE4 expression
in tumors are less conclusive. We previously reported
that PACE4 expression is significantly higher in breast
tumors.24 In studies reported by Bassi and colleagues25

PACE4 expression was found to be up-regulated in hu-
man head and neck tumors and tumor cell lines. Using an
animal model of human squamous cell carcinoma, the
same group demonstrated that PACE4 expression is im-
plicated in the process of tumor progression and inva-
siveness.17 However, this may be tissue-dependent be-
cause analysis of lung solid tumors revealed that only half
expressed PACE4 and therein its mRNA level was lower
than that of furin.23

PC5 and PC7 have been examined for their prognostic
relevance in only a few human cancers (Table 1).24,29

These studies showed a positive association between

PC7 expression and the extent of breast tumors of which
PC5 was undetectable.24 In contrast, analysis of various
human colon cancer cells, revealed the expression of
PC5.29 The significance of these findings is at present not
known.

In conclusion, what seems clear is that furin up-regu-
lation is correlated with tumor progression and invasive-
ness. Further research is required to elucidate the prog-
nostic role of the other PCs in various types of cancer.

PC Substrates in Tumor Growth and Metastasis

No report has yet appeared to indicate that the PCs could
inactivate protein substrates or peptides in trans, even at
high concentrations. The only exceptions are the inacti-
vation of their inhibitory prosegment by an autocatalytic
mechanism and the inactivation of the inhibitors pro-
SAAS and 7B2 by their cognate enzymes PC1 and PC2,
respectively. The exact role of the modulation of PC ex-
pression and/or activity in tumor development and me-
tastasis remains unclear. Nevertheless, because PCs are
directly responsible for the activation of critical proteins
implicated in neoplasia, they may be targets of cancer
therapy. Among these substrates, matrix metallopro-
teases (MMPs), GFs, and adhesion molecules through
degradation of the extracellular matrix (ECM), modulation
of cell growth, and/or migration are involved in tumor
progression and metastasis (Table 2).

Metalloproteinases

The destruction of the basement membrane and ECM is
associated with tumor cell invasion and metastasis. ECM
is a complex structure that consists of collagen, proteo-
glycans, and other protein such as fibronectin, vitronec-
tin, and laminin. Secreted proteinases from malignant
and stromal cells degrade many ECM components, fa-
cilitating the detachment of these cells and their invasive-
ness. The level of expression of these proteinases in
tumor cells is associated with advanced-stage tumori-
genesis and poor prognosis. ECM degradation is a com-
plex process involving a cascade of proteolytic events in
which the primary step likely implicates enzyme activa-
tion by the PCs. The latter were reported to process the
following metalloproteinases: stromelysin-3 (str-3),38,39

membrane-type MMPs (MT-MMPs),40 the adamalysin
metalloproteinases (ADAMs),41 and the adamalysin met-
alloproteinases with thrombospondin motifs (ADAM-
TS).42,43 The expression of these metalloproteinases has
been correlated with increased local aggressiveness,
metastasis, and poor clinical outcome.44–49

Stromelysin-3 (Str-3)

Str-3 is a member of the MMP family of which expres-
sion has been correlated with both increased local ag-
gressiveness and poor clinical outcome.50 Activation of
Str-3 by furin occurred intracellularly before secretion
(Table 2).38,39
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MT-MMPs

MT-MMPs, a new family of MMPs, are overexpressed in
a wide variety of carcinomas, especially in the colon44,45

and brain51 and were reported to be involved in metastasis.
Expression of these MMPs, particularly MT1-MMP was
shown to process pro-MMP-2 thereby enhancing invasive-

ness both in vitro and in vivo.40,52 MMP-2 is the enzyme that
degrades collagen IV, a major type of collagen in basement
membranes. MT1-MMP possesses two typical recognition
motifs for PCs, namely ArgArgProArg92 and ArgArg-
LysArg111 that were recently reported to be cleaved by
furin-like enzymes at both sites (Table 2).40

Table 1. Proprotein Convertase Expression in Human Cancers and Tumor Cell Lines

Expressed PCs Co-localized substrates Techniques used Ref.

Human tumors
Pituitary adenomas PC1, PC2 ACTH, chromogranin A RT-PCR, in situ hybridization,

immunostaining
2, 26

Head and neck tumors Furin, PACE4 MT1-MMP RT-PCR, Western blot 25
Breast tumors PC1, Furin, PAECE4,

PC7
– RT-PCR, in situ hybridization 24

Lung tumors Northern blot 23
Adenocarcinoma Furin, PACE4 –
Squamous cell lung

carcinoma
Furin –

Small-cell lung carcinoma Furin PC2 –
Carcinoids In situ hybridization,

immunostaining
28

Bronchial carcinoids PC1, PC2 –
Rectal carcinoids PC1 –
Bile duct carcinoids PC1 –
Thyroid medullary

carcinoma
PC1 –

Tumor cell lines
Pituitary adenomas

HP75, Att-20 Furin, PC1, PC2,
PACE4

Chromogranin A RT-PCR, in situ hybridization,
immunostaining

5, 27, 32

Medullary thyroid carcinoma
rMTC 6–23 Furin, PC2 Neurotensin Northern blot, Western blot 32

