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Abstract

Background: Arylamine N-acetyltransferases (NATs) are important drug- and carcinogen-
metabolising enzymes that catalyse the transfer of an acetyl group from a donor, such as acetyl
coenzyme A, to an aromatic or heterocyclic amine, hydrazine, hydrazide or N-hydroxylamine
acceptor substrate. NATs are found in eukaryotes and prokaryotes, and they may also have an
endogenous function in addition to drug metabolism. For example, NAT from Mycobacterium
tuberculosis has been proposed to have a role in cell wall lipid biosynthesis, and is therefore of
interest as a potential drug target. To date there have been no studies investigating the kinetic
mechanism of a bacterial NAT enzyme.

Results: We have determined that NAT from Pseudomonas aeruginosa, which has been described
as a model for NAT from M. tuberculosis, follows a Ping Pong Bi Bi kinetic mechanism. We also
describe substrate inhibition by 5-aminosalicylic acid, in which the substrate binds both to the free
form of the enzyme and the acetyl coenzyme A-enzyme complex in non-productive reaction
pathways. The true kinetic parameters for the NAT-catalysed acetylation of 5-aminosalicylic acid
with acetyl coenzyme A as the co-factor have been established, validating earlier approximations.

Conclusion: This is the first reported study investigating the kinetic mechanism of a bacterial NAT
enzyme. Additionally, the methods used herein can be applied to investigations of the interactions
of NAT enzymes with new chemical entities which are NAT ligands. This is likely to be useful in
the design of novel potential anti-tubercular agents.

Background

Arylamine N-acetyltransferases (NATs, E.C. 2.3.1.5) are a
family of enzymes (30-34 kDa) found in a range of
eukaryotes and prokaryotes. NATs catalyse the transfer of
an acetyl group from a donor, such as acetyl coenzyme A
(AcCoA) to an aromatic or heterocyclic amine, hydrazine,
hydrazide or N-hydroxylamine acceptor substrate.

The NAT enzymes in prokaryotes, particularly NAT from
S. typhimurium [1], have been important in studies of the

metabolism of carcinogens. Recent evidence suggests that
prokaryotic NATs may also have an endogenous role. For
example, a NAT-like protein in Amycolatopsis mediterranei
(RifF) is responsible for the final ring-closure step in the
biosynthesis of the rifamycin precursor, proansamycin X
[2]. Although the precise endogenous function of NAT in
mycobacteria has not been established, genetic studies
suggest strongly that NAT has a role in cell wall complex
lipid biosynthesis in Mycobacterium bovis BCG [3]. It has
been proposed that NAT represents a good anti-tubercular
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target, since ablation of the nat gene results in increased
intracellular killing of mycobacteria within macrophage
[3]- The NAT from Mycobacterium tuberculosis has not been
expressed as a soluble recombinant enzyme in sufficient
quantities for detailed activity studies, although other bac-
terial NATSs are available. These include NATs from Salmo-
nella typhimurium [4], Mycobacterium smegmatis [5],
Mesorhizobium loti [6] and Pseudomonas aeruginosa [7]. The
three-dimensional structures of these enzymes have been
solved by X-ray crystallography. The overall fold is super-
imposable [6-9], and all four enzymes share a catalytic
triad of residues: Cys-His-Asp [9], a motif which is com-
pletely conserved throughout all known active NATs [10].

As a start to the process of identifying novel NAT ligands,
Brooke and others have developed a method suitable for
the rapid identification of NAT substrates and inhibitors
with the colorimetric agent 5,5'-dithio-bis(2-nitrobenzoic
acid) (Ellman's reagent, DTNB) [11]. The extent of reac-
tion is measured by detecting the coloured 5-thio-2-
nitrobenzoic acid, produced by reaction of DTNB with the
free thiol CoA, formed during the NAT reaction [11,12].
Brooke and co-workers have used this method to identify
novel inhibitors of bacterial NATs with the aim of devel-
oping novel antimycobacterial agents [13]. While the
structures of bacterial NATs are known, to date, there have
been no kinetic analyses of prokaryotic NAT enzymes and
it is not known whether these enzymes share the kinetic
mechanism previously determined for their eukaryotic
counterparts.

The eukaryotic NAT enzymes have been investigated in
relation to their role in drug- and carcinogen-metabolism
[14-16], and it has also been suggested that certain eukary-
otic NATs have an endogenous role [17]. The crystal struc-
ture of human NAT1 (F125S mutant, pdb code 2IJA) has
recently been solved. This crystal structure, along with an
NMR-derived model of human NAT1 [18] and homology
models of human NAT1 [19], human NAT2 [20] and
hamster NAT2 [21], all show that the three-dimensional
fold is very highly conserved throughout the NAT family,
with very similar positioning of the catalytic triad resi-
dues. The most notable difference between eukaryotic and
prokaryotic NATs is the existence of a loop region between
the second and third domains in eukaryotic NATs, which
is unlikely to have a role in catalysis [21,22].

The determination of kinetic constants for NAT, in partic-
ular with AcCoA as the acetyl donor, is experimentally
challenging [23,24]. The apparent Michaelis constants
and limiting rates of N-acetylation are dependent on the
concentrations of the acetyl donor and acceptor. There are
several features of the reactants which limit the determi-
nation of kinetic parameters by linear methods, including
limited solubility and very high optical absorbance.

http://www.biomedcentral.com/1471-2091/8/3

Despite the technical difficulties associated with NAT
enzyme assays, the enzymatic reactions of NATs from
pigeon liver [25] and rabbit liver [26] preparations have
been shown to follow the Ping Pong Bi Bi kinetic mecha-
nism [27]. Approximate kinetic parameters have been
determined for several eukaryotic NAT enzymes
[23,25,26,28-33], and Wagner, Hanna and colleagues
have recently determined the catalytic mechanism of pure
recombinant NAT2 from Syrian hamsters [34,35]. No
such analysis has been carried out so far for any of the bac-
terial NATSs.

