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To investigate the molecular events that may under-
pin dysfunctional repair processes that characterize
idiopathic pulmonary fibrosis/usual interstitial pneu-
monia (IPF/UIP), we analyzed the expression pat-
terns of �-catenin on 20 IPF/UIP lung samples, to-
gether with two downstream target genes of Wnt
signaling, cyclin-D1, and matrilysin. In 18 of 20 cases
of IPF/UIP investigated on serial sections, nuclear
�-catenin immunoreactivity and abnormal levels of
cyclin-D1 and matrilysin were demonstrated in pro-
liferative bronchiolar lesions (basal-cell hyperplasia,
squamous metaplasia, bronchiolization, honeycomb-
ing). The nature of these lesions was precisely defined
using specific markers (�N-p63, surfactant-protein-A,
cytokeratin-5). Interestingly, nuclear �-catenin accu-
mulation was also demonstrated in fibroblast foci in
most (16 of 20) IPF/UIP samples, often associated
with bronchiolar lesions. Similar features were not
observed in normal lung and other fibrosing pulmo-
nary diseases (diffuse alveolar damage, organizing
pneumonia, nonspecific interstitial pneumonia, des-
quamative interstitial pneumonia). Sequence analysis
performed on DNA extracted from three samples of
IPF/UIP did not reveal abnormalities affecting the
�-catenin gene. On the basis of these findings new
models for IPF/UIP pathogenesis can be hypothe-
sized, centered on the aberrant activation of Wnt/�-
catenin signaling, with eventual triggering of divergent
epithelial regeneration at bronchiolo-alveolar junc-
tions and epithelial-mesenchymal-transitions, lead-
ing to severe and irreversible remodeling of the pul-
monary tissue. (Am J Pathol 2003, 162:1495–1502)

Idiopathic pulmonary fibrosis/usual interstitial pneumonia
(IPF/UIP) is the most common and severe form among
idiopathic interstitial pneumonias.1–4 Many questions re-
garding this disease still remain unsolved in terms of
etiology and natural history, and recent contrasting opin-
ions have raised a stirring discussion regarding its patho-
genesis.5–13 The inflammatory theory of IPF/UIP has been
challenged, and new models have been proposed based
on the hypothesis that a dysregulated communication
between mesenchymal and epithelial pulmonary compo-
nents after tissue injury is key to the irreversible process
of fibrosis and tissue remodeling.7,9,10 This change in
views appears particularly intriguing because it might
provide the rationale for new treatment approaches,
aimed at contrasting fibroblast proliferation and/or induc-
ing fibroblast apoptosis.7,14,15 Nevertheless, the central-
ity of fibroblasts/myofibroblasts in IPF/UIP still remains
controversial and unproven, and little is known about the
molecular mechanisms involved in the pathogenesis of
this disease. Critical arguments regard the epithelial tar-
get of early injury, as well as the molecular features char-
acterizing abnormal mesenchymal/epithelial cross-talking.
In this regard, we have recently observed that bronchiolar
epithelial cells and bronchiolo-alveolar junctions are a rel-
evant target of cell injury in IPF/UIP, and that abnormal
bronchiolar proliferations (including hyperplasia, metapla-
sia, bronchiolization, and honeycombing) may, in fact,
represent substantial features of this disease.16

Much evidence suggests that the study of the molec-
ular pathways regulating lung development and morpho-
genesis may provide important information regarding the
pathogenesis of pulmonary diseases.8,16 Early phases of
lung development are dependent on complex molecular
networks that include a series of stimulatory and inhibi-
tory pathways including Fgf, Egf, TGF�/Activin, Wnt,
Hedgehog, Hox, SOX, sprouty, and others.17–22 It is rea-
sonable to hypothesize that these molecular pathways
can in part be recapitulated during postnatal life, be-
cause the complex lung architecture can reform pre-
cisely after extensive damage, as observed in various
pulmonary diseases.
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In this study we focused on Wnt signaling and its
effector �-catenin for a number of reasons. First, this
relevant signaling pathway is involved in lung develop-
ment and organogenesis in mammals.19–22 Second, the
metalloproteinase matrylisin/MMP-7, which is a target of
�-catenin transactivation, has recently been revealed as
a key regulator of pulmonary fibrosis.23–25 Third, the Wnt
pathway has been implicated in the pathogenesis of
some human fibrosing diseases.26,27 Finally, direct evi-
dence has been recently provided for a role of �-catenin
signaling in the induction of epithelial-mesenchymal tran-
sition (EMT), an important process occurring during crit-
ical phases of embryonic development, tumor progres-
sion, and fibrotic tissue repair after injury.28–32

It is widely accepted that either activation of the Wnt
pathway or abnormalities affecting the �-catenin-transac-
tivating functions can be demonstrated in situ by specific
expression patterns of �-catenin accumulation. In partic-
ular, cytoplasmic/nuclear accumulation of �-catenin, as
shown by immunohistochemistry, represents a reliable
means to demonstrate posttranslational stabilization of
�-catenin.33,34 In this study we have investigated the
expression patterns of �-catenin in a series of IPF/UIP
samples, together with two gene products, cyclin-D1 and
matrilysin/MMP-7, whose expression is under �-catenin
control.23,24,35

Materials and Methods

Study Population

The study group consisted of 20 previously untreated
patients with clinical, radiographical (chest radiograph
and high resolution computed tomography (HRCT)),
physiological, and bronchoalveolar lavage findings con-
sistent with the diagnosis of IPF. Histological examination
of surgical lung biopsies revealed all of the major features
of UIP, according to the recently defined criteria.1–4 Five
samples of normal lung (fragments of unaffected tissue
from patients submitted to large excisions for lung carci-
noma), two samples of fetal lung (12 and 15 weeks of
gestation), 10 samples from patients with organizing pneu-
monia (OP/BOOP), 4 samples of nonspecific interstitial
pneumonia (NSIP), 2 samples of acute interstitial pneumo-
nia with diffuse alveolar damage (AIP/DAD), and 2 samples
of desquamative interstitial pneumonia (DIP), defined ac-
cording to the recent consensus criteria,4 were analyzed
as controls. All samples were fixed in buffered formalin
and paraffin-embedded following standard protocols.

Immunohistochemical Staining and Antibodies

All cases were immunostained with a pan-�-catenin
monoclonal antibody (clone 15B8; Sigma Chemical Co.,
St. Louis, MO). Heat-induced antigen retrieval was per-
formed using a microwave oven and 0.01 mol/L of citrate
buffer, pH 6.0, for 30 minutes. All samples were pro-
cessed using a sensitive avidin-streptavidin-peroxidase
technique (Biogenex, San Ramon, CA) in a automated
cell staining system (GenoMx i6000, BioGenex).

To better define the nature and differentiation level of
the epithelial and mesenchymal lesions, we used anti-
bodies recognizing low-molecular weight cytokeratin
8/18/19 (clone 5D3, Biogenex); cytokeratin-5 (CK5, clone
XM26; Novocastra, Newcastle, UK) expressed in bron-
chiolar basal cells; urine protein 1, a rabbit antibody
(DAKO, Glostrup, Denmark) recognizing CC10 antigen in
Clara cells; SP-A monoclonal antibody (clone PE-10,
DAKO) recognizing surfactant protein-A; 1A4 monoclonal
antibody (DAKO) recognizing �-smooth muscle actin (no
antigen retrieval); TN2 monoclonal antibody (DAKO) rec-
ognizing tenascin. In addition, a panel of antibodies was
selected to thoroughly investigate the molecular network
characterizing lesions expressing nuclear �-catenin:
mAb clone 4A4 (Santa Cruz Biotechnology, Santa Cruz,
CA), reacting broadly with all known variants of human
p63; p40 antibody (Oncogene Research Products, Bos-
ton, MA), a polyclonal rabbit antiserum specifically rec-
ognizing the truncated �N-p63 isoforms lacking the
transactivating domain;36 p53-specific monoclonal anti-
body (clone DO-1, DAKO); monoclonal antibody recog-
nizing p21WAF1 (clone SX118, DAKO). Details regarding
these molecules in normal lung and IPF/UIP samples have
been previously described.16,37 Finally, to better evaluate
the function of Wnt/�-catenin pathway activation in IPF/UIP
samples we immunohistochemically investigated on serial
sections the expression of cyclin-D1 (clone DCS-6; Pro-
gen Biot., Heidelberg, Germany) and matrylisin/MMP-7
(clone 141-7B2; Chemicon, Temecula, CA).

Evaluation of Immunostaining

Normal pulmonary tissue structures were used, when
present, as internal controls for immunostaining with
�-catenin, and only preparations in which normal bron-
chial/bronchiolar segments were present showing clear-
cut membrane-bound �-catenin expression (linear pat-
tern), were considered as suitable for interpretation.
Nuclear staining was defined as negative when void nu-
clei were evident, together with clear-cut membrane im-
munostaining, and as positive when nuclei were immu-
noreactive. The nuclear pattern was better evaluated on
lightly hematoxylin-counterstained preparations, in which
positive nuclei changed their color from blue to brown.

Epithelial lesions were defined as bronchiolar or bron-
chiolo-alveolar-junctional when the cell phenotype included
CK5 and �N-p63 expression.16 Only nuclear staining was
interpreted as positive for p63, �N-p63, p53, p21WAF1.

Molecular Analysis: �-Catenin Gene
Sequencing

Three representative samples of IPF/UIP were used for
molecular analysis. DNA was extracted from 10-�m par-
affin sections with the DNeasy Tissue kit (Qiagen, Chats-
worth, CA). For sequence analysis, Exon 3 of the �-cate-
nin gene was amplified by polymerase chain reaction
using primers synthesized with an Applied Biosystem
synthesizer (Foster City, CA). Primer sequences (ATTT-
GATGGAGTTGGACATGGC and CCAGCTACTTGTTCT-
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TGAG TGAAGG) were as previously described.38 Poly-
merase chain reaction was performed in a 10-�l standard
reaction mixture containing 50 ng of DNA, 5 pmol of each
primer, 2 �mol/L dNTPs, 1.5 mmol/L MgCl2, 0.5 U of
TaqDNA polymerase (Promega, Madison, WI). For se-
quence analysis a 50-�l polymerase chain reaction was
gel-purified with the QIAEX gel extraction kit (Qiagen).
Sequence reactions were performed using the Applied
Biosystem Dye Terminator Cycle-Sequencing kit (Perkin
Elmer, Foster City, CA) and analyzed on a Applied Bio-
system model 373 automated DNA sequencer (Perkin
Elmer). Four pilomatrixoma samples harboring �-catenin
mutations were included as positive controls.39

Results

�-Catenin Intracellular Expression Pattern in
Normal Adult and Fetal Lung

In the fetal lung �-catenin nuclear immunostaining was
demonstrated in budding alveolar structures as previ-
ously described (Figure 1a).21 In the normal adult lung,
�-catenin expression was strictly confined to cell mem-
branes in all endothelial and epithelial cells, as shown by
a clear-cut linear pattern of immunostaining (Figure 1b).
Nuclear accumulation was evident in a small proportion
of cuboidal alveolar cells, recognized as type II pneumo-
cytes by morphology and immunophenotype, character-
ized by expression of CK8/18/19 and SP-A, and lack of
CK5 and �N-p63 (not shown).

�-Catenin Intracellular Expression Pattern in
IPF/UIP Samples

In IPF/UIP patients the number of cells expressing nuclear
�-catenin was highly increased, especially in areas where
abnormal remodeling of lung architecture was evident.

Bronchiolar Lesions

A striking number of epithelial cells expressing �-cate-
nin nuclear accumulation were demonstrated in prolifer-
ative bronchiolar lesions in most (18 of 20) samples (Fig-
ure 1; c, d, and j). Nuclear �-catenin accumulation was
heterogeneously distributed in these abnormal struc-
tures, mainly occurring in clusters of hyperplastic basal
cells. The presence of nuclear �-catenin was particularly
evident in bronchioles exhibiting honeycomb modifica-
tions (Figure 1, g and l) and/or bronchiolization (a pro-
cess of migrating bronchiolar cells progressively coloniz-
ing alveolar spaces). Interestingly, at the same sites
nuclear overexpression of p53 and p21waf1 could be
demonstrated as previously described.16 The bronchio-
lar nature of all these lesions was confirmed on serial
sections by the use of antibodies recognizing �N-p63
and high-molecular weight cytokeratin CK5 (Figure 1, h
and i), and by the absence of both surfactant-A and
CC10 antigens as previously demonstrated.16

Alveolar Structures

Cells expressing nuclear �-catenin were found lining
damaged alveolar structures, recognized as cuboidal
type II pneumocytes by morphology and immunopheno-
type on serial sections (surfactant-A-positive and �N-
p63-negative). The number of positive cuboidal pneumo-
cytes progressively increased from normal to severely
affected alveoli (Figure 2, a and b). �-catenin nuclear
expression was observed in all enlarged and/or atypical
cuboidal cells.

Fibroblast Foci

Nuclear expression of �-catenin was observed in spin-
dle cells forming fibroblast foci present in 16 of 20 sam-
ples in which these lesions could be clearly identified and
immunohistochemically analyzed on serial sections (Fig-
ure 2, c and e). These foci, characterized as myofibro-
blastic by intense �-smooth muscle actin and tenascin
immunoreactivity on serial sections (Figure 2d), were fre-
quently intramural and located under abnormal bronchio-
lar segments, as forming strictly related lesions (Figure
2e). This pattern was different from that observed in
intra-alveolar inflammatory polyps (Masson’s bodies)
present in OP/BOOP (Figure 2f) and interstitial fibroblasts
of AIP/DAD (Figure 2g) samples used as control, in which
only a minority (less than 10%) of spindle cells expressed
nuclear �-catenin.

Expression of Cyclin-D1 and Matrilysin

A high number of cells expressing both cyclin-D1 and
matrilysin could be demonstrated in IPF/UIP samples by
immunohistochemical analysis on serial sections (Figure
1; e, f, k, and l). Matrilysin immunoreactivity was evident in
all types of proliferative bronchiolar lesions, with particular
intensity in hyperplastic and atypical basal cells (Figure 1, f
and l). This pattern was decidedly different from normal and
pathological control samples in which expression of matri-
lysin appeared as inconsistent (Figure 2i).

Both cyclin D1 and matrilysin were clearly located at
sites corresponding to nuclear overexpression of �-cate-
nin, although the distribution of the three molecules was
not identical on serial sections of proliferative epithelial
lesions. In fact, �-catenin nuclear and/or cytoplasmic
overexpression was evident in the vast majority of cells
(Figure 1, d and j), whereas matrilysin and cyclin-D1 were
only expressed in a proportion of cells (Figure 1; e, f, k,
and l). The reason for this finding is not clear, but could
be ascribed to undefined differentiation signals. In line
with this view is the observation that both matrilysin and
�N-p63 stop to be expressed in more superficially lo-
cated cells of bronchiolar lesions (Figure 1, h and l).

�-Catenin Intracellular Expression Pattern in
Other Interstitial Pneumonias

In all cases of OP/BOOP, AIP/DAD, NSIP, and DIP ana-
lyzed, bronchiolar changes were extremely rare and no
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Figure 1. a: Fetal lung (12 weeks): nuclear expression of �-catenin is evident in alveolar buds, but not in airway cells. b: Normal lung: discrete membrane
immunoreactivity of �-catenin in basal and ciliated cells in a bronchiole. c: IPF/UIP: aberrant nuclear accumulation of �-catenin in a proliferative bronchiolar
lesion. d: IPF/UIP: nuclear expression of �-catenin in basal cells of an abnormal bronchiole. e: IPF/UIP (serial section to d): cyclin-D1-expressing cells. f: IPF/UIP
(serial section to d): matrilysin/MMP-7 abnormal expression. g: IPF/UIP: H&E appearance of a small honeycombing bronchiolar lesion. h: IPF/UIP (serial section
to g): basal cell hyperplasia as evidenced by �N-p63 nuclear expression. i: IPF/UIP (serial section to g): basal cell hyperplasia as evidenced by CK5 expression.
j: IPF/UIP (serial section to g): abnormal intracellular expression of �-catenin in both basal and luminal epithelial cells. k: IPF/UIP (serial section to g): increased
expression of cyclin-D1. l: IPF/UIP (serial section to g): aberrant expression of matrilysin/MMP-7 in basal cells.

1498 Chilosi et al
AJP May 2003, Vol. 162, No. 5



abnormal expression of �-catenin could be demon-
strated by immunohistochemical analysis (Figure 2h). Ac-
cordingly, matrilysin overexpression was not observed in
bronchiolar epithelium (Figure 2i). On the other hand, the
proportion of alveolar pneumocytes expressing nuclear
�-catenin was prominent in samples obtained from pa-
tients with pulmonary diseases in which extensive alveo-

lar damage and repair take place, such as AIP/DAD,
OP/BOOP, and NSIP (Figure 2j).

Sequence Analysis of �-Catenin Gene

Evidence of mutations could not be found in the three
samples of IPF/UIP after sequencing of the amplified region.

Figure 2. a: IPF/UIP: nuclear accumulation of �-catenin in cuboidal type II pneumocytes (arrow) in scarcely affected alveolar structures. b: IPF/UIP: nuclear
accumulation of �-catenin in cuboidal type II pneumocytes (arrow) in severely affected alveolar structures. c: IPF/UIP: nuclear accumulation of �-catenin in
spindled fibroblasts in subepithelial fibroblast foci. d: IPF/UIP (serial section to c): strong tenascin expression in spindled fibroblasts in subepithelial fibroblast
foci. e: IPF/UIP: nuclear accumulation of �-catenin in spindled cells of subepithelial fibroblast foci. Note nuclear expression of �-catenin also in bronchiolar basal
cells (arrow). f: OP/BOOP: nuclear �-catenin expression is not observed in spindled cells of an intraluminal Masson’s body and in macrophages (Mc). Note
intense nuclear immunostaining in hyperplastic type II pneumocytes (arrow). g: DAD: nuclear �-catenin expression is evident in alveolar pneumocytes.
Interstitial fibroblasts (arrow) and macrophages (Mc) lack evident immunoreactivity. h: NSIP: membrane �-catenin expression in bronchiolar cells. i: NSIP: scarce
expression of matrilysin/MMP-7 in bronchiolar cells. j: NSIP: nuclear �-catenin expression in many alveolar pneumocytes.
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All four pilomatricoma samples analyzed as known positive
controls in the same experiments carried missense muta-
tions in the third exon of the �-catenin gene.

Discussion

In this work, we provide evidence of a previously unrec-
ognized involvement of the Wnt/�-catenin signaling path-
way in IPF/UIP, as evidenced by extensive nuclear accu-
mulation of �-catenin at different involved sites. We used
the immunohistochemical approach to reveal subcellular
localization of �-catenin, from the membrane location to-
ward the nucleus. This morphological approach is able to
detect intracellular redistribution and nuclear accumula-
tion of �-catenin with high sensitivity, and has been widely
used to demonstrate the activation status of the Wnt path-
way in human development and pathology.21,33,34,40–42

To further support the functional significance of �-catenin
nuclear immunoreactivity we investigated in situ the ex-
pression of two target genes of the Wnt/�-catenin path-
way, cyclin-D1 and matrilysin, demonstrating significant
overexpression of both molecules at the same involved
sites overexpressing nuclear �-catenin.

Finally, we searched for mutations affecting the �-cate-
nin gene, showing that �-catenin gene abnormalities are
probably not implicated in the observed activation of the
Wnt pathway, although our technique might miss muta-
tions occurring in a small percentage of cells. Further
studies are warranted to investigate in IPF/UIP samples
other genetic and/or expression abnormalities affecting
the complex array of molecules involved in the Wnt/�-
catenin cascade, which include APC, Axin, and GSK3�,
as well as Wnt ligands and frizzled receptors.43 In fact, on
the basis of our data it is not possible to define whether
Wnt/�-catenin activation is causative or secondary to the
disease. Nevertheless, the absence of similar features in
all other interstitial lung diseases investigated in this
study strongly suggests the pathogenic relevance of Wnt/
�-catenin aberrant activation in IPF/UIP.

In this study nuclear �-catenin accumulation could be
demonstrated at three different involved sites in IPF/UIP
samples: 1) bronchiolar proliferative lesions, 2) damaged
alveolar structures, and 3) fibroblast foci. Bronchiolar
proliferative lesions, including basal-cell hyperplasia,
squamous metaplasia, honeycombing, and bronchioliza-
tion, are common in IPF/UIP, and represent well-recog-
nized peculiar features of this disease.1–4,16 According to
our study, the aberrant activation of the Wnt pathway was
particularly evident and extended in these lesions, involv-
ing in most cases the basal cell compartment. This ob-
servation is intriguing, because basal cells are consid-
ered the renewal component of bronchial and bronchiolar
structures. In addition, these findings are unique, be-
cause bronchioles in normal lung samples and in various
interstitial diseases other than IPF/UIP herein investigated
with the same methods showed only membranous
�-catenin immunoreactivity. On the other hand, �-catenin
nuclear expression observed in cuboidal hyperplastic
pneumocytes can be considered as part of a physiolog-
ical response to alveolar damage, because type II pneu-

mocytes exhibit this pattern in a variety of conditions in
which alveolar proliferation/regeneration takes place, in-
cluding fetal development,21 and a variety of pulmonary
diseases such as AIP/DAD and OP/BOOP, as shown in
this study.

Nuclear �-catenin localization was also observed in
spindle cells forming intramural fibroblast foci (fibropro-
liferative plaques) occurring in IPF/UIP, at variance with
intra-alveolar Masson’s bodies in cases of organizing
pneumonia and interstitial myofibroblasts in AIP/DAD.
This finding is relevant because abnormal activation of
the Wnt pathway could in fact provide autocrine survival
signals necessary to induce the peculiar resistance to
apoptosis characterizing intramural fibroblast foci of IPF/
UIP.7,44–46 In this regard, it is worth noting that nuclear
accumulation of �-catenin because of gene mutations is
a central feature in the pathogenesis of aggressive fibro-
matosis (desmoid tumor), a class of mesenchymal le-
sions that share with fibroblastic foci of IPF/UIP some
morphological and phenotypic features, including aber-
rant activation of the Wnt pathway, as shown in this
study.47,48 Further support to our hypothesis has been
recently provided by an experimental study in which
�-catenin stabilization is able to dysregulate mesenchy-
mal cell proliferation, motility, and invasiveness causing
proliferative fibroblastic lesions in transgenic mice.49

As described above, the distribution of �-catenin in a
pattern of abnormal nuclear accumulation involves adja-
cent compartments, focused on bronchiolo-alveolar junc-
tions. This peculiar zonal distribution could explain, in our
view, some typical histological features of UIP such as
the temporal and spatial heterogeneity, and honeycomb
architectural derangement.1 In our view, these data are
consistent with a pathogenic model in which the varie-
gated appearance, from early lesions to extensive fibro-
sis and remodeling characterizing IPF/UIP lesions, is pro-
duced by the progressive interference on physiological
tissue repair mechanisms because of abnormal �-cate-
nin activation, starting from foci of ongoing injury and
repair processes, as following a gradient of Wnt signal
concentration. Deregulated expression of Wnt target