Head and neck carcinomas
SCC9, SCC12, SCC13,

SCC15
Furin, PACE4 MT1-MMP RT-PCR, immunostaining,

Western blot
25

SCC71, A253, det.262,
FaDu

Spindle cell carcinoma
CC4B, CH72 PACE4 Stromelysin 3 RT-PCR, Western blot analysis,

immunostaining
17

Glioblastoma
Lln-18, U138MG, U87MG Furin TGF-�1,2 Northern blot, Western blot 22
D247MG, T98G, LN-229
U373MG, LN-308, LN-428,

U251MG
Lung cancer cells

H82, H345, H520, H209,
H354, H510, H69, H146

PC1, PC2, furin Neurotensin, GRP Northern blot, Rnase protection
assay

23, 37

Pancreas
RIN5F, 027B2 PC1, PC2 furin Cholecystokinin,

proinsulin
Western blot, immunostaining 30, 34

Somatostatin,
proglucagon

Breast cancer
MCF-7, ZR-75-1, T-470,

BT-20
PC1, furin, PAECE4,

PC7
Enkephalin,

vasopressin
RT-PCR, Western blot 24, 35, 36

MDA-MB-157, MDA-MB-
468

MDA-MB-231
Intestine

STC-1 PC1, PC2 Cholecystokinin Western blot 30
Colon cancer

HCT8, LoVo, HT29 PC5 Neurotensin RT-PCR, Western blot 29
LS174T, coloDM320,

C119A
Gonadal cancer

H-500 rat Leydig tumor
cells

Furin PTHRP Immunostaining 13
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Table 2. Sequence of the Cleavage Sites of Precursor Proteins

Site(s) of processing P6 P5 P4 P3 P2 P1 2 P�1 P�2 NCBI, accession

Matrix metalloproteinases
STR-1: V M R K P R C G XM 058067
STR-2: V M R K P R C G AAH02591
STR-3: 1- S L R P P R C G P24347

2- R N R Q K R F V P24347
MT-1MMP 1- A M R R P R C G P50281

2- N V R R K R Y A P50281
MT-2 MMP 1- W M K R P R C G P51511

2- R R R R K R Y A P51511
MT-3 MMP 1- W M K K P R C G P51512

2- H I R R K R Y A P51512
MT-4 MMP 1- L M K T P R C S Q9ULZ9

2- Q A R R R R Q A Q9ULZ9
MT-5 MMP 1- W M K K P R C G Q9Y5R2

2- R R R N K R Y A Q9Y5R2
MMP-1: V M K Q P R C G P03956
MMP-2: T M R K P R C G P08253
MMP-8: M M K K P R C G XP006273
MMP-9: A M R T P R C G XP029934
MMP-13: V M K K P R C G XP040746
ADAM1 P P R S R K P D AAA74920
ADAM8 P S R E T R Y V XP005675
ADAM9 L L R R R R A V NP003807
ADAM10 L L R K K R T T XP007741
ADAM12 A R R H K R E T XP005838
ADAM15 H I R R R R D V Q13444
ADAM17 V H R V K R R A P78536
ADAMTS-1 S I R K K R F V Q9UHI8
ADAMTS-2 1- G V R T R R A A P79331

2- R R R M R R H A P79331
ADAMTS-3 T M R R R R H A O15072
ADAMTS-4 P R R A K R F A XP042446
ADAMTS-5/11 W R R R R R S I Q9UNA0
ADAMTS-13 R Q R Q R R A A CAC83682

Integrins
Integrin �IIb H K R D R R Q I P08514
Integrin �3 P Q R R R R Q L XP008432
Integrin �4 H V I S K R S T XP039011
Integrin �5 H H Q Q K R E A AAH08786
Integrin �6 N S R K K R E I NP000201
Integrin �7 R D R R R R E L Q13683
Integrin �8 H L V R K R D V AAA93514
Integrin �E T A R Q R R A L XP008508
Integrin �v H L I T K R D L XP002379

Growth factor
TGF-�1 S S R H R R A L XP_008912
Lefty protein R S R G K R F S O00292
Pancreatic polypeptide P R Y G K R H K P01298
Gastrin A S H H R R Q L P01350
Insulin 1- T P K T R R E A XP028180

2- G S L Q K R G I XP028180
IGF-1 P A K S A R S V P01343
IGF-2 P A K S E R D V XP028189
PDGF-A P I R R K R S I NP002598
PDGF-B L A R G R R S L NP148937
PDGF-C F G R K S R V V NP057289
PDGF-D H D R K S K V D AAK56136
VEGF-C H S I I R R S L P49767
VEGF-D Y S I I R R S I NP_004460
FGF-23 P R R H T R S A Q9GZV9
EGF 1- H H Y S V R N S

2- K W W E L R H A P01133
Endothelin-1 L R R S K R C S P05305
PTHRP S R R L K R A V P12272
Parathyroid hormone K S V K K R S V XP031173
Neurotrophin-3 T S R R K R Y A P20783
Neurotrophin-4 N R S R R G V S A42687

(Table continues)

Most of the indicated PC-like sites have been proven in cellular and/or in vitro experiments. However, others are only predicted.
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Adamalysin Metalloproteinases