The NAT enzyme from P. aeruginosa (PANAT) has been
cloned, expressed, characterised and crystallised [7], and
is an ideal enzyme system for the study of the kinetics of
a bacterial member of this unique enzyme family. The
PANAT enzyme is very stable and highly active relative to
other bacterial NATs currently available as pure proteins
[4,5,7].

Results

Determination of the kinetic mechanism and true kinetic
parameters by normalised plot analysis

We have used a normalised plot method, described by
Bravo and colleagues [36], to elucidate the kinetic mecha-
nism of the PANAT-catalysed N-acetylation of 5-ami-
nosalicylic acid with AcCoA as acetyl donor, and to
measure the true kinetic parameters for the substrates.

A flowchart describing the normalised plot method is pre-
sented as supplemental data [see Additional file 1]. In this
method, the normalised concentration (A') is defined as
an arbitrary constant concentration (A) multiplied by a
numerical factor (a) as shown in equation 1.

A=aA (1)

The initial rates of reaction are measured in three separate
experimental series. For the series b = 1, reaction velocities
(V) are measured in the presence of a constant concen-
tration of 5-aminosalicylic acid (B), and a series of actual
concentrations of AcCoA which are described as multiples
of the arbitrarily fixed concentration A (e.g. for a concen-

. A . .
tration of K a = 0.25). Similarly, for the seriesa=1,V,,

values are measured in the presence of AcCoA (at concen-
tration A) and a series of concentrations of 5-aminosali-
cylic acid (multiples of B). For the final series of data (a =
b), the concentrations of substrates are varied in identical

A B A B
proportions (e.g. T and ey and 5 ). The experiment

is designed such that the initial reaction velocity where a
=b=1(V,,, eq. 2) is measured in each series of collected
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data. The normalised velocity, \_/u,b (eq. 2), is a corrected

reciprocal value of the experimentally determined value.

- (2)

va,b =
Va,b

The following experiments were performed with PANAT,
AcCoA (A) and 5-aminosalicylic acid (B). The arbitrarily
fixed values of A and B were 0.4 mM and 0.2 mM respec-
tively. Assays were carried out in which the factors a and b
were varied in the following series: a = b (0.25 to 15), a =
1(b=025t015)and b =1 (a =0.25 to 2), and the nor-
malised velocities were calculated from the initial rates of
reaction according to equation 2. Four possible rival
kinetic mechanisms have been considered: Ping Pong Bi
Bi with and without substrate inhibition, and Ordered Bi
Bi with and without substrate inhibition. A normalised
rate equation was derived (eq. 3) with three terms (¢, S
and y, Table 1), which, when included in different combi-
nations, allow these four possible rival kinetic models to
be described (Table 2). The definitions of ¢, £, y and den
are given in Table 1.

Vap = 0+ K gdA + KabB+aAbB+ B +7v
“ ab - den

(3)

The data shown in Figure 1 were then simultaneously fit-
ted by least-squares non-linear regression to equation 3 a
total of eight times, each with different combinations of
the variables ¢, f#and y set to zero. When y was set to 0,
corresponding to no inhibition by 5-aminosalicylic acid
on the enzyme- AcCoA complex (EA) complex, no solu-
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tions could be obtained through the non-linear regression
analysis. The results of non-linear regression with the
remaining four combinations, corresponding to four dif-
ferent mechanisms, are shown in Table 2. The mecha-
nisms named 1P and 2P are Ping Pong mechanisms, and
those named 30 and 40 are Ordered mechanisms. Sub-
strate inhibition by 5-aminosalicylic acid on both the free
enzyme (E) and the EA complex are accounted for by
mechanisms 1P and 30, and inhibition by 5-aminosali-
cylic acid on only EA is accounted for by mechanisms 2P
and 40. The self-consistency factor, den, was compared to
the calculated value den ., by using the other constants
obtained from the non-linear regression analysis. The
similarity of den and den ) gives an indicator of the sci-
entific reliability of the fit, while the sum of squares from
least-squares non-linear regression indicates the mathe-
matical accuracy of the fit [36].

The Ordered Bi Bi term « was found to reduce to zero
when included in the calculation, hence the numbers gen-
erated with equations derived for mechanisms 30 and 40
were the same as those from mechanisms 1P and 2P
respectively. In all cases, the den and den, values were
very similar; however, the sum of squares from the calcu-
lations where S was set to 0 were over four-fold higher
than those where f§ was included. The statistical signifi-
cance of each solution (determined with Student's t test
within KyPlot), indicates that mechanism 1P is the most
likely. In order to determine by independent means
whether mechanism 1P or 2P is most appropriate, the
method described by Mannervik was used [37], in which
the quotient, F,, (eq. 4) is compared with the F-statistic:
F(py - p; n - pi), where SS; (= 1.254) is the residual sum of

