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Background. Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic
organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which
play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically
distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains.
Methodology/Principal Findings. Using sub-organellar fractionation techniques, both with and without detergents,
combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles
contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and
physico-chemical properties. Conclusions/Significance. In addition to the multivesicular organization, we find that late
endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ
in composition and properties. Implications of these findings for late endosomal functions are discussed.
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INTRODUCTION
The general view of the cellular plasma membrane has evolved,

over the last 20 years, from that of a homogeneous arrangement

of lipids with embedded proteins towards that of a mosaic of

microdomains, each having a specific lipid and protein compo-

sition [1]. Some are morphologically distinguishable, such as

clathrin coated pits and caveolae [2], whereas others, such as lipid

rafts are apparently featureless regions of the plasma membrane

[3,4]. Assembly of lipid rafts involves not only lateral aggregation

of long and saturated acyl chains (glycosphingolipids, phospholi-

pids) in combination with cholesterol [1,4,5] but also protein-

protein interactions [6] and protein-lipid interactions. This specific

lipid environment would then attract certain proteins with high

lipid raft partitioning coefficient, such as doubly acylated src like

kinases or some palmitoylated transmembrane proteins [7,8,9,10].

In addition, modification of lipid raft composition can occur either

by changes in the environment or the physiological state of the cell

[11] or by the binding of ligands to receptors [12,13]. Importantly,

although a single name is used, rafts are likely to represent

a heterogeneous group of domains [1,14].

Lipid rafts have mostly been studied at the plasma membrane

due to their accessibility from the outside of the cell– for micro-

scopy and biophysical studies [6,15,16]– and to their role in

signaling [12,13,17] and endocytosis [18,19,20]. Characterization

of rafts has also been extensively based on their resistance to

detergent solubilization, although this widely used biochemical

readout has inherent limitations [21,22,23,24,25]. Nevertheless,

the analysis of detergent resistant membranes (DRMs) remains

a useful tool [23] in particular in comparative studies.

In addition to the plasma membrane, many intracellular

organelles appear to contain raft-like domains [26,27,28,29,30].

The endoplasmic reticulum was initially thought to be devoid of

cholesterol dependent DRMs because of its low cholesterol

content. Several recent studies have however reported their

existence [31,32,33]. Due to the increase in cholesterol and

sphingolipids along the secretory pathway, raft-like domains are

thought to become more abundant in the Golgi and more

specifically the trans-Golgi network [30,34,35]. Raft-like domains

are also present in the endocytic pathway, as highlighted by studies

on the trafficking of GPI-anchored proteins [18,29], flotillins [36],

toxins and viruses [37]. Occurrence of rafts in the endocytic

pathway is probably the combined result of de novo assembly and

engulfment from the plasma membrane. Endocytosis of raft-like

domains can indeed occur both via clathrin-dependent [38,39]

and independent-pathways [18,19,36,40].

Having previously documented the occurrence of DRMs in late

endosomes [29], we have characterized these raft-like domains in

more detail using morphological approaches and subcellular

fractionation followed by sub-organellar fractionation. We show

that limiting and internal membranes of this multivesicular

compartment [41,42] both contain raft-like membranes but that

these domains differ in their physico-chemical properties and protein

composition.

MATERIALS AND METHODS

Cell culture and reagents
Monolayer of baby hamster kidney (BHK), and C2C12 cells were

grown and maintained as described by [43,44,45]. Aerolysin was

purified and labeled as previously described [29,46]. Our rabbit anti-

flotllin-1 polyclonal antibody was previously described [29], anti-

NPC1 was from Dr. E. Ikonen (National Public Health Institute,

Helsinki, Finland) and anti-MLN64 from Dr J. F. Strauss (University

of Pennsylvania, School of Medicine, Philadelphia, USA).
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Subcellular fractionation
Late endosomal fraction was prepared as described [29,47]. Briefly,

BHK cells were harvested and homogenized, a post-nuclear

supernatant was prepared and adjusted to 40.6% sucrose, 3 mM

imidazole, pH 7.4, loaded at the bottom of an SW41 tube, and

overlaid sequentially with 35 and 25% sucrose solutions in 3 mM

imidazole, pH 7.4, and then homogenization buffer (HB ; 8.5%

sucrose, 3 mM imidazole, pH 7.4). The gradient was centrifuged for

90 min at 35 000 rpm. Early and late endosomal fractions were

collected at the 35/25% and 25%/HB interfaces respectively.

