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Fluorescence in situ hybridization (FISH) represents
an excellent method for profiling gene amplification
in situ , but correlation with tissue morphology is
difficult because of dark-field visualization. Validation
of a bright-field assay for assessment of HER-2/neu
gene amplification was investigated. Streptavidin-
Nanogold was used to generate bright-field gene copy
signals using GoldEnhance gold-based autometallog-
raphy, catalyzed reported deposition, and a biotin-
labeled probe. One hundred cases of invasive breast
carcinoma were evaluated for which FISH gene copy
results, and mRNA and oncoprotein gene expression,
were known. Autometallographic signals were quali-
tatively evaluable without the use of oil immersion
microscopy. Results correlated well with indirect and
direct label FISH. Autometallographic gold-based in
situ hybridization represents a promising bright-field
assay for the assessment of HER-2/neu gene amplifi-
cation. (Am J Pathol 2002, 160:1589–1595)

Pharmacogenomics as a clinical and laboratory disci-
pline has emerged as an important rational approach to
the treatment of malignancy. Perhaps one of the best
examples of pharmacogenomics is the relationship be-
tween oncogene genotype and responses to specific
available therapy, such as the link between HER-2/neu
oncogene genotyping (as reflected in overamplification

of the gene) and response to the humanized monoclonal
antibody Herceptin alone or in combination with adriamy-
cin and other drugs.1–6 HER-2/neu amplification/overex-
pression has been linked to progression of breast carci-
noma and responsiveness to tamoxifen, taxanes, and
adriamycin.7–18 With some 180,000 new breast cancer
cases diagnosed in women in the United States annually
(http://www.cancer.org/statisticis/statistics.html), this new
approach to therapy, which may be a paradigm for suc-
cessful cancer treatment in the future, depends heavily
on reliable clinical laboratory results assessing the suit-
ability of a tumor for Herceptin therapy.

There are several ways to measure endogenous gene
amplification, including extraction methods based on
Southern, Northern, or Western blots, immunohistochem-
istry, and in situ hybridization.10–26 Controversy persists
as to which of these methods provides the most accurate,
precise, and reproducible results as a basis for ther-
apy.20–36 Perhaps some of this angst reflects patholo-
gists’ discomfort with “working in the dark,” ie, reliance on
fluorescence in situ hybridization (FISH) in which morphol-
ogy and gene amplification are primarily disconnected.
Counting gene copy signals using oil immersion high-
magnification microscopy, paying someone else to count
signals, and/or purchasing special image analysis equip-
ment is expensive and time consuming and not easily
accommodated in the usual diagnostic surgical pathol-
ogy practice. Other FISH limitations include fluorescent
signal fading and bleaching limiting slide archiving.

We tested the hypothesis that a bright-field assay for
HER-2/neu gene amplification, qualitatively evaluable by
conventional light microscopy without the need for oil
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immersion microscopy, yields results for gene amplifica-
tion equal to fluorescence-based methods (FISH). HER-
2/neu was used as the endogenous gene of interest. This
work was based on a series of cases of invasive ductal
carcinomas of breast, using direct label FISH as the
reference standard. Results were also correlated with
digoxigenin-based indirect FISH, RNA:RNA in situ hybrid-
ization, and immunohistochemistry using both monoclo-
nal and polyclonal antibodies.

Materials and Methods

Patient samples from 100 primary infiltrating mammary
carcinomas were selected for study from a cohort re-
cently published.36 Each paraffin block from the 100
cases included sufficient redundant paraffin-embedded
archived tissue for completion of all of the components of
the study. All tissues were first evaluated with a presec-
tioning hematoxylin- and eosin-stained section, as well as
a section after preparation of the last unstained section,
to confirm the presence of infiltrating carcinoma in mate-
rial to be studied.

Direct FISH, indirect FISH (DigFISH), RNA:RNA auto-
radiographic in situ hybridization, and immunohistochem-
istry using CB11 monoclonal antibody (Ventana Medical
Systems, Tucson, AZ) and HercepTest (Dako, Carpinte-
ria, CA), were performed as previously described.36–39

Statistical comparisons were made using Statview (SAS
Institute, Cary, NC).

In Situ Hybridization via Gold-Based
Autometallography

The method is summarized in Figure 1. Unstained 4-�m
paraffin sections on electrostatically charged slides (Su-
perfrost; Fisher, Pittsburgh, PA) were baked overnight at
60°C, and deparaffinized and rehydrated in two changes
of xylene, 5 minutes each, two 1-minute washes in abso-
lute alcohol, two 1-minute washes in 95% alcohol, and
then soaked in distilled water for 5 minutes. Sections
were then cell conditioned using target retrieval solution
(DAKO, Carpinteria, CA) for 40 minutes at 95°C, then
allowed to cool for 20 minutes at ambient temperature.