ADAMs are a family of membrane-associated multido-
main zinc-dependent metalloproteinases with high se-
quence homology and domain organization, similar to the
snake venom metalloproteases of the adamalysin sub-
family.46 Sixteen of the 30 ADAM proteins identified to
date are predicted to be catalytically active, based on the
presence of a conserved zinc-binding sequence
(HEXXH) in the protease domain, whereas the other
members are not likely to be active proteases. The prodo-
mains of several ADAM proteins such as ADAM12 are
constitutively cleaved by a furin-type PCs as they
progress through the secretory pathway (Table 2).41 This
family was reported to play a role in diverse biological
processes such as fertilization, myogenesis, neurogen-
esis, and cell surface proteolysis and shedding of dif-
ferent proteins.41,47,53–59 Of the proteins shed by the
ADAMs, are cytokines and GFs such as transforming
growth factor-� (TGF-�), epidermal growth factor (EGF),
heparin-binding EGF, tumor necrosis factor-� (TNF-�),
c-Kit-ligand-1 (KL-1), colony-stimulating factor-1 (CSF-1),
and Fas-ligand (Fas-L), receptors such as TNF receptor-I
(TNFR1, p60 TNFR), TNF receptor-II (TNFR2, p80 TNFR),
p75 nerve growth factor receptor (p75NGFR), interleu-
kin-6 receptor (IL-6R), thyroid-stimulating hormone re-
ceptor, adhesion molecules such as L-selectin, and oth-
ers proteins such as protein tyrosine phosphatase �
(PTP�), protein tyrosine phosphatase LAR (LAR), amyloid
precursor protein, and angiotensin-converting en-
zyme.53,56 Certain released molecules can be cleaved by
more than one enzyme, and some enzymes can cleave
more than one substrate. For example, cleavage of
TNF-� can be mediated by ADAM17 (TACE) and
ADAM10, and �-secretase activity for amyloid precursor
protein has been attributed also to ADAM17,54 ADAM9,57

and ADAM10.59 It is not known how these protease(s)
select their substrate because reliable consensus cleav-
age sites have not been identified. In addition to their
proteolytic function, some members of the ADAM family
such as ADAM15 and ADAM2 can support integrin bind-
ing via their disintegrin domain.58,60,61 It is increasingly
recognized that ADAMs represent a novel group of mem-
brane proteases that are important for cellular interac-
tions under physiological and pathophysiological condi-

tions including cancer. Recently, several ADAM family
members were described to be dramatically up-regu-
lated in many tumor cells. This includes cells derived
from a range of hematological malignancies47 and
breast, prostate, lung, and colon cancer.42,48,62 There-
fore, it is of particular interest that the member of the
ADAM family reported to shed cell-associated neural
adhesion molecules such as L1 may be relevant to pro-
mote cell migration and invasion.62,63 Interestingly, in
these cells the putative tumor suppressor gene MDC
(ADAM11) was expressed at a very low level.62,63

Adamalysin Metalloproteinases with Thrombospondin
Motifs

ADAM-TSs are a new member of the ADAM family
containing thrombospondin-type motifs. They consist of
multiple domains of proteins common to the ADAM fam-
ily, including pro-, metalloprotease-like, and disintegrin-
like. The first member of this family, called ADAM-TS1,
was originally cloned from a colon adenocarcinoma cell
line.42 Based on its capacity to form a covalent complex
with �2-macroglobulin, recent studies demonstrated that
ADAM-TS1 protein is proteolytically active (Table 2).43 In
addition, the maturation of ADAM-TS1 precursor is im-
paired in the furin-deficient cell line, LoVo, and the pro-
cessing ability of the cells is restored by the co-expres-
sion of the furin cDNA.64 The only members of the
ADAM-TS family with established substrates are ADAM-
TS2 (procollagen-N-proteinase) and ADAM-TS4 and
-TS11 (aggrecanases-1 and -2, respectively).42,64,65

These proteinases cleave aggrecan at one or more of five
specific sites in the aggrecan core protein.42,64,65 Re-
cently, brain-enriched hyaluronan binding (BEHAB)/
brevican, a brain-specific ECM protein was reported to
be processed by ADAM-TS4. The processed form of
BEHAB/brevican is dramatically increased in human gli-
omas, a notoriously invasive tumor.49 The rat 9L gliosar-
coma cell line, which does not express BEHAB/brevican
and forms noninvasive tumors when grown as intracranial
grafts, can form invasive tumors when it is transfected
with a 5� cDNA fragment of BEHAB/brevican, but not
when transfected with the full-length cDNA.49 Interest-
ingly, the expression of ADAM-TS4 is induced during

Table 2. Continued

Site(s) of processing P6 P5 P4 P3 P2 P1 2 P�1 P�2 NCBI, accession

�-NGF T H R S K R S S XP002122
BDNF S M R V R R H S XP006027
APRIL R S R K R R A V O75888
BAFF N S R N K R A V Q9Y275
HB-EGF R D R K V R D L Q99075
HGF K T K Q L R V V XP052260

Growth factor receptors
Insulin receptor P S R K R R S L XP048347
IGF-1 receptor P E R K R R D V IGHUR1
HGF receptor E K R K K R S T P08581

Others
Ldl-related protein S N R H R R Q I Q07954
Leptin receptor Q V R G K R L D P48357
Notch-1-receptor S R K R R R Q H AAG33848
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endothelial cells undergoing differentiation into tube-like
structures suggesting its implication in angiogenesis.66

These observations link ADAM-TS family members to
invasion and the blocking the activation of ADAM-TSs by
PC inhibitors may provide a novel therapeutic strategy.

Adhesion Molecules

Cell adhesion molecules (CAMs) are cell-surface pro-
teins that mediate cell-cell and/or cell-ECM interactions.
They control cellular traffic, transmigration through the
endothelium, homing in and localization to various target
organs during inflammation, and tumor cell coloniza-
tion.67,68 Most of the CAMs characterized so far fall into
three categories of proteins: the immunoglobulin (Ig),
integrin, or selectin families.