Isolation of DRMs from late endosomal fractions
DRMs were prepared from late endosomes as described [29].

Briefly late endosomes were diluted four times, sedimented by

centrifugation (TLS.55 Beckman rotor, 30 min, 55 000 r.p.m.)

and resuspended in 200 ml of lysis buffer (25 mM Tris-HCl pH

7.4, 150 mM NaCl, 5 mM EDTA) in the presence of Complete,

a cocktail of protease inhibitors (Roche) and 1% Triton X-100.

After 20 min of incubation at 4uC, the lysat was adjusted to 40%

OptiPrep (Nycodenz), overlaid with a 30% and 0% OptiPrep

cushions and centrifuged for 2 h centrifugation at 55 000 rpm

(4uC) using a TLS.55 rotor. Six fractions were collected from the

top and precipitated with 6% trichloroacetic acid in the presence

of sodium deoxycholate as a carrier.

Sub-fractionation of late endosomes
Late endosomes were described as above and submitted to 5

sequential freezing in liquid nitrogen and thawing at 37uC cycles

in order to mechanically disrupt the compartment. Suspension

containing broken late endosomes was then centrifuged for

40 minutes at 70000 rpm in a TLA 100.3 rotor. The pellet was

resuspended in 500 ml of 40% sucrose in 3 mM imidazole, pH 7.4

loaded at the bottom of a SW40 tube and overlaid with a linear 8–

40% sucrose gradient in the same buffer, and centrifuged at 4uC in

the SW40 rotor for 16 h at 35000 rpm. Fractions (1 ml each) were

collected from the top of the gradient.

Phospholipid and cholesterol analysis
Lipids were extracted form membrane fractions using CHCl3/

MeOH and then separated by two-dimensional thin layer

chromatography (TLC) for phospholipids analysis [48,49]. The

first dimension was run with chloroform, methanol, 32% ammonia

(65:35:5, v/v) and the second with chloroform/acetone/methanol/

acetic acid/water (50:20:10:12.5:5), v/v). Phospholipids were

revealed by burning the TLC plate at 160uC after immersion in

1.5 mM cupric acetate-8% H3PO4 solution. For cholesterol analysis,

lipids were extracted as above, analyzed on a one-dimensional TLC

in heptane/ethylether/acetic acid (18:6:2, v/v) and stained with

copper. Both cholesterol and phospholipids were quantified by

densitometry using the ScanAnalysis software.

Immunoblotting, aerolysin overlays and protein

quantification
Proteins were separated by SDS-PAGE using 12.5% acrylamide

gels unless stated otherwise and transferred onto a nitrocellulose

membrane. Western blots were revealed with SuperSignal

Chemiluminescence (Pierce). Aerolysin overlays were performed

as described [50]. Protein contents of cellular fractions were

determined using bicinchoninic acid (BCA, Pierce).

Electron microscopy
C2C12 cells were fixed in 8% paraformaldehyde and processed for

frozen sectioning. Sections were labeled with affinity purified

antibodies to flotillin-1 [28] followed by protein A-gold and then

with aerolysin-biotin and anti-biotin-gold, as described previously

[29].