Table I: Definitions of parameters in the normalised velocity equation (eq 3)2

Parameter® Definitionc Comments
a KigKma Appears in Ordered Bi Bi only
B Accounts for substrate inhibition by 5-aminosalicylic acid on the free
enzyme
Kab’B? 4
Ksi(s—E)
4 Accounts for substrate inhibition by 5-aminosalicylic acid on the
enzyme-AcCoA comple
aAb2B? zy plex
Koimom)
den The denominator term den is independent of both a and b
a+KmBA+KmAB+AB+b£2+%
a

9 The parameters ¢, fand yare set to zero in different combinations to define different mechanisms.

bThe definition of y given here is for the Ping Pong Bi Bi mechanism (in which « = 0). y for the Ordered Bi Bi mechanism is similar, however the

denominator would be K FAB y , relating to the binding of 5-aminosalicylic acid to either of the trimolecular EAB or EPQ complexes.

si(B—gpq)

¢The K;and K terms are true dissociation constants for the enzyme-substrate complexes indicated, and K, values are Michaelis constants for the

substrates indicated.
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Table 2: Results of non-linear regression by the least-squares method.2

http://www.biomedcentral.com/1471-2091/8/3

Mechanism? | 2 3 4
Constant¢ a=0 a=p=0 p=0
Kong 0.219 £ 0.073** 0.199 £ 0.174t 0.219 + 0.120F 0.199 + 0.279t
Kna 1.02 + 0.29%* 1.51 + 1.03t 1.02 + 0.46* .51 + 1.53t
Ks@-p 1.93 £ 0.28%+* - 1.93 £ 0.37%+* -
1.03 £ 0.34%* 0.550 + 0.403t 1.03 + 0.50f 0.550 + 0.560t
Ksi(B—>E,é)
Kig - - ~0.00 £ 0.01% ~0.00 + 0.01t
den 0.422 + 0.105%+* 0.512 + 0.327t 0.422 + 0.156* 0.512 + 0.463t
denqyq 0.408 0.491 0.408 0.491
Sum of squares 0.268 1.254 0.268 1.254
Bi Bi Mechanism Ping Pong Ping Pong Ordered Ordered
Substrate inhibition by 5- Yes Yes No
aminosalicylic acid on free
enzyme?

a Least-squares non-linear regression was performed by using KyPlot [45].

bMechanisms | and 2 refer to Ping Pong Bi Bi kinetics allowing 5-aminosalicylic acid to act as an inhibitor of the enzyme-AcCoA complex (EA).
Mechanism | also accounts for 5-aminosalicylic acid binding to the free enzyme (E). Mechanisms 3 and 4 are directly analogous to | and 2

respectively, however they refer to Ordered Bi Bi kinetics.

<K values have dimensions of mM and den values are expressed in mM2. @ and S are defined in Table I. Variance and statistical significance values
were determined within KyPlot by Student's t test. T, P >= 0.05; *, P < 0.05; **, P < 0.01; ** P < 0.001.

squares from the simpler model (mechanism 2P) with p,
(= 4) parameters, SS, (= 0.268) is the residual sum of
squares from the more complex model (mechanism 1P)
with p, (= 5) parameters and n (= 27) is the number of
data points.

_ (85 -88)(n—pi)
(P — P;)SSk

(4)

exp

According to this method, the experimental quotient F,,
was 80.9, and the critical value for F(1,22) is 14.38 at a
value of @ = 0.001: therefore, the reaction follows mecha-
nism 1P, with substrate inhibition by 5-aminosalicylic
acid on both the free form of the enzyme and the
enzyme - AcCoA complex. A schematic diagram illustrat-
ing this mechanism is given in Figure 2. Therefore, for
concentrations of AcCoA at 800 uM and below, the rate
equation for this reaction is as shown in equation 5.

be Vinax @AbB (5)

2np2 2p2
K, + Ko bB + aAbB + Kmal B~ aAb’B

si(B—E) Ksi(BalF,“f})

Thus, from the four rival kinetic mechanisms considered
(Table 2), an Ordered mechanism can be ruled out, based
on the reduction of the denominator term « to zero in the

calculation process, the correlations of the rival kinetic
models and the statistical significance of the fits. Of the
two remaining Ping Pong mechanisms, mechanism 2P is
a poorer fit than mechanism 1P, as shown clearly by the
observation of substrate inhibition by 5-aminosalicylic
acid, the correlation of calculated and experimental self-
consistency factors (den vs. den,,.) and the F-test compar-
isons. Therefore, the theoretical model which best fits the
experimental data is a Ping Pong Bi Bi mechanism with
substrate inhibition by the acceptor substrate 5-aminosal-
icylic acid on both the free form of the enzyme and the
enzyme - AcCoA complex.

Determination of the half-life of the acetylated enzyme
intermediate

In the absence of an acetyl acceptor, the proposed NAT
reaction scheme is shown in Figure 3. The proposed
scheme is based both on this study and on previously
described work with a eukaryotic NAT [34]. Study of the
first half of the Ping Pong Bi Bi reaction in this way allows
for the determination of the half-life (t,/,) of the acetyl-
NAT intermediate, which is a measure of its stability. In
the proposed reaction scheme, t, , of the acetyl-NAT inter-
mediate is dependent on both k, and k; (equations 6 and
7, Figure 3). If the rate of enzyme acetylation is very much
faster than the rate of acetyl-enzyme hydrolysis (that is, if
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Figure |