The Immunoglobulin Family

The Ig family includes intercellular adhesion molecules
ICAM-1, ICAM-2, and ICAM-3, vascular CAM-1 (VCAM-
1), and mucosal addressin CAM-1 (MadCAM-1), none of
which are believed to be substrates for PC processing.
However, the convertases seem to be required for their
expression and probably function. Indeed, the expres-
sion of ICAM-1 and VCAM-1 on endothelial cells is in-
duced by various cytokines and GFs such as interfer-
on-�, interleukin-1 (IL-1), TNF-�, insulin-like growth factor
(IGF-1), and endothelins.69–76 Some of these precursors
were reported to be directly processed by PCs such as
IGF-1 and endothelins (Table 2).77–79 Others are indi-
rectly regulated by the PCs through the cleavage of their
cognate enzymes, for example TNF-� converting enzyme
(TACE)80 and ADAM1056 that process pro-TNF-� are
themselves activated by PCs.59,80,81

The Integrin Family

Its now well established that integrins are implicated in
tumor progression and metastasis.82,83 Integrins are het-
erodimeric �� transmembrane receptors that bind li-
gands such as the ICAMs, VCAMs, and several ECM
components. The extracellular domains of both subunits
are required for ligand binding whereas the cytoplasmic
tails interact with the cytoskeleton, induce changes in cell
shape and motility, and transduce growth and survival
signals.84,85 In addition, activation of integrins was re-
ported to mediate MMPs and urokinase activity of many
tumor cells, including melanoma and colon carcino-
ma.86–88 Although �-subunits are not cleaved by PCs, a
total of 9 of 18 known �-subunits possess a potential
PC-cleavage site, with �3, �4, �5, �6, and �v proven to
be PC5 and furin substrates (Table 2).89,90 Recently,
Berthet and colleagues91 reported that the endoproteo-
lytic cleavage of �v integrin is important for the signal
transduction pathway mediating cell adhesion. Blockade
of �v�5 cleavage resulted in a decreased phosphoryla-
tion of focal adhesion kinase (FAK) and paxillin, two
important molecules involved in cell adhesion.

The Selectin Family

The selectin family members, L-selectin, P-selectin,
and E-selectin are involved in the adhesion of leukocytes
to activate the endothelium. Adhesion is initiated by weak
interactions that produce a characteristic rolling motion of
leukocytes on the endothelial surface. This rapid on-off
attachment is necessary for activation and engagement
of integrins and their counterreceptors on the leukocytes
and endothelial cells, respectively. The integrin-medi-
ated, high-affinity binding is in turn required for leukocyte
arrest and extravasation.67 On the basis of in vitro studies
it is postulated that similar cell-cell interactions may also
occur between circulating malignant cells and the vas-
cular endothelium during tumor dissemination.92–94 In
general, the selectins bind sialylated, glycosylated, or
sulfated glycans on glycoproteins, glycolipids, or proteo-
glycans.95 The tetrasaccharides sialyl-Lewisx (sLewx)
and sialyl-Lewisa (sLewa) are recognized by all three
selectins. In vitro adhesion studies showed that human
colorectal, pancreatic, and gastric carcinoma cells use
sLewx and related carbohydrate determinants to adhere
to TNF-�-inducible E-selectin on cultured vascular endo-
thelial cells.93,96–98 In vivo studies in turn showed that
inhibition of liver metastasis of the highly metastatic hu-
man pancreas adenocarcinoma (PCI) cells could be
blocked with antibodies to sLewa and that lung coloniza-
tion by colon carcinoma HT29 cells could be blocked by
a soluble E-selectin fusion protein.97,98 Under normal
physiological conditions, vascular endothelial cells ex-
press low constitutive levels of E-selectin. Several cyto-
kines and GFs such as IL-1, TNF-�, vascular endothelial
growth factor, IGF-1, and endothelins induce the expres-
sion of E-selectin.75,77,99,100 Many of these molecules
directly or indirectly require PC activity (Table 2). Thus,
although like VCAMs and ICAMs, selectins are not pro-
cessed by PCs, the latter may indirectly control their
expression via the activation of some of the above induc-
ers. Recently, we demonstrated that E-selectin expres-
sion on sinusoids was described to be one of the early
molecular events involved in metastasis.101 The arrest of
tumor cells in the hepatic circulation causes a cascade of
events, which start with a rapid release of IL-1 and TNF-�
(and other mediators). In turn, these stimulate the expres-
sion of E-selectin on hepatic endothelial cells, resulting in
an enhanced tumor cell adhesion and subsequent me-
tastases.101

GFs and Their Receptors (GFRs)