RESULTS

Lipid composition of late endosomal DRMs
We have previously shown that detergent resistant membranes

(DRMs) can be isolated from late endosomes [29] purified from

baby hamster kidney (BHK) cells using a well-established

subcellular fractionation protocol [29,47]. These DRMs were

found to contain well-characterized raft marker proteins such as

GPI-anchored proteins and flotillin-1 (for references concerning

these markers see [8,20,51,52]) but were devoid of the trans-

membrane glycoprotein lamp1 and the lipid anchored GTPase

Rab7 [29]. It is important to note that since detergent

solubilization was performed on a purified organelle obtained in

a relatively low abundance, the detergent to protein ratio used was

five to ten times higher, for technical reasons, than that routinely

used by us and other on whole cell extracts. Thus the obtained

membranes are highly detergent resistant. To test whether late

endosomal DRMs are sensitive to cholesterol affecting drugs, an

important criterion for being a raft-like domain [4], we treated late

endosomes with either the cholesterol clustering agent saponin

[53,54] or the cholesterol binding compound filipin [38]. We did

not perform cholesterol extractions using ß-methyl-cyclodextrin,

a drug commonly used to disrupt rafts [55], since we have

Figure 1. Late endosomal DRMs are sensitive to cholesterol affecting reagents. Late endosomes were prepared from BHK cells using a sucrose step
gradient, treated or not with either filipin (1mg/ml for 1 h at 37uC) or saponin (0.4% for 1 h at 4uC) and then submitted to solubilization in 1% Triton X-
100 at 4uC. The lysat was submitted to an OptiPrep flotation gradient and 6 fractions of 400 ml were collected. Each fraction was analyzed by SDS-
PAGE followed by an aerolysin overlay to identify the GPI-anchored proteins of BKH cells: N-CAM-120, semaphorin-7 (Sema-7), CD14 and Thy-1.
doi:10.1371/journal.pone.0000391.g001
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previously shown that on BHK cells this treatment does not to lead

the release of GPI-anchored proteins from DRMs [54]. BHK cells

contain 4 major GPI-anchored proteins, N-CAM-140, sema-

phorin-7, CD14 and Thy-1, which can be detected by overlay

using the GPI-specific bacterial toxin aerolysin [29]. As shown in

Fig. 1, whereas GPI-anchored proteins are abundant in the DRM

fraction (fraction 2) of untreated late endosomes, treatment of the

purified organelle with either saponin or filipin prior to Triton X-

100 solubilization, led to the redistribution of these proteins to the

high density detergent soluble fractions on these Optiprep

gradients.

These observations indicate that late endosomal DRMs fulfill

the criterion of being cholesterol dependent. We next investigated

the distribution of cholesterol itself in these DRM fractions. As

shown in Fig. 2A, DRMs from late endosomes contain approxi-

mately 40% of the total cholesterol content of compartment

(Fractions 1 and 2) as determined by thin layer chromatography

(TLC), with,40% in soluble membranes (fractions 5 and 6, note

that only fraction 6 is fully soluble since fraction 5 already contains

the first interface of the step density gradient between 40 and 35%

Optiprep). The percentage of detergent resistant cholesterol was

somewhat higher in late endosomes than in whole cells (<30% in

Figure 2. Lipid analysis of late endosomal Triton X-100 resistant membranes. Late endosomes were prepared from BHK cells, submitted to Triton
X-100 solubilization and Optiprep gradient analysis as in Fig. 1. Lipids were extracted and analyzed by 1D (A) or 2D TLC (B–E). A: The cholesterol
content of each fraction was determined by 1D TLC followed by densitometric analysis. For comparison, total BHK cells were also submitted to Triton
solubilization, Optiprep flotation gradients and cholesterol analysis. Error bars represent the standard deviation (n = 3). B: After pooling fractions 1
and 2 from the top of the Optiprep gradient (corresponding to the DRMs), lipids were extracted and analyzed by 2D TLC. I: unidentified lipid, PI:
phosphatidylinositol, PS: phosphatidylserine, SM: sphingomyelins, PE: phosphatidylethanolamine, PC: phosphatidylcholine, LBPA: Lysobiphosphatidic
acid. C–D: The amount of each phospholipid in fractions 1+2 (C) and fraction 6 (D) were quantified by densitometry. Each phospholipid is expressed
as percentage of the total amount of phospholipids on the TLC plate. Error bars represent the standard deviation (n = 3). E: In order to evaluate the
distribution of SM, PS, PC, LBPA and I4 through out the Optiprep gradient, the content of these lipids in fractions 1+2 and in fraction 5+6 was
determined. For each lipid, the distribution between these two pools was plotted.
doi:10.1371/journal.pone.0000391.g002
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DRMs) (Fig. 2A). This observation is all the more significant