Multiple changes of distilled water throughout a 5-minute
period were followed by enzyme digestion with Protein-
ase K (DAKO) at a 1:5000 dilution in 50 mm of Tris-HCl,
pH 7.6, for 4 minutes at room temperature. After 5 min-
utes of washing and several changes of distilled water,
endogenous peroxidase was blocked for 20 minutes us-
ing 3% hydrogen peroxide (H2O2) in absolute methanol
at room temperature. After a 20-minute distilled water
wash at room temperature, sections were dehydrated
with graded alcohols (absolute, 95%, 70%), and air-
dried. Biotinylated cDNA probe (Ventana Medical Sys-
tems International, Tucson, AZ) preincubated with COT 1
DNA (1 mg/ml; Roche, Indianapolis, IN), and salmon
sperm DNA (Sigma Chemical Co., St. Louis, MO) was
applied as 10 �l, and a coverslip applied and sealed with
rubber cement. The probe and target were co-denatured
for 6 minutes at 90°C, and allowed to hybridize at 37°C
overnight in a humidified chamber. Coverslips were then
removed by soaking in 2� standard saline citrate (Sigma
Chemical Co.), and subjected to a stringency wash of
0.5� standard saline citrate at 72°C for 5 minutes. Sec-
tions were then washed with 1� phosphate-buffered sa-
line (PBS) containing 0.1% Tween 20 for 3 minutes at
room temperature. Streptavidin-horseradish peroxidase
(DAKO SA/HRP from Gen Point Kit at 1:800) 100 �l total
volume, was applied for 15 minutes at room temperature.
Sections were washed in 1� PBS with 0.1% Tween 20
three times, 5 minutes each wash, at room temperature.
Prediluted tyramide signal amplification (TSA) biotin
(DAKO Gen Point Kit) was then applied to the sections for
5 minutes at room temperature. Sections were then
washed with PBS/Tween 20 three times for 5 minutes
each at room temperature, treated with Lugol’s iodine
(Fisher) by immersion for 5 minutes at room temperature,
followed by three rinses in distilled water, and cleared by
immersion for �5 seconds in sodium thiosulfate (2.5%).
The iodine solution was used to remove contaminating
heavy metals in the sections that would interfere with
autometallography. Sections were then washed in dou-
ble-distilled water for a total of 7 minutes using five rinses.
Slides were then immersed for 5 minutes in PBS, pH 7.6,
containing 0.1% cold water fish gelatin (Sigma). Strepta-
vidin-Nanogold (Nanoprobes, Inc., Yaphank, NY) predi-
luted to 1:400 with PBS, pH 7.6, containing 1% bovine
serum albumin was applied and then incubated for 30
minutes at room temperature. Sections were then washed
with PBS, pH 7.6, for two 5-minute washes, immersed in
PBS, pH 7.6, with 0.1% cold water fish gelatin for 5
minutes, rinsed in double-distilled water for using multiple
changes throughout 10 minutes, and the autometallo-
graphic signal developed with GoldEnhance LM/Blot
(Nanoprobes, Inc.); the autometallographic signal was
developed for 4 minutes at room temperature, and the
reaction terminated by adding 500 �l of 2.5% sodium
thiosulfate, and then double-distilled water for 3 minutes
at room temperature (Figures 2 and 3). Sections were
counterstained with nuclear fast red (Newcomer, Middle-
ton, WI) for 8 minutes, dehydrated in graded alcohols and
xylene, and coverslipped and mounted with Cytoseal/60
(Stephens Scientific, Riverdale, NJ). Controls for each
experiment included positive and negative controls,

Figure 1. Diagram of GOLDFISH procedure.
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which consisted of tumors independently and previously
evaluated in triplicate for the presence or absence of
gene amplification by direct FISH and for which chromo-
some 17 enumeration had been established. An addi-
tional internal positive hybridization control was present
on every slide, consisting of the identification of endog-
enous nonamplified HER-2/neu gene signals in nonneo-
plastic cells. Figures 2 and 3 illustrate the mechanism of

signal development. Gold-facilitated fluorescence in situ
hybridization (GOLDFISH) slides were interpreted as am-
plified, low-level amplified, or nonamplified using conven-
tional microscopy at �100 and �400. GOLDFISH prep-
arations were designated as “nonamplified” if only one or
two small discreet black signals were identified within
nuclei of the invasive carcinoma. Approximately 30 to
40% of tumor cell nuclei demonstrated one or two indi-
vidual small discreet signals—a 4-�m section contains
primarily truncated nuclei and the gene target may not be
present in all of the cells in an individual 4-�m section.
The designation “low-level amplification” was rarely
made, and reserved for cases with four to eight (usually
four or five) discreet black small nonconfluent signals
within invasive tumor nuclei. The designation “HER-2/neu
amplified” was reserved for invasive carcinomas demon-
strating massive black confluent signals in invasive tumor
cell nuclei that were usually located centrally in the nu-
cleus and occupied most of the nuclear area.