The availability of GFs is critical for malignant transforma-
tion and metastasis. These molecules mediate cell entry
into, and progression through, the cell cycle. They are
divided into two main categories namely, competence
factors such as platelet-derived growth factor, vascular
endothelial growth factor, and basic fibroblast growth
factor that enable cells to enter the G1 phase and pro-
gression factors such as IGF-1 that are required for pro-
gression from G1 into S phase and ultimately resulting in
cell division.102–105 Many of these proteins as synthe-
sized as proproteins that are processed and activated by
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PC-like enzymes (Table 2). Parallel increased expression
of both GFs and PCs may result in tumor growth. Of the
GFs shown to be processed by PCs include IGF-1, en-
dothelins, nerve growth factor, PTH, and TGF-� (Table
2).77,78,106–108 Others, are suspected to be PC sub-
strates based on the presence of the RXXR2 motif, eg,
FGF23 (Table 2)109 that is reported to be involved in
tumor-induced osteomalacia. Many GFs mediate their
effects through receptor tyrosine kinases (RTKs) that
transmit signals to the nucleus through an intricate net-
work of adapter and signaling molecules.104 Receptor
activation through ligand binding generally induces re-
ceptor dimerization and autophosphorylation through a
trans mechanism.104,110 Transphosphorylation at specific
tyrosine residues in turn generates binding sites that are
recognized by proteins involved in cellular signaling.
Several proteins that are phosphorylated through GF-
associated kinase activity were identified as downstream
mediators of receptor-associated signal transduction in-
clude: phospholipase Grb,111 C� (PLC�),112 GTPase-
activating protein,113 phosphatidylinositol 3-kinase (PI-3
k),114 insulin receptor substrate (IRS), and homology and
collagen (Src).115,116 RTKs are implicated in malignant
transformation and tumor progression.117,118 Overex-
pression or mutations/insertions in GF receptors (GFRs)
that result in constitutively high levels of proteins, or ac-
tive kinases are documented in many tumors.119,120 Fre-
quently this is accompanied by constitutive high expres-
sion of the respective ligands providing an autocrine
mechanism for growth autonomy.121 Several GFRs con-
tain a consensus PC-cleavage site, and are critical for
tumor growth and metastases, eg, the HGF receptor
(HGF-R),122 insulin receptor,123–125 and IGF-1 recep-
tor.20,126 Hwang and colleagues,125 reported that cleav-
age of insulin receptor is essential in the signal transduc-
tion of insulin. In agreement with this observation, we
recently showed that the uncleaved IGF-1 receptor is
unable to undergo the critical steps for IGF-1-mediated
growth and survival of tumor cells, ie, IGF-1-sensitive
autophosphorylation and IRS-1 phosphorylation.20 How-
ever, Komada and colleagues122 previously reported that
both cleaved and uncleaved HGF receptors can bind
HGF and mediate their autophosphorylation and cell
growth. This unusual result indicates that proteolytic pro-
cessing of this receptor may not be essential for some of
the tested signal transduction pathways of HGF. How-
ever, to better define the role of PC-mediated cleavage of
this receptor, more extensive analysis is required.

PC Inhibitors

The potential clinical and pharmacological role of the
convertases has fostered the development of both pep-
tide- and protein-based PC inhibitors.1–5 The most prom-
ising protein-based specific inhibitors of PCs are a �1-
anti-trypsin variant known as �1-anti-trypsin Portland or
�1-PDX127,128 and the individual PC prosegment-based
inhibitors.129,130

The �1-Anti-Trypsin Variant, �1-Anti-Trypsin
Portland (�1-PDX)

Like furin substrates, inhibitors of furin also require the
interaction of enzyme subsites with the basic residues of
the substrate. Previously, the trypsin inhibitor and the
third domain of turkey ovomucoid have been reported to
be inhibitors for furin.131,132 However, their equilibrium
constant was representative of a moderate, rather than a
potent, inhibitor. Inhibition of furin in the subnanomolar
range was accomplished by bioengineering the �1-anti-
trypsin variant, �1-PDX (�1-anti-trypsin Portland).127 Ki-
netic analysis shows that a portion of bound �1-PDX
operates as a suicide inhibitor.128 Once bound to furin’s
active site, �1-PDX can either undergo proteolysis by furin
or form a kinetically trapped sodium dodecyl sulfate-stable
complex with the enzyme.128,133 In an attempt to produce a
specific furin inhibitor others researcher mutated the bait
region of the general protease inhibitor �2-macroglobulin
(RVGFYESDVM690 into RVRSKRSLVM690).134 This variant
was reported to inhibit processing of furin substrates, eg,
human immunodeficiency virus type-1 glycoprotein
gp160, von Willebrand factor, and TGF-�1 was inhibited
in COS-1 cells.134 The ovalbumin-type serpin human pro-
teinase inhibitor-8, containing two instances of the mini-
mal furin recognition sequence (VVRNSRCSRM343), has
also been shown to inhibit furin in a rapid, tight binding
manner that is characteristic of physiological serpin-pro-
teinase interactions.135 However, the cytosolic localiza-
tion of inhibition inhibitor-8 requires the addition of a
signal peptide before it could inhibit furin in vivo, and even
then its ex vivo inhibitory property is yet to be proven.
More recently Cameron and colleagues136 reported that
although the hexa-D-arginine is a potent and relatively
specific furin inhibitor, the reduced ability of this highly
charged peptide to cross the cell membrane for in vivo
therapeutics is problematic. Based on these studies, to
date the most promising protein-based specific inhibitor
of PCs is the �1-anti-trypsin variant, �1-PDX. This serpin
was first showed to be a potent inhibitor of furin-mediated
cleavage of HIV gp160,127,137 but subsequently demon-
strated to also inhibit all PCs involved in processing within
the constitutive secretory pathway.138–140 Recent studies
showed that endogenous inhibition of precursor conver-
tases by �1-PDX reduces the production of the amyloid
precursor �-secretase product amyloid precursor pro-
tein-�59–141 and blocks the activation of the pore-forming
toxin proaerolysin,142 the maturation of the surface gly-
coproteins of infectious pathogens,127,128,137 the proteo-
lytic activation of bone morphogenetic protein-4 (BMP-
4),143 the cleavage of Notch,144 insulin-like growth
factor-1 receptor (IGF-1R),20 and TGF-�.145,146 The po-
tential therapeutic value of PC inhibitors was recently
reinforced by a report showing that exogenous addition
of �1-PDX potentially inhibits the furin-dependent pro-
cessing of human cytomegalovirus envelope glycopro-
tein gB, thus reducing the titer of infectious hCMV more
effectively than currently used anti-herpetic agents.128 As
uptake of �1-PDX into the cell could not be detected in
cell lines lacking the enzyme, it was suggested that the
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reported furin inhibition by the external application of
�1-PDX occurs because furin is localized to the trans-
Golgi network and cycles to the cell surface, where it
could meet �1-PDX, and back via endosomal compart-
ments.128 A similar mechanism was attributed for the
prevention of Pseudomonas exotoxin A activation when
extracellular �1-PDX was applied to A7 melanoma
cells.128 These studies collectively suggest that inhibition
of PCs localized in the interior of the cell can be initiated
at the extracellular cell surface by PC binding to �1-PDX
and uptake, resulting in inhibition of pathological disease
processes including cancer.