Comparison of calculated and experimental kinetic
data. The calculated and experimental normalised data for
the PANAT-catalysed acetylation with the substrates AcCoA
(A) and 5-aminosalicylic acid (B) is shown. The points repre-
sent the experimental data in three series: a=b (m), a = |
®)and b =1 (A), expressed as the mean * standard devia-
tion of triplicate measurements. The lines represent values
obtained through least-squares non-linear regression: a = b
(long dashes), a = | (short dashes) and b = | (solid line). The
values of the normalised substrate concentration constants A
and B (eq. |) were 0.4 and 0.2 mM respectively, and the nor-
malised velocity is defined in equation 2. Both x- and y-coor-
dinates are dimensionless. Reactions were performed in
triplicate at 25°C and pH 8.0 as described in Methods.

k, is very much larger than k;), then t,, of the acetyl-NAT
intermediate may be approximated by the following

. Ln2 . .
equation: fy/ = o (equations 6-8, Figure 3).
3

The rate of hydrolysis of the acetylated PANAT intermedi-
ate (AcNAT in Figure 3) has been determined under differ-
ent experimental conditions where the acetyl donor is
either p-nitrophenyl acetate or AcCoA, by measuring the
rate of production of p-nitrophenol or CoA, and the
results are shown in Figure 4. Equation 9 (Figure 3) was
used to calculate the value of k; for the reaction under
each set of experimental conditions, from which the half-
life of the acetyl enzyme intermediate was calculated. The
data are summarised in Table 3.

The rates of enzyme-catalysed hydrolysis of p-nitrophenyl
acetate were 12.2 + 0.5 nM s for 4 uM PANAT and 22.8
+ 0.4 nM - s for 8 uM PANAT after correction for the non-
enzymatic rate of reaction, which was 0.28 + 0.01 nM-s!.
These results give a k; value of 2.83 + 0.08 x 10-3s°1, which

http://www.biomedcentral.com/1471-2091/8/3

corresponds to a value for f;, of the acetyl-NAT interme-
diate of 235 + 8 s.

The rate of enzyme-catalysed hydrolysis of AcCoA was
21.2 +3.9 nM - s'! for 8 uM PANAT. Under the experimen-
tal conditions used, no hydrolysis of AcCoA was observed
in the absence of enzyme. The calculated k; was 2.66 +
0.49 x 1035’1, corresponding to a value for ¢, , of acetyl-
PANAT of 270 + 49 s. Thus, the half-life of the acetyl-
PANAT intermediate is very similar when generated with
p-nitrophenyl acetate or AcCoA as the acetyl donor.

Comparison of AcCoA and p-nitrophenyl acetate as acetyl
donors

The rates of acetylation of the acceptors: 5-aminosalicylic
acid, 2-aminofluorene, hydralazine, p-aminobenzoic
acid, p-anisidine, isoniazid and aniline (500 uM) by
PANAT with 400 uM p-nitrophenyl acetate as acetyl donor
were determined by measuring the formation of p-nitro-
phenol spectrophotometrically at 405 nm. The specific
activities were calculated, after correcting for the non-
enzymatic and enzyme-catalysed hydrolysis of p-nitroph-
enyl acetate, and are shown in Table 4. Solvent (DMSO)
was found to have no effect on the rate of reaction at a
final concentration of 5%. The experimentally determined
specific activities for acetylation of acceptor substrates
with the donor p-nitrophenyl acetate were compared with
previously reported values where the acetyl donor was
AcCoA (Table 4). For the substrates used in this study, the
rates of acetylation with p-nitrophenyl acetate were
between 1.1-fold and 71-fold slower than the correspond-
ing rates with AcCoA as the acetyl donor (Table 4).

When the acetyl donor p-nitrophenyl acetate is used, the
product of the initial enzyme acetylation step is p-nitroph-
enol. The rate of the PANAT-catalysed acetylation of 5-
aminosalicylic acid with either of the acetyl donors p-
nitrophenyl acetate or AcCoA was not changed in the
presence of p-nitrophenol at concentrations up to 100
uM. Therefore, it is unlikely that the slower rate of reaction
with p-nitrophenyl acetate compared to AcCoA observed
in the present study is due to product inhibition by the p-
nitrophenol produced in the first half of the Ping Pong Bi
Bi reaction. When AcCoA is used as the acetyl donor, CoA
is the product of the initial enzyme-acetylation step.
Andres and colleagues noted marked product inhibition
by CoA [24], which may explain the reported results with
the STNAT enzyme and NAT from pigeon livers, where the
rates of acetylation of acceptor substrates were faster when
p-nitrophenyl acetate was used instead of AcCoA as the
acetyl donor [23,38]. Product inhibition by CoA does not
explain the results obtained in this study with the PANAT
enzyme; however, it is possible that the 71-fold slower
acetylation of 5-aminosalicylic acid with p-nitrophenyl
acetate as the acetyl donor instead of AcCoA may be due

Page 5 of 14

(page number not for citation purposes)



BMC Biochemistry 2007, 8:3 http://www.biomedcentral.com/1471-2091/8/3

AcCoA

Non-productive
pathway

5-AS 5-AS

Ac-5-AS :
Catalytic

pathway CoA

5-AS

Figure 2

The proposed kinetic mechanism of PANAT-catalysed N-acetylation of 5-aminosalicylic acid with AcCoA. The
schematic diagram shows the catalytic cycle (boxed) and the non-productive binding of 5-AS (@) to the free form of the
enzyme and to the enzyme-AcCoA complex. It is not known whether AcCoA is able to bind to the enzyme-5-AS complex.
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Ko K3