considering that the high detergent to protein ratio used to isolate

late endosomal DRMs when compared to the one used for the

isolation of DRMs from total cells.

We next analyzed the lipid composition of the DRMs fractions

(fractions 1+2, Fig. 2B and C) in comparison to that of the

detergent soluble fraction 6 (Fig. 2D). Lipids were extracted and

the relative proportions of phosphatidyl choline (PC), phosphatidyl

ethanolamine (PE), phosphatidyl inositol (PI), phosphatidyl serine

(PS), sphingomyelin species (SM), lysobisphosphatidic acid (LBPA)

were analyzed by 2 dimensional TLC (Fig. 2B). Each spot on the

2D TLC plate was quantified by densitometry and expressed as

a percentage of the total intensity on the plate. The three major

known phospholipids in DRMs were SM, PC and PE, but,

interestingly, 3 unknown lipids (termed I1 to I3) were detected

almost exclusively in the DRMs and one was significantly DRM-

enriched (I4). By contrast, the unusual late endosomal lipid LBPA

[48], although detected in DRMs, was significantly enriched in the

soluble fraction. When plotting relative amounts of several

phospholipid species in DRM fractions 1+2 vs. fractions 5+6,

SM and I4 were mainly present in the insoluble fractions as

opposed to LBPA and PS (Fig. 2E). Other lipids such as PC

(Fig. 2E) and PI (not shown) were more evenly distributed.

Taken together, these observations show that DRMs from late

endosomes share important properties with plasma membrane raft

domains: they are rich in cholesterol and sphingomyelin and are

sensitive to cholesterol affecting drugs, they contain raft marker

proteins such as GPI-anchored proteins and flotillin-1. In addition

they are enriched in 4 intriguing yet uncharacterized phospholipids.

Differential solubilization of DRM associated

proteins
Despite the rather harsh solubilization step (higher detergent to

protein ratio than for the preparation of DRMs from whole cells),

DRMs isolated from late endosomes contained 40% of the total

organellar cholesterol. We therefore wondered whether these

domains were particularly resistant to solubilization and therefore

performed the solubilization at 37uC. This treatment led to the

solubilization of GPI-anchored proteins, but interestingly not to

that of flotillin-1 (Fig. 3), suggestive of a differential distribution.

Whereas, GPI-anchored proteins and flotillin-1 could be part of

the same domain, one being on the periphery and the other in the

center, as proposed for prion protein and thy-1 [56,57], they could

also reside on spatially segregated domains. Since late endosomes

contain internal vesicles, one attractive possibility is that GPI-

anchored proteins and flotillin-1 differentially distribute to the

internal and limiting membranes of the organelle.

Distribution of raft-marker proteins to internal and

limiting membranes of late endosomes
We have previously shown that the internal membranes of late

endosomes, which contain high amounts of LBPA [48], can be

separated from the limiting membrane, after gentle mechanical

disruption (by freeze thawing) of the organelle, followed by

a continuous sucrose gradient [49]. Using this sub-organellar

fractionation protocol, we analyzed the distribution of flotillin-1

and GPI-anchored proteins as well as that of three other proteins

involved in cholesterol metabolism: ApoA1– an LDL apoprotein,

MLN64 – a late endosomal steroidogenic acute regulatory protein

(StAR) domain containing protein involved in sterol trafficking

Figure 3. Detection of two types of late endosomal DRMs. Late
endosomes from BHK cells were submitted to solubilization in 1%
Triton X-100 either at 4uC or at 37uC. The lysat was subsequently
analyzed on an Optiprep gradient and 6 fractions were collected from
the top. The total of each fraction was submitted to SDS-PAGE and
Western blotting to detect flotillin-1 or to an aerolysin overlay to reveal
GPI-anchored proteins.
doi:10.1371/journal.pone.0000391.g003

Figure 4. Distribution of lipid metabolism-related proteins and raft
markers in late endosomes. Late endosomes were purified from BHK
cells and submitted to sub-organellar fractionation after breaking the
organelle by cycles of freezing and thawing followed by sucrose density
gradients. 12 fractions were collected from the top and analyzed for the
presence of LBPA using an ELISA assay (A) or by SDS-PAGE followed by
Western blotting for the presence NPC1, MLN64, flotillin-1 and ApoE (B).
GPI-anchored proteins were detected by aerolysin overlay (B).
doi:10.1371/journal.pone.0000391.g004
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[58] and NPC1 – the Niemann Pick type C 1 protein involved in

lipid trafficking [59]. GPI-anchored proteins co-fractionated with

LBPA (Fig 4A), which was quantified by ELISA [49], and were

mainly found in fractions 4 and 5 (Fig. 4B), indicating that these

contained predominantly the intralumenal membranes of late

endosomes. As expected, ApoA1, originating from internalized

LDL particles, was also concentrated in fraction 4. In contrast,

flotillin-1, MLN64 and NPC1 were all found in fractions 6 to 9

which also contain the limiting membrane marker Lamp1 [49].

These findings are in good agreement with electron microscopy

studies in which MLN64 was found to be restricted to the limiting

membrane of late endosomes [60]. These data altogether indicate

that MLN64 and NPC1, which are both involved in sterol

trafficking, localize to the limiting membrane.

The segregation between GPI-anchored proteins and flotillin-1

was confirmed by electron microscopy using C2C12 cells (Fig. 5,

the flotillin-1 antibodies showed negligible labeling by immunoe-

lectron microscopy on BHK cells). For quantifications, frozen

sections were double labeled for GPI-anchored proteins (using

aerolysin) and flotillin-1. Well-preserved multivesicular late endo-

somes were examined at random and gold particles (n = 450) were

assigned to the limiting membrane or to internal membranes. For

85% of late endosomes, flotillin-1 labeling was higher on limiting

membranes with a ratio of 4.8 to 1. On 15% of late endosomes,

flotillin-1 was however more abundant on internal membranes

leading to an over all ratio of labeling on limiting vs. internal

membranes of 3.1 .to 1. The distribution of GPI-anchored

proteins was the reverse with a ratio of limiting to internal

membranes of 0.3 to 1 for 80% of late endosomes. Again 20% of

late endosomes behaved differently showing a higher GPI labeling

on the limiting membrane leading to an over all labeling ratio of

0.44 to 1 of limiting to internal membranes.

Altogether these observations indicate that detergent resistant

membrane domains, with different biochemical properties and

different protein composition, are found on the limiting and

internal membranes of late endosomes, the former being more

resistant and containing flotillin-1, and the latter containing GPI-

anchored proteins.

DISCUSSION
It has long been known that late endosomes have a complex

morphology with tubular and vesicular regions, which in turn can

be multivesicular or multilamellar [41,42]. These morphological

distinct areas, which by themselves define different membrane

domains, are likely to be further divided into macro or

microdomains. Consistently, Rab9 and Rab7, two late endosomal

Rab proteins, occupy distinct domains within late endosomal

membranes [61]. Here we have studied the existence of lipid raft-

like domains in late endosomes. We used multiple assays, the first

of which was the isolation of detergent resistant membranes from

the purified organelle. Although this method should be used with

care and has its drawbacks [4,21,62], it remains powerful in

combination with other methods and in comparative studies on

the same cell type, complementary approaches which we carried

out here.

Our data indicate that late endosomal DRMs are rich in

cholesterol (40% of the cholesterol present in the compartment)

and in sphingomyelin (70% of that in the organelle), sensitive to

Figure 5. Immunoelectron microscopic localization of flotillin-1 and GPI-anchored proteins on multivesicular endosomes. Cultured C2C12 cells
were fixed in paraformaldehyde and processed for frozen sectioning. Sections were labeled with antibodies to flotillin-1 and 15 nm protein A-gold
and then overlaid with aerolysin-biotin followed by 10 nm anti-biotin-gold. Aerolysin labeling for GPI-anchored proteins is mainly within the internal
membranes of the late endosomes. In contrast, flotillin-1 labeling (large arrowheads) is predominantly associated with the limiting membrane (small
arrowheads). Bars, 100 nm.
doi:10.1371/journal.pone.0000391.g005
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cholesterol affecting drugs and contain well-characterized raft-

marker proteins, altogether supporting that these DRMs contain

raft-like domains [4,23,55]. These DRMs also contained some

LBPA, a lipid that is confined to late endosomes and abundant in

intralumenal membranes. While spurious association of LBPA to

DRMs cannot be excluded at this point, it is possible that the

unusual nature of this non-hydrolysable lipid confers special

properties to these domains, including fusogenic properties [49].

Interestingly, late endosomal DRMs also contained 3 unidentified

lipids, I2, I3, and I4, which were not present in the detergent

soluble membranes and will be of interest for future studies.

Solubilization of late endosomes at different temperatures

revealed differential behavior hinting towards the existence of

different raft-like domains within this complex compartment. This

hypothesis was supported by sub-organellar fractionation and

electron microscopy. More specifically, we found that flotillin-1-

positive domains reside on the limiting membrane of late

endosomes and are very resistant to detergent solubilization

whereas GPI-domains reside on intraluminal vesicles and are more

detergent sensitive. Our finding that such raft-like membranes,

containing GPI-anchored proteins, are present within intralume-

nal membranes of these multivesicular endosomes fits nicely with

electron microscopy observations using a cholesterol-binding toxin

showing that cholesterol is abundant within these lumenal

membranes [63]. It has recently been shown that GPI-anchored

proteins can be endocytosed from the plasma membrane via

a flotillin-1 dependent pathway [36]. Understanding how GPI-

anchored proteins and flotillin-1 segregate from one another at

later stages of the endocytic pathway will be of great interest.

Importantly, both limiting and luminal membranes also contain

fluid membranes as illustrated by the detergent sensitivity of lamp1

and LBPA respectively. Thus both limiting and luminal mem-

branes are composed of diverse lipid domains.

It is now well-accepted that the sorting of down regulated

signaling receptors into intralumenal membranes mediates their

lysosomal targeting and degradation [64]. By contrast, some

proteins, like the major glycoprotein Lamp1 [49,65], the sterol

traffic regulator MLN64 [60] and flotillin-1 (this study) remain

preferentially on the limiting membrane. In addition, some

proteins and receptors can also be sorted into late endosomes,

but then recycle back to the limiting membrane, presumably via

back-fusion of intralumenal vesicles with the limiting membranes

[66] — a process hijacked by some toxins and viruses [67]. It is

tempting to speculate that protein and lipid sorting into and out of

endosomes may be controlled, at least in part, by differential

partitioning into different raft-like membrane domains. In

addition, such differences in the protein composition and

physico-chemical properties of these two pools of raft domains

likely affect their function, which could be altered in lipid storage

diseases which have been shown to lead to cholesterol accumu-

lation in late endosomes.
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