�1-PDX and Tumor Cell Malignant Phenotypes

The in vitro and in vivo studies recently reported by our
group and others demonstrated that the serpin �1-PDX
could be a powerful tool for tumorigenesis inhibition.21,20

In ex vivo studies, using human leukemia Jurkat T and
colon carcinoma HT29 cell lines and mouse pituitary
tumor AtT20 cells, we found that stable expression of
�1-PDX provoked dramatic changes in several malignant
phenotypes and metastatic potential. This includes cel-
lular growth, survival, invasiveness, and tumorigenesis.

The Role of PCs in Cell Growth

The availability of GFs is critical for malignant transfor-
mation and metastasis. The anti-proliferate effect of �1-
PDX on tumor cells is probably because of the inhibition
of the processing of various proteins, including GFs
and/or their corresponding receptors.77,147–150 Previ-
ously, it was postulated that the critical nature of the furin
processing of various precursors may explain the anti-
proliferative effect of furin blockade on H-500 rat Leydig
tumor cells,12 the pancreatic �-cell line MIN6,16 and the
gastric mucus cells.15 Kayo and colleagues16 showed
that conditioned medium derived from furin-overexpress-
ing MIN6 cells stimulated the growth of their parental
control cells, whereas the medium from cells expressing
�1-PDX resulted in a lower growth rate. These results
suggest that high furin expression stimulates growth
through an autocrine/paracrine mechanism. In agree-
ment with this hypothesis our group recently demon-
strated the importance of the processing of IGF-1 recep-
tor in the mediation of IGF-1-mediated tumor cell
proliferation.20 A functional IGF-1R is known to be re-
quired for cell growth of various transformed cells. Over-
expression and/or constitutive activation of IGF-1R in a
variety of cell types leads to ligand-dependent growth in
serum-free medium and to the establishment of a trans-
formed phenotype such as the ability to form colonies in
soft agar and tumors in mice.118,151 Similarly, studies
reported on TGF-�1 processing by PCs revealed that
inhibition of TGF-�1 in glioblastoma and in head neck
squamous cell carcinoma (HNSCC) cell lines by �1-PDX
could be a promising tool in modulating tumor growth
and immunotherapy.21,22

The Role of PCs in Cell Survival

Similarly to PCs role in growth, PC cell-survival function
is also substantial. Thus, the expression of �1-PDX in
tumor cells exaggerates the apoptotic phenotype (DNA
degradation and propidium iodide-positive cells) after
serum deprivation, as we reported for HT-29 and Jurkat
leukemia cells.20 The role of PC in cellular survival can be
explained by their role in the maturation of various pro-
teins known to be anti-apoptotic mediators participating
in various autocrine/paracrine mechanisms. A likely sce-
nario may involve one or more secreted ligands and/or
their receptors, all of which require processing by PC-like
enzymes. Examples include IGF-1 and IGF-2 that are
synthesized and secreted by these cells152 and pro-
cessed by furin.148,149 Because overexpression of �1-
PDX in tumor cells inhibited the processing of IGF-1R and
its furin-processed ligands, IGF-1 and IGF-2, it is liable to
abrogate their autocrine/paracrine protective effects. The
protective effect of many proteins is apparently depen-
dent on their ability to induce a cascade of events leading
to downstream effector pathway phosphorylation, includ-
ing FAK,153,154 PI-3K1,155 and IRS-1.156 After phosphor-
ylation these molecules mediated their anti-apoptotic ef-
fect through the activation of several negative death
regulators such as Bcl-2 or inhibition of IL-converting
enzyme-like caspases.153–157 Interestingly, expression of
�1-PDX in tumor cells resulted in a reduction of basal
tyrosine phosphorylation of FAK, PI-3K, and IRS-1.20 Ex-
ogenous addition of FAK, PI-3K, and IRS-1 activators
such as IGF-1, failed to increase tyrosine phosphorylation
of these molecules in tumor cells and to rescue the cells
from apoptosis. This suggests a blockade in the trans-
mission of the autocrine/paracrine anti-apoptotic signals
in these cells.