[NAT-ACX]T» AcNAT + H,0 T NAT

X AcOH

Ln?2

k, >k, . t,,= 3

(8)

1 1
+

k3

[E] total
V

p )

obs

The steady-state formation and hydrolysis of the acetyl-enzyme intermediate. The acetyl donor is denoted AcX,
where X is p-nitrophenol or CoA. AcNAT refers to the acetylated enzyme intermediate. For a derivation of equation 9, see

[34].

to the substrate inhibition exhibited by 5-aminosalicylic
acid. As shown in this study, 5-aminosalicylic acid binds
to the free form of the enzyme and the enzyme- AcCoA
complex, both of which are inhibitory pathways in the
proposed reaction mechanism (Figure 2). As 5-aminosal-
icylic acid is structurally more similar to p-nitrophenyl
acetate than to AcCoA, it is possible that the effects of the
observed substrate inhibition mechanisms would be
greater when p-nitrophenyl acetate is used as the acetyl
donor instead of AcCoA.

Discussion

This study shows that NAT from P. aeruginosa follows the
Ping Pong Bi Bi kinetic mechanism [27], in which the
enzyme binds AcCoA, and the acetyl group is transferred
to the enzyme. CoA is released, leaving a stable acetyl-
enzyme intermediate, which then binds the second sub-
strate. The acetyl group is transferred, regenerating the
native enzyme and N-acetylated substrate. While various
previous studies have shown that eukaryotic NAT
enzymes follow Ping Pong Bi Bi kinetics [23,25,26], this
study constitutes the first such analysis reported for a
prokaryotic NAT. A summary of all kinetic parameters
determined by the normalised plot method in this study

is presented in Table 5. The normalised plot method
allows for a full kinetic description of the system to be
obtained with fewer required data points than conven-
tional methods, and therefore reduced usage of expensive
reagents, such as acetyl coenzyme A. The method also
overcomes the experimental problems associated with the
determination of apparent kinetic parameters, such as
substrate inhibition. Structural studies and NMR experi-
ments have previously demonstrated an interaction of the
acetyl acceptor substrate, isoniazid, with NATs from M.
smegmatis (MSNAT, [39]) and S. typhimurium (STNAT,
[40]) in the absence of AcCoA. Sandy and colleagues sug-
gested that the binding of isoniazid to MSNAT may con-
stitute either a substrate inhibition complex or a pre-Ping
Pong initiation step in the reaction mechanism [39]. The
present study shows that the suggested pre-Ping Pong step
is unlikely, and that binding of the acetyl acceptor sub-
strate to the free form of the enzyme is an inhibitory path-
way. We have shown that 5-aminosalicylic acid exhibits
substrate inhibition by binding both to the free enzyme
and to the enzyme - AcCoA complex. A schematic diagram
of the proposed mechanism is presented in Figure 2. In
the search for possible endogenous substrates and novel
inhibitors of NAT enzymes by structure-based rational
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—————

1000 2000 3000 4000 5000 6000
time (s)

b

0

Figure 4

1000 2000 3000 4000 5000 6000 7000
time (s)

PANAT-catalysed hydrolysis of acetyl donors. PANAT at 8 uM (A), 4 uM (L) and a control using PBS buffer (x) were
incubated with: A) p-nitrophenyl acetate (320 uM) or B) AcCoA (320 uM) at 25°C. The control experiments with PANAT (8
1M) and no acetyl donor ( D ade also shown. Reactions were performed in quadruplicate at 25°C and pH 7.4 as described in
Methods. The absorbance of p-nitrophenol or 5-thio-2-nitrobenzoic acid (produced by reaction with coenzyme A) is shown (y-
axis) as a function of time (x-axis).
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Table 3: Determination of the half-life of the acetyl-enzyme intermediate.

Acetyl Donor

Rate of hydrolysis of acetyl donor (nM-s-)a

No enzyme 4 mM PANAT
p-Nitrophenyl acetate 0.28 £ 0.01 122 +£0.5
AcCoA ND¢ -

ky (x 10-3-s71)b i (s)°
8 mM PANAT
228+ 04 2.83 £0.08 235+8
21.2+39 2.66 + 0.49 270 + 49

9 The rates of hydrolysis were determined spectrophotometrically by measuring the rate of production of p-nitrophenol or CoA, as described in

the text.

bk, values were determined according to equation 9 (Figure 3).
¢t values were calculated according to equation 8 (Figure 3).
4ND, none detected.

drug design, the enzyme- AcCoA complex and the acetyl-
enzyme intermediate need to be studied as well as the
native enzyme. A non-hydrolysable model of the acetyl-
enzyme intermediate of MSNAT, in which the active-site
cysteine residue is mutated to a glutamine, has been
obtained by X-ray crystallography to a resolution of 1.45
A [10]. Computational models of acetyl-enzyme - CoA
and acetyl-enzyme-ligand complexes can therefore be
generated by co-crystallisation studies with corresponding
cysteine/glutamine mutants of other bacterial NATSs.