Results

Results of the gold-based autometallographic assay
were compared directly with two FISH assays (direct
FISH and indirect DigFISH) using digoxigenin-labeled
probe), mRNA autoradiographic in situ hybridization, and
paraffin section immunohistology. Results are summa-
rized in Table 1. The correlation of the autometallographic
assay with both DigFISH and the reference direct FISH
standard was excellent and identical (Table 1 and Fig-
ures 4, 5, 6, and 7). When the assay results were com-

Figure 2. Mechanism for metallic gold deposition via autometallography
using GoldEnhance. Gold ions in solution are catalytically deposited onto the
Nanogold particle as metallic gold (Au0). Particle grows in size with devel-
opment time: shorter times are used for electron microscopy, longer times for
light microscopy and blots.

Figure 3. Mechanism of signal diameter and intensity of growth.

Table 1. HER-2/neu Gene Amplification Concordance of GOLDFISH Results with Other Methods

GOLDFISH

Amplified by
direct FISH

Amplified by
Dig FISH HercepTest IMH CB11 IMH

No Yes No Yes 0 or 1� 2� or 3� 0 or 1� 2� or 3�

Not amplified 81 0 81 0 55 18 8 75 6 0
Low-level amplification 2 1 2 1 1 1 1 2 0 1
Amplified 1 15 1 15 1 2 13 4 1 11

Figure 4. Photomicrograph showing infiltrating ductal carcinoma having a
normal (nonamplified) HER-2/neu gene copy and an absence of increased
mRNA and oncoprotein expression. One or two HER-2/neu gene copies are
identified (black granules, arrows). Paraffin sections contain truncated and
partially sectioned rather than whole nuclei; some nuclei therefore have no
or only one signal because the target was not present in the section. GOLD-
FISH with nuclear fast red counterstains; original magnification, �400.
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pared to mRNA and protein expression, correlation with
mRNA was reasonable but correlation with immunohisto-
chemistry quite variable (Table 1). Discrepancies be-
tween GOLDFISH and immunohistochemistry results
were identified, consistent with the discordances well-
documented in the literature when immunohistochemistry
for HER-2/neu is compared with FISH.20–36 Furthermore
the discordances between GOLDFISH and immunohisto-
chemistry were observed more frequency with the
HercepTest assay than when the GOLDFISH results were
compared with immunohistochemistry using the CB11
monoclonal antibody; this result also parallels previous
studies contrasting FISH and immunohistochemistry for
detection of HER-2/neu gene amplification/overexpres-
sion.20–36

Statistical analysis using StatView comparing the
GOLDFISH results to the direct FISH reference standard
reflected excellent concordance of the two methods. The
mean difference was �15.042, with the 95% lower con-
fidence at �18.211 and 95% upper confidence limit at
�11.873, with a T value of �9.973 and a P value of

� 0.0001 (paired means comparison with hypothesized
difference � 0).

We pursued the autometallographically enhanced
gold40 and tyramide amplification approach after initial
disappointing results using an enzyme immunohisto-
chemistry approach. The peroxidase-based immunohis-
tochemical assay often required oil immersion to view the
signals in HER 2/neu nonamplified invasive breast carci-
noma and even considering the truncated nature of nu-
clei and paraffin sections, there was uncertainty regard-
ing the ability to detect nonamplified endogenous gene
copy in a consistent manner. The GOLDFISH approach
relies on both tyramide signal amplification and automet-
allography to expand the diameter of individual signals,
(Figures 2 and 3). The result for 16 amplified tumors was
a massive confluent black nuclear deposit that obliter-
ated most of the nuclear area (Figures 5 and 6). Nonam-
plified cases (n � 81) demonstrated one or two single
discreet small black signals (Figure 4) in approximately a
third to one-half of the nuclei (a 4-�m section consists of
a mixture of whole intact nuclei, and partially sectioned
truncated nuclei only some of which contain the target
gene). The designation “low-level amplification” was
used for three cases fulfilling the criteria outlined above.