The Role of PCs in Cell Invasion

PCs role in in vitro invasion is now well documented.
Inhibition of PCs in different tumor cells resulted in a
significant reduction in their invasiveness.20,25 This re-
duction is because of processing blockade of proteins
directly involved in the mechanism of invasion such as
MMPs or to proteins such as GFs and/or integrins re-
ported to induce the expression of ECM-degrading pro-
tein including urokinase and MMPs.20,25,38,39,40–43 Re-
cently, the inhibitory effect of �1-PDX on in vivo invasion
was reported by Bassi and colleagues.21 They used an in
vivo invasion assay based on the penetration of tumor
cells into the tracheal wall. When transplanted in the
tracheas the control-transfected cells penetrated deeply
into the tracheal wall and reached the adventitia and the
surrounding peritracheal tissues. Whereas, the penetra-
tion of �1-PDX-transfected cells in the tracheal wall was
markedly decreased and never reached the outer sur-
face of the trachea. They estimated this in vivo invasion
reduction to be �70 to 80%. We also found that �1-PDX
decreased the invasiveness of colon carcinoma HT-2920

in which the processing of MT1-MMP was inhibited (Fig-
ure 1). In these cells the mRNA level of plasminogen
activator urokinase-type plasminogen activator (uPA)
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and tissue-type plasminogen activator (tPA), the uroki-
nase-type plasminogen activator receptor (uPAR), and
the uPA inhibitor plasminogen activator inhibitor-1 (PAI-
1), molecules involved in invasion processes and be-
lieved not to be processed by PCs, was significantly
reduced. This data demonstrated both the direct and the
indirect involvement of PCs in tumor cell invasion.

The Role PCs in Tumorigenesis and Angiogenesis

The anti-tumor effects of PC inhibition was initially re-
ported by our group. Expression of �1-PDX in colon
carcinoma HT-29 tumor cells delayed the appearance,
the incidence, and the vascularization of palpable tu-
mors.20 Subsequently, the study reported by Bassi and
colleagues21 have confirmed the inhibition of tumor
growth by PC inhibition and found that the levels of furin
mRNA and protein expression correlate with the aggres-
siveness of tumor cell lines derived from head and neck
and lung cancers. These studies demonstrated that the
inhibitory effect of �1-PDX on tumor growth and invasive-
ness in in vivo systems may be underestimated because
of the significant loss in �1-PDX expression in the sub-
cutaneous tumors during their growth. However, it is not
clear whether the observed progressively lower levels of
�1-PDX mRNA in tumors21 is because of a specific loss
of the cDNA from tumor cells. Future studies should
address this issue by comparing the levels of �1-PDX to
those of a specific marker co-expressed with this serpin,
eg, green fluorescent protein. This may eliminate the
trivial explanation of a dilution effect of the original tumor
cells by host cells. However, similar observations were
reported by Leitlein and colleagues,22 on the loss of
�1-PDX expression ex vivo. These authors claim that �1-
PDX expression was not very stable in glioma cell lines
and was lost within a few passages in vitro. Angiogenesis
is a significant prognostic factor in various cancers, but
the factors that control angiogenesis in vivo are not well
defined. Usually tumor angiogenesis is mediated by tu-

Figure 2. Extent of angiogenesis determined by immunostaining for CD31. The immunohistochemical analysis were performed on tissue obtained from control
tumors (HT-29) or tumors developed from HT-29 cells expressing �1-PDX c-DNA (HT-29/PDX).

Figure 1. Pro-MT1-MMP processing. A: Schematic representation of the
structural aspects of the human pro-MT1-MMP (63 kd) and its PC-processing
sites at the RRPR922 and RRKR1112 The mature enzyme (63 kd) can be
further autocatalytically cleaved (itrio) into a 45-kd C-terminal form. Shown
are the pro-, catalytic (with the HExxH signature), and hemopexin-like
domains. B: Western blots of the cell lysates obtained from the colon
carcinoma cell line HT-29 transfected with pIRES2-EGFP vector alone (HT-
29) or a recombinant vector containing cDNA of �1-PDX (HT-29/PDX) using
mouse anti-human MT1-MMP monoclonal antibody (mAb 3319) recognizing
the catalytic domain.
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mor-secreted angiogenic GFs that interact with their sur-
face receptors expressed on endothelial cells. Multiple
angiogenic proteins are known, including vascular endo-
thelial growth factor and its four isoforms (121, 165, 189,
and 206 amino acids), TGF-�1, pleiotrophin, acidic and

basic fibroblast growth factor. Immunohistochemical
analysis of CD31 antigen expression, a marker of endo-
thelial cells revealed a reduced tumor vascularization of
tumors developed from tumor cells expressing �1-PDX
(Figure 2).20 This suggests the importance of the PCs in
tumor vessel formation through direct/indirect activation
of various angiogenic proteins.

PC Prosegment-Based Inhibitors

To date the only naturally occurring intracellular PC in-
hibitor found in the constitutive secretory pathway are
PC’s own propeptides or prosegments,2,6,158 and in the
case of PC1 its C-terminal domain.159 The activities of the
regulated secretory pathway convertases, PC1 and PC2,
are however regulated by selective and specific inhibi-
tors known as pro-SAAS160,161 and 7B2,162 respectively.
For many proteins, the prosegment serves as an intramo-
lecular chaperone that is essential for their correct fold-
ing,163 or/and transport and secretion.164 In the case of
many proteolytic enzymes such as cathepsins, car-
boxypeptidases, papain, and subtilases, this proseg-
ment was reported to be a very potent inhibitor that is
highly specific for its associated protease. In these en-
zyme systems the prosegment is still an effective inhibitor
even after initial proteolysis and in most cases an addi-
tional cleavage within the prosegment to release it and
thereby to fully activate the enzyme.158,165 In accordance
with the notion that PCs are initially produced as zymo-
gens and proteolytically activated, Anderson and col-
leagues129 demonstrated that the prosegment of furin