The first steps of any Ping Pong Bi Bi mechanism are the
binding and reaction of the first substrate with the
enzyme, resulting in the formation of a stable, non-native
enzyme intermediate [27]. The isolation of a stable
enzyme intermediate may be taken as positive evidence
for a Ping Pong mechanism over an Ordered mechanism,
in which all substrates bind to the enzyme prior to the
release of the first product [27]. Figure 3 shows the generic
reaction of NAT with an acetyl donor in the absence of
acceptor substrate. The acetylation of hamster NAT2 with
p-nitrophenyl acetate has been shown to be rapid, by
stopped-flow techniques [34]. For hamster NAT2, the rate
of hydrolysis of the acetyl-enzyme intermediate was
found to be rate limiting, with a k; of 7.85 + 0.65 x 103 s°

1 compared with an estimated k, of 1301 + 720 s1and k
of 44.8 s'1[34], which satisfies the assumptions that k, >>
ks and k,,, >> k5 (Figure 3). We have shown that PANAT
catalyses the hydrolysis of both p-nitrophenyl acetate and
AcCoA in the absence of acetyl acceptor substrate (Figure
4). Apart from two C-terminal truncation mutants of
STNAT [38], no other bacterial NAT has been reported to
exhibit this arylamine-independent activity. The lack of
observed arylamine-independent acetyl-donor hydrolysis
is most likely due to the significantly lower specific activ-
ity of the enzyme in the absence of an acetyl acceptor com-
pared with when an acetyl acceptor is present [7],
meaning that a high concentration of enzyme is required
in order to measure the reaction rate of AcCoA hydrolysis
in the absence of an acetyl acceptor. In the present study,
the specific activity of PANAT-catalysed acetyl donor
hydrolysis was 15,000-fold greater in the presence of the
acceptor substrate 5-aminosalicylic acid compared with
the acceptor-independent specific activity.

It has not been possible to detect an acetylated-STNAT
enzyme intermediate by 'H and '3C NMR experiments
[41], and it was concluded that, if an acetyl-STNAT inter-
mediate were formed, its half-life would be considerably
shorter than the timescale of the NMR experiments (~30

Table 4: Comparison of PANAT-catalysed N-acetylation with p-nitrophenyl acetate or AcCoA as acetyl donor?

Substrate Specific Activity - PNPA

(nmol‘min-'-mg-)b

Specific Activity — AcCoA Fold Difference

(nmol'min-'*mg-")c

5-Aminosalicylic acid 1040 * 30
2-Aminofluorene 1470 £ 40
Hydralazine 2990 = 10
p-Aminobenzoic acid 841 + 17
p-Anisidine 2220 + 40
Isoniazid 602 +3

Aniline 567 +7

73300 + 3300 70.5

44710 + 2720 304

29550 £ 3110 9.9
8200 + 78 9.8
13500 + 0 6.1
2324+ 0 39
629 + 40 1.1

9 The rate of production of p-nitrophenol was followed as described in Materials and Methods. Assay mixtures (100 uL) contained PANAT (50 ng),
p-nitrophenyl acetate (400 uM) and acceptor substrate (500 uM) in PBS buffer with 5% (v/v) DMSO. Reactions were performed at 25°C, and
specific activities are expressed as the mean * standard deviation from triplicate measurements.

bPNPA, p-nitrophenyl acetate.

¢ Specific activities with AcCoA as acetyl donor are the literature values determined under similar experimental conditions [7].
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Table 5: A summary of all kinetic constants determined for the
PANAT-catalysed acetylation of 5-aminosalicylic acid

Constant? Value
KA 1.02 £ 0.29 mM
Kng 0.219 £ 0.073 mM
Ksi@g 1.93 £ 0.28 mM
1.03 £ 0.34 mM
Ksi(B—>Ef})
Vinax 1.75 £ 0.07 uM-s*!
Kzt 434+ 17 5!
keae Kina 468 £ 150 mM-!-s-!
k! King 2259 + 830 mM-!-s-!

a Abbreviations: A, AcCoA; B, 5-aminosalicylic acid; E, PANAT; F,
acetyl-PANAT.

min). The half-life of acetyl-PANAT intermediate as deter-
mined in the present study (235 + 8 s, Figure 4), is consid-
erably shorter than the timescale of the NMR experiment.
Jencks and colleagues measured the half-life of the
acetylated NAT from pigeon liver as less than 1 min [32].
More recently, Wagner, Hanna and co-workers measured
the half-life of the acetylated NAT2 enzyme from Syrian
hamsters at 88.3 + 8.3 s [34]. While the half-lives of the
prokaryotic and eukaryotic enzymes are of a similar order
of magnitude, the results obtained in this study suggest
that the acetyl-PANAT intermediate may be more stable
with respect to hydrolysis than both the acetyl-NAT inter-
mediates from Syrian hamster and pigeon liver [32,34].

The apparent and true Michaelis constants for AcCoA
from studies with pigeon liver NAT [29], hamster NAT2
[35], rabbit liver NAT [26], the full-length STNAT protein
[1,38] and C-terminal truncation mutants of STNAT [38]
are shown in Table 6. The true K, values for AcCoA appear
to lie in the 1-6 mM range for the different enzymes,

http://www.biomedcentral.com/1471-2091/8/3

whilst the apparent Michaelis constants vary by approxi-
mately three orders of magnitude, depending on the
enzyme and acetyl acceptor substrate used.

The apparent kinetic parameters for AcCoA have been
determined previously with recombinant PANAT enzyme
and p-anisidine as the acetyl acceptor at a concentration of
200 uM [7]. In this study, we have used a higher concen-
tration of p-anisidine (2 mM) to determine the apparent
kinetic parameters for AcCoA under conditions that closer
approach pseudo-first order kinetics [see Additional file
2]. The following values were obtained from a Hanes plot
[see Additional file 2]: the apparent Michaelis constant for
AcCoA (K, 4pp) Of 466 + 77 pM, apparent limiting rate
(Vinaxapp) ©f 362 + 54 nM-s'1, apparent turnover number
(Reat,app) Of 17.5 £ 2.6 s and apparent specificity constant
(Reat,app/ Km,app) 0f 37.6 + 5.4 mM-1-s-1. The previous stud-
ies with a lower concentration of p-anisidine as the accep-
tor substrate (200 uM) gave values for K, ,,, of 136 uM
and V. app Of 153 nM - 71 [7]. At the relatively high accep-
tor substrate concentration of 2 mM, the apparent
Michaelis constant was less than 50% of its true value
(1.02 + 0.29 mM), as determined with the normalised
plot method in this study. Considering the very hydro-
phobic nature of many of the known acetyl acceptor sub-
strates of NATs [42], it is not surprising that, in practice,
the substrate concentrations required to reach pseudo-
first order kinetics are often at or beyond the limit of sol-
ubility.

A summary of reported K, values for AcCoA with various
NAT enzymes is given in Table 6. The very low apparent
K., values for AcCoA with STNAT and NAT from pigeon
livers may not be due solely to the experimental condi-
tions used. For the reaction with hamster NAT2, it has
been suggested that the deacetylation step with p-

Table 6: Summary of Michaelis constants for AcCoA from different NATSs.

Enzyme True or Apparent K, Acetyl Acceptord K(mM) Reference
PANAT Apparent p-anisidine (0.2 pM) 0.136 [7]
PANAT Apparent p-anisidine (2 mM) 0.466 + 0.077 [see Additional file 2]
PANAT True 5-AS 1.02 £ 0.29 Table 5
STNAT? Apparent N-OH-Glu-P-1 0.010 [
STNAT? Apparent INH <0.020 [38]
STNAT - I Ib Apparent INH 0.393 + 0.003 [38]
STNAT - 85¢ Apparent INH 0.764 + 0.004 [38]
Pigeon liver NAT Apparent p-nitroaniline 0.007 [29]
Hamster NAT2 True p-nitroaniline, pABA, pABA-Glu 5.94 [35]
Rabbit liver NAT Apparent INH 1.5 [26]

Selected Michaelis constants from the literature have been compiled along with those determined in this study for the purified PANAT enzyme.

aSTNAT, NAT from Salmonella typhimurium.
bSTNAT truncation mutant, missing | | amino acids from the C-terminus.

¢STNAT truncation mutant, missing the entire C-terminal domain (85 amino acids).
d Abbreviations: 5-AS, 5-aminosalicylic acid; N-OH-Glu-P-1, 2-hydroxyamino-6-methyldipyrido- [1,2-a:3',2'-d]-imidazole; INH, isoniazid; pABA, p-

aminobenzoic acid; pABA-Glu, p-aminobenzoyl-L-glutamate.
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nitroaniline is rate limiting [35], which results in a
decrease in the measured apparent K, for AcCoA com-
pared with the true value. In the same study, the deacetyla-
tion step with p-aminobenzoic acid or p-aminobenzoyl-L-
glutamate as the acetyl acceptor was found to be partially
rate-limiting, thus the apparent Michaelis constants for
AcCoA when using these substrates are also lower than the
true value [35]. Therefore, it is likely that the compara-
tively low apparent K, values measured for STNAT [38]
and pigeon NAT [23] reflect a rate-limiting deacetylation
step in the presence of the acetyl acceptor substrates isoni-
azid, N-OH-Glu-P-1 and p-nitroaniline (Table 6).

The Michaelis constant for AcCoA with hamster NAT2
(5.94 mM) is nearly 6 times higher than the K, for AcCoA
(1.02 + 0.29 mM) determined with PANAT in the present
study [35]. This indicates that AcCoA has a greater affinity
for PANAT than for hamster NAT?2. It is therefore possible

7

http://www.biomedcentral.com/1471-2091/8/3

that the longer half-life of the acetyl-PANAT intermediate
compared to that of acetyl-NAT2 from hamsters may be
due to the greater stability of the PANAT- AcCoA (or the
acetyl-PANAT - CoA) complex.

The K, value for AcCoA with PANAT is significantly larger
than the K, ,,, value for AcCoA with the STNAT protein
[38]. However, the two C-terminal truncation mutants of
STNAT, reported by Mushtaq and colleagues [38], have
apparent Michaelis constants which are very similar to the
K, for AcCoA with PANAT. The STNAT sequence has eight
more residues at the C-terminus than the PANAT
sequence, and this C-terminal section of the STNAT is
responsible for the observed differences in the truncation
mutants compared with the full-length protein [38]. The
comparatively shorter length of the C-terminus of PANAT
may therefore be responsible for the higher apparent K,
for AcCoA. The X-ray crystal structures of the two proteins

Figure 5

A comparison of the C-terminal residues of STNAT and PANAT. The active-site triad residues of PANAT (Cys-His-
Asp) and the C-terminal residues of PANAT (purple) and STNAT (black) are shown in ball and stick representation. The dis-
tances between the active site Cys sulfur atom and residues Leu?7é and Phe?73 from PANAT and STNAT respectively are 25.8
A and 17.6 A respectively, and were determined by using SwissPDB Viewer [46]. The figure was produced with Aesop (M. E.

M. Noble, unpublished results).
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are available, and a comparison of the C-terminal residues
of these proteins indicates that a cleft which leads to the
active site is blocked by the C-terminus of STNAT relative
to that of PANAT (Figure 5). The terminal residue (Leu27¢)
in the PANAT structure is 25.8 A from the active site
cysteine, compared to 17.6 A between Phe273 and the
active site Cys in STNAT.

Conclusion

We have shown that NAT from Pseudomonas aeruginosa
follows a Ping Pong Bi Bi kinetic mechanism with sub-
strate inhibition, by using a normalised plot method. This
is the first reported study of the kinetic mechanism of a
bacterial NAT. These studies provide a basis for the under-
standing of the molecular interactions of small-molecule
ligands with NAT enzymes, and establish a reliable, repro-
ducible and efficient method for the determination of
kinetic parameters.

Methods

Protein preparation

Recombinant PANAT was prepared and purified as previ-
ously described [7]. Repeated concentration and dilution
was used to exchange the buffer of protein solutions from
the Tris.HCI buffers used during purification to phos-
phate-buffered saline (PBS, 0.137 mM NacCl, 2.7 mM KCl,
4.3 mM Na,HPO,, 1.4 mM KH,PO,, pH 7.4). Protein
solutions were concentrated by using Amicon centrifugal
filter devices (10,000 MW Cut-off, Millipore). The con-
centrations of solutions containing purified PANAT were
determined spectrophotometrically with a Hitachi U2001
spectrophotometer by using the molar extinction coeffi-
cient (g,4,) 0f 33120 M-1.cm! (calculated with ProtParam
[43,44]).

Normalised plot analysis

The method of Bravo and colleagues [36] was used to
determine the true kinetic parameters of the PANAT-cata-
lysed acetylation of 5-aminosalicylic acid with AcCoA as
the acetyl donor. A flowchart describing the approach is
given as supplemental material [see Additional file 1]. The
kinetic parameters are defined as follows: K, and K,
true Michaelis constants for substrates A (AcCoA) and B
(5-aminosalicylic acid) respectively; K;,, dissociation con-
stant of the EA complex (Ordered mechanism only);
Kis—r) dissociation constant of the EB complex to free
enzyme (E) and free substrate (B). The subscript 'si' refers
to substrate inhibition by the substrate on the enzyme
form indicated in brackets. The nomenclature proposed
by Cleland [27] has been used throughout for enzyme
forms and complexes; thus, E is the free form of PANAT
and F is the acetyl-NAT intermediate. Non-linear regres-
sion analyses were performed by using KyPlot v2.0 beta
13 [45] with the least-squares method.

http://www.biomedcentral.com/1471-2091/8/3

Determination of acetyl-enzyme half-life

Assays measuring the hydrolysis of the acetyl donors p-
nitrophenyl acetate and acetyl coenzyme A (AcCoA) were
performed in the absence of an acetyl acceptor substrate.
The assay solutions (100 pL) contained PANAT (8, 4 or 0
uM; 26.7, 13.3 or 0 pg) and either AcCoA or p-nitrophenyl
acetate (320 uM) in PBS (pH 7.4) containing 5% (v/v)
dimethylsulfoxide (DMSO). The reactions were started by
the addition of acetyl donor (5 pL) in DMSO or PBS. The
production of p-nitrophenol was followed spectrophoto-
metrically at 405 nm in a continuous assay with a Hitachi
U2001 spectrophotometer or a Tecan Sunrise 96-well
plate reader; the molar extinction coefficient of p-nitroph-
enol at this wavelength (g445) is 13400 M-1.cm-1, and
data were collected at 30 s intervals. The rate of formation
of CoA was determined spectrophotometrically (Tecan
Sunrise 96-well plate reader) by following the reaction of
CoA with the colorimetric agent 5,5'-dithio-bis(2-
nitrobenzoic acid) (DTNB, 5 mM) in stop buffer (25 pL,
100 mM Tris.HCl, 6.4 M guanidine.HCI], pH 7.3) in a
non-continuous assay as previously described [11,12]. All
assays were performed at 25°C, and rates are relative to
the non-enzymatic hydrolysis of AcCoA, expressed as the
mean + standard deviation of quadruplicate measure-
ments.

Determination of NAT-catalysed N-acetylation activity
Assays measuring the N-acetylation activity of PANAT
were performed with the acetyl donors p-nitrophenyl ace-
tate and AcCoA, and the acetyl acceptors 5-aminosalicylic
acid, 2-aminofluorene, hydralazine, p-aminobenzoic
acid, p-anisidine, isoniazid and aniline. Assay solutions
(100 pL) contained PANAT (3.4 - 20.7 nM, 11 - 69 ng),
acetyl donor (0.05 - 6.00 mM) and acetyl acceptor (0.05
- 3.00 mM) in 20 mM Tris.HCI buffer (pH 8.0) or PBS.
Reactions were started by the addition of acetyl donor and
the rates of production of p-nitrophenol or CoA were
determined as described above. All assays were performed
at 25°C, and controls were included in which no enzyme
or no substrate was added. All rates are relative to the non-
enzymatic hydrolysis of acetyl donor, and are expressed as
the mean + standard deviation of triplicate or quadrupli-
cate measurements.
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Additional material

Additional file 1

Flow diagram describing the normalised plot method. A flow diagram out-
lining how data from the normalised plot method are analysed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2091-8-3-S1.doc]

Additional file 2

Hanes plot for AcCoA as a substrate of PANAT with the acetyl acceptor p-
anisidine. This Hanes plot shows the determination of the apparent
Michaelis constant for acetyl coenzyme A with the PANAT enzyme in the
presence of the acceptor substrate p-anisidine.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2091-8-3-S2.doc]
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