Discussion

Interphase in situ hybridization for detection of endoge-
nous human genes has almost exclusively been based
on fluorescence microscopy (FISH), and its clinical ap-
plications have been principally exercised under the pur-
view of cytogenetics laboratories. As more applications
for interphase FISH are developed and validated, more
molecular pathology and other pathology laboratories,
and the pathologists that staff them, will recognize the
value of direct visualization of signals derived from en-
dogenous and exogenous DNA and RNA. Pathologists
are, at the root of their practice, morphologists. Evaluat-
ing DNA and RNA “in the dark” using FISH is for many
pathologists counterintuitive; a DNA or RNA assay that is
sensitive enough to detect single copies of an endoge-
nous or exogenous gene in the context of morphological
changes would have great potential practical value.

Figure 5. Photomicrograph of a breast carcinoma displaying HER-2/neu
gene amplification by FISH, mRNA enhanced expression, and overexpres-
sion of the oncoprotein by immunohistochemistry. Most of the nuclear area
of the tumor cells contains large confluent black metallic gold signal gener-
ated through autometallography. GOLDFISH with nuclear fast red counter-
stain; original magnification, �400.

Figure 6. A nonneoplastic duct displaying normal endogenous (nonampli-
fied) HER-2/neu gene copy (left) is surrounded by infiltrating duct carci-
noma demonstrating HER-2/neu gene amplification (right). GOLDFISH with
nuclear fast red counterstains; original magnification, �400.

Figure 7. Correlation of GOLDFISH with direct FISH.
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Herein we report such a system for bright-field detec-
tion of amplification of the oncogene HER-2/neu. Detec-
tion is accomplished by using the small 1.44-nm Nano-
gold gold label, combined with gold-based autometal-
lographic signal enhancement.40–42 During the course of
development of these assays, it became clear that rec-
ognition of overamplification was not the challenge for
this molecular morphology system. Rather, the develop-
ment and consistent performance of an assay that reli-
ably detected nonamplified genes represented the
greater challenge. Conventional chromogenic enzyme-
based in situ hybridization systems43 were suboptimal in
this important regard in our preliminary experience. Of
course, one cannot simply assume the absence of gene
amplification if normal endogenous gene signals are not
detectable, and the confirmation of nonamplification is
just as important as the recognition of overamplification of
the gene.

We have evaluated gold-enhanced autometallo-
graphic in situ hybridization results in comparison with
direct FISH and digoxigenin-based indirect FISH assays
and found them to be highly comparable. The signals
obtained from the use of Streptavidin-Nanogold com-
bined with gold-based autometallography are optically
well-defined, sharp, crisp, and dense black signals.40–42

By design, signal confluency precluded precise enumer-
ation of individual gene copy—our specific intent was to
develop a system that did not require counting signals.

The rarity of low-level amplification should be empha-
sized—only 3 of 100 cases (3%) in our series were clas-
sified in this manner (Table 1). This unusual category
demonstrates FISH gene copy between 4.1 and 6.0 (usu-
ally �5.0), and is nearly always nonproductive of tran-
scribed mRNA, and is associated with variable immuno-
histochemistry (IMH) results (Table 1). Copy numbers in
this 4.1 to 5.0 range are often pseudoamplifications, that
is, more than four copies of chromosome 17 are present,
each with a nonamplified copy of the HER-2/neu gene at
17q11.2-q12. The clinical significance of these rare bor-

derline cases will not be known with certainty until results
from large clinical outcome studies are reported.

Apparent discrepancies between GOLDFISH and di-
rect FISH results initially occurred in six cases (6%). The
investigation of these discrepancies is detailed in Table
2. Two cases not amplified by GOLDFISH were shown to
actually represent FISH pseudoamplifications because of
chromosome 17 polysomy. One low-level GOLDFISH-
amplified case was not amplified by FISH; on review,
most of the tumor tissue on the GOLDFISH slide was not
amplified, but rare focal areas demonstrated background
staining and low-level positive GOLDFISH staining. In
one instance initial low-level amplification was reviewed
and restained and interpreted as focally GOLDFISH-pos-
itive (concordant); FISH in this case demonstrated one
focal area of amplification. Two cases remained unre-
solved.

This bright-field assay using gold-based autometallog-
raphy compares favorably with the reference standard,
direct label FISH, for the detection of the amplified en-
dogenous oncogene, HER-2/neu. Pathologists may use
this assay to simultaneously evaluate HER-2/neu gene
amplification and morphological changes by conven-
tional bright-field microscopy. Signal enumeration and oil
immersion microscopy are unnecessary. Further studies
are underway to evaluate the interobserver reproducibil-
ity of the assay, its portability to automated instrumenta-
tion, its relevance to clinical therapeutic outcome, and the
utility of GOLDFISH for profiling other gene amplification
applications.
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