Figure 3. Inhibition of the proteolytic processing of IGF-1R by PC proseg-
ments. A: Schematic representation of the primary structure of human IGF-
1R. The positions of its signal peptide (SP), PC-processing site (RKRR), and
transmembrane domain (TMD) as well as the �- and �-subunits are shown.
B: IGF-1R processing was analyzed by Western blotting of cell lysates
obtained from transiently transfected HK293 cells with IGR-1R cDNA to-
gether with either the pIRES2-EGFP vector alone (control, CTL) or a recom-
binant vector containing either profurin, pro-PC5, or pro-PC7 cDNA. Cells
expressing �1-PDX are shown for comparison. Note that the inhibitors
specifically inhibit the processing of the trans Golgi network form of pro-
IGF-1R (210 kd) and not the endoplasmic reticulum-form (200 kd) into the
100-kd �-chain. Also note that the prosegment inhibitor mutated at its
secondary cleavage site (m) (148) is as effective as the wild-type inhibitor
and that pro-PC7 does not inhibit processing.

Figure 4. Schematic representation of cascade events implicating PCs for tumor growth and metastasis. By activating GFs, cytokines, and their receptors (GFRs),
PCs control tumor cell proliferation and growth. By activating or inducing adhesion molecules convertases modulate adhesion, invasion, and migration of tumor
cells and subsequently metastases formation. Arrows indicate the potential sites for PCs inhibitors.
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when used as a fusion protein to glutathione S-trans-
ferase exhibits a potent in vitro inhibitory activity on
furin.165 We have also shown that the prosegment of furin
and PC7 purified from bacterial culture media, are very
potent inhibitors of their respective enzymes. Addition-
ally, in vitro studies demonstrated the synthetic peptides
derived from the prosegments of PC1, PC7, and furin are
potent inhibitors of their enzymes.129,130,166,167 Based on
these data, we surmised that, aside from �1-PDX, the PC
prosegments may be applied in cancer therapy, as they
were in Alzheimer’s disease �-secretase analysis.168 In-
deed these prosegments were shown to inhibit intracel-
lularly the processing of GF precursors such as nerve
growth factor and brain-derived neurotrophic factor,129

both of which have been linked to neuronal cancer and
metastasis.169 In addition, we recently demonstrated that
the cellular processing of IGF-1R, known to be crucial for
the malignant phenotype of tumor cells,20,118,151 is effec-
tively blocked by �1-PDX20 as well as by the proseg-
ments of furin and PC5 but not by that of PC7 (Figure 3).
Although some data exist to show that �1-PDX does not
significantly inhibit thrombin,127 these are not exhaustive
and the ability of �1-PDX to inhibit other classes of pro-
teases is yet to be fully elucidated. In addition, because
prosegment inhibitors are not always completely selec-
tive for their cognate enzymes and can inhibit other
PCs,129 it will be necessary to modify their structure to
improve their selectivity without compromising their po-
tency (N. Nour and N. G. Seidah, in preparation).

Concluding Remarks

Regulation of cellular proliferation, differentiation, and ad-
hesion are complex processes in which different biolog-
ical systems interact. Disruption of these processes is a
hallmark of malignant transformation resulting in tumor
progression and acquisition of a metastatic potential. The
key to successfully developing efficient clinical strategies
against cancers is to target a protein known to be essen-
tial in the growth of tumors and to validate that the dis-
ruption of this target selectively blocks the growth of the
transformed cells. In this Review we have described re-
cent progress made in establishing a novel approach to
inhibiting tumor growth and tumor cell malignant pheno-
types. We have outlined PC inhibition as a strategy to
simultaneously disrupt the function of numerous proteins
involved in the acquisition of the invasive/metastatic po-
tential of cancer cells (Figure 4). The potential of this
approach has been firmly established by the use of PC
inhibitors (�1-PDX and PC-prosegments) targeting the
activity of the PCs. The cumulative data available estab-
lished that �1-PDX is not only able to block the interaction
of GFs and their receptors such as IGF-1/IGF-1R, and the
activation of several MMPs but also to inhibit tumor cell
proliferation and invasion (Figure 4). This potent effect
further translates into an ability to slow down the growth of
human tumors in a nude mouse model through an anti-
proliferative and anti-angiogenic mechanism (Figure
2).20,21

These studies represent the first example of a poten-
tially new approach to controlling tumor cell growth and

behavior through the inhibition of precursor processing.
Although the use of general PC inhibitors may be advan-
tageous, in some cases it may be necessary to target
only one member of the PC family. Therefore, one of the
important future developments would be to find and ex-
press PC inhibitors specific for each member of the fam-
ily. This is feasible, as was demonstrated for PC1 (pro-
SAAS)160,161,170 and PC2 (7B2).162,171 These could be
used alone or in combination to target specific tumors. In
the long term, these inhibitors may provide a rationale for
testing this family of compounds as anti-metastatic
agents or in conjunction with standard therapy in clinical
settings. Thus, the anticipated results will improve our
knowledge of the role of convertases in proliferative dis-
eases, and lead to the design of potent and selective
convertase-inhibiting reagents and novel pharmacologi-
cal strategies.
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