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All Roads Lead To Gli
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Medulloblastomas, embryonal neoplasms arising in the
cerebellum, are the most common malignant brain tu-
mors in children. They are composed of primitive cells
with the potential to differentiate along neuronal and glial
lines. Similar lesions, known as primitive neuroectoder-
mal tumors (PNETs), arise outside the posterior fossa,
albeit rarely. Several molecular pathways important in
cerebellar development have been implicated in medul-
loblastoma pathogenesis (reviewed in1–3). A better un-
derstanding of the cells and signaling events involved in
medulloblastoma tumorigenesis will be critical to the de-
velopment of targeted therapies for these aggressive
neoplasms, as evidenced by the inhibition of medullo-
blastoma growth by drugs blocking Hedgehog pathway
activity.4 In this issue of The American Journal of Pathol-
ogy, Tong and colleagues5 describe a new medulloblas-
toma model in which tumors arise from the cerebellar
external granule cell layer (EGL) of mice lacking p53 and
PARP. The up-regulation of the Hedgehog pathway ef-
fector Gli in all of their tumors suggests a more general
role for Hedgehog signaling than was previously appre-
ciated. In medulloblastomas, some cellular pathways
may be more equal than others.

Cerebellar Development and Medulloblastoma

The analysis of cerebellar development has shed consid-
erable light on medulloblastoma pathogenesis, as sev-
eral genetic pathways seem to be critical for the devel-
opment of both normal cerebellar structures and central
nervous system (CNS) embryonal tumors. Unlike cerebral
cortex, which derives from a single subventricular matrix,
the cerebellum develops from two germinal matrix re-
gions (reviewed in6). In cerebellum, subventricular matrix
cells give rise to neurons of the deep nuclei, Purkinje
cells, Golgi neurons, and glial cells. A second matrix
region, the EGL, is formed by neuroblasts from the rhom-
bic lip that migrate over the cerebellar surface. These
neuroblasts first proliferate in the outer EGL, then exit the

cell cycle and move to the inner EGL (Figure 1). Immature
granule neurons migrate inwards from the EGL along
Bergmann glia, transiting through the molecular layer and
past the Purkinje cells to take up residence in the internal
granule cell layer (IGL).

The Hedgehog pathway is the best-characterized reg-
ulator of EGL proliferation and cerebellar size. The ligand
Sonic Hedgehog is secreted by Purkinje cells, and pro-
motes proliferation of granule cell precursors in the EGL
by binding to its receptor PTCH.7–9 Several markers can
be used to track the exit of EGL neuroblasts from the cell
cycle and their progressive differentiation. Proliferating
neuroblasts in the outer EGL express Math-1, p53, and
NeuN.10–12 As cells move to the inner portion of the EGL,
they down-regulate proliferation markers and begin
expressing promoters of neuronal differentiation such as
the cell cycle-dependent kinase inhibitor p27Kip1 and the
bHLH transcription factors NeuroD and NeuroD2.13–16

Markers of neuronal differentiation such as class III �-tubu-
lin, MAP-2, synaptophysin, and nestin are also expressed in
post-mitotic inner EGL cells or in differentiated neurons of
the IGL.17–20

The histogenesis of medulloblastomas has been con-
troversial for many years. Some feel they arise primarily
from primitive neuroectodermal cells in the germinal ma-
trix surrounding the ventricle.21,22 Others have argued
that proliferating neuroblasts of the cerebellar EGL are
the most likely progenitors.23,24 It is also possible that
cells from both of these locations give rise to medullo-
blastomas.25 Whatever their origin, it is clear that many
human medulloblastomas express the cerebellar devel-
opmental markers discussed above.

Medulloblastoma Genetics

In man, three inherited syndromes associated with me-
dulloblastomas have been described: Turcot’s, Gorlin’s,
and Li Fraumeni (reviewed in3). Gorlin’s syndrome results
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from inherited mutations in the Hedgehog pathway gene
PTCH. Mutations in the Hedgehog pathway members
PTCH, PTCH 2, Smo, or Sufu have been identified in
approximately 25% of sporadic medulloblastomas as
well.26–30 In addition, mutation of the PTCH gene in mice
causes medulloblastoma-like tumors to form in 10 to 15%
of heterozygotes by 6 months of age.31,32 These murine
tumors derive from the EGL, providing further support for
the histogenetic importance of this neuroblast layer in
medulloblastomas.

Turcot’s syndrome is caused by germline mutations in
the gene APC, a member of the Wnt signaling pathway.
The pathway contains several proteins (APC, Axin,
GSK3) acting in concert to promote the proteosomal
degradation of �-catenin.33 Mutations in APC, �-catenin,
or Axin have been identified in approximately 25% of
sporadic medulloblastomas.34–37

Li Fraumeni syndrome is caused by inherited muta-
tions in the p53 tumor suppressor gene (reviewed in38).
Affected individuals develop a large spectrum of CNS
and extra-CNS tumors, including medulloblastomas.39

Interestingly, alterations in p53 are relatively rare in spo-
radic medulloblastomas, with an incidence of approxi-
mately 5%.40–43 MDM2 amplification can inhibit p53
function in many tumor types, but no such amplification
has been detected in medulloblastomas.40,44

Mouse Medulloblastoma Models

Despite the paucity of human medulloblastomas with p53
mutations, a growing number of investigators have re-
ported that lack of p53 function plays an important role in
the formation of medulloblastomas in rodent models. The
first experiments to suggest this were performed in Syrian
golden hamsters. Perinatal infection of EGL cells by JC
virus resulted in medulloblastomas, presumably via the
inactivation of p53 and Rb by virus-encoded T anti-
gen.45,46 Subsequent experiments using retrovirus-medi-
ated transfer of SV40 T antigen or transgenic expression
of JC virus T antigen in mice and rats confirmed the
medulloblastoma-promoting effects of this protein.47,48

Targeted deletion of both p53 and Rb in the cerebellum
also results in medulloblastoma.49

Loss of p53 can enhance the medulloblastoma-pro-
moting effects of PTCH mutation. Wetmore and col-
leagues50 have demonstrated that p53 inactivation mark-

edly increases the number of medulloblastomas forming
in PTCH heterozygous animals. Ionizing radiation also
seems to strongly promote medulloblastoma develop-
ment in PTCH heterozygotes when applied to newborn
mice in which the EGL is still proliferating.51 In all of these
models, tumors developed months after the initial genetic
insults, suggesting additional mutational events were re-
quired.

It is unclear to what extent the murine medulloblasto-
mas with loss of p53 or Rb function accurately model
human tumors. While these neoplasms appear similar to
human medulloblastomas, many have viewed them with
skepticism because human cases largely lack mutations
in these genes. The data presented above suggest that
inactivation of p53, Rb, and other genes controlling DNA
repair and apoptosis may promote medulloblastoma for-
mation in mice by fostering the accumulation of genetic
defects in other cellular pathways. If genetic instability
during a defined developmental window is responsible
for tumor formation, it is the additional mutational events
in the tumors that will best define the genetic similarity
between murine and human medulloblastomas. In their
paper, Tong and colleagues5 show that increased ge-
netic instability caused by abrogation of p53 and PARP
function results in murine medulloblastomas with activa-
tion of the Hedgehog pathway. This represents the first
examination of Hedghog function in murine medulloblas-
tomas without underlying PTCH mutations. The selection
for molecular events activating Hedgehog signaling sug-
gests the medulloblastomas arising in mice with genomic
instability may indeed accurately model human medullo-
blastomas.

Mice Lacking PARP and p53 Develop
Medulloblastomas

Poly(ADP-ribose) polymerase (PARP) binds DNA breaks
and facilitates their repair. In earlier work, Tong and col-
leagues52 showed that p53 and PARP interact to maintain
genome integrity. Others have demonstrated that loss of
PARP in neurons causes a resistance to cell death.53

Deletion of both PARP and p53 in transgenic mice results
in embryonal brain tumors not seen with p53 loss alone,
suggesting that cooperation of DNA end-processing and
cell cycle checkpoint molecules is required to suppress
malignant transformation of neuronal cells.52

The paper in this issue characterizes the embryonal
tumors arising in p53, PARP null mice more closely.5 CNS
tumors developed in approximately half of the animals
with a median age of onset of 16 weeks. Interestingly,
more than twice as many males developed tumors as
females, a ratio similar to that observed in humans. The
increased frequency and somewhat more aggressive bi-
ology of medulloblastomas in boys have never been ex-
plained, and this new mouse model may prove useful in
examining the phenomenon. All but one of the tumors
were centered in the cerebellum, with the final lesion
detected in the cerebral cortex. The tumors appeared
highly similar to human medulloblastomas, with sheets of

Figure 1. The developing cerebellum. EGL, external granule cell layer; ML,
molecular layer; PCL, Purkinje cell layer; IGL, internal granule cell layer.
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embryonal cells and “neuroblastic” rosettes. In eight an-
imals early lesions were observed in the EGL.

Immunohistochemical analysis supported the similarity
to human medulloblastoma. Tumors were positive for the
neuronal markers NeuN, MAP-2, and synaptophysin.
GFAP-positive tumor cells were also occasionally seen.
MATH-1, a neuron-specific basic helix-loop-helix tran-
scription factor required for the proliferation of granule
cells in the cerebellum, was expressed in the tumors. As
is the case in human medulloblastomas, numerous chro-
mosomal aberrations were detected. Most intriguingly,
the Hedgehog pathway appeared to be activated in all
tumors examined, with markedly increased expression of
the Hedgehog effector Gli, possibly resulting from PTCH
deficiency.

This work raises several questions. First, is PARP mu-
tated in human medulloblastomas? It is clear that many
genes involved in medulloblastoma pathogenesis remain
to be discovered, and PARP may be one of these. The
tumor aneuploidy caused by PARP deficiency in mice is
similar to that seen in human medulloblastomas, support-
ing a possible causal association. Alternatively, loss of
PARP could facilitate mutagenesis in mice by promoting
additional DNA damage and chromosomal aberrations,
but not be involved in human lesions. Loss of heterozy-
gosity and sequence analysis of the PARP gene in human
tumors will be required to further evaluate these issues.

A second question is whether the single tumor arising
in the cerebral cortex was generated through the same
genetic mechanism as the cerebellar medulloblastomas.
This cortical lesion seems similar to the supratentorial
PNET found in humans. As discussed above, no EGL
exists during cerebral cortical development, thus the tu-
mor must have developed from different precursors. Hu-
man supratentorial PNET are considerably rarer than me-
dulloblastoma, making them difficult to study. By
examining similar lesions in mice, we may be able to
better define the precursor cells and genetic pathways
involved in their formation.

Finally, it remains to be seen how PTCH expression is
lost in the tumors reported by Tong and colleagues. While
it was initially proposed that loss of only one PTCH allele
was sufficient for medulloblastoma formation in mice,
recent reports suggest that the second allele is also
inactivated by methylation or mutation.4,51,54,55 PTCH
could be inactivated by one of these methods in the p53,
PARP null tumors, or its expression might be down-reg-
ulated by other means. The loss of PTCH expression and
activation of Gli in all of the tumors examined is particu-
larly interesting in light of the recent finding that 100% of
human medulloblastomas tested respond to Hedghog
inhibitors in vitro, while only a quarter of the cases should
have mutations in the pathway.4 Taken together, these
data suggest that Hedgehog activity could be critical in
most, if not all, medulloblastomas. The analysis of addi-
tional cellular pathways in this new murine tumor model
may identify other genes commonly mutated on the road
to medulloblastoma formation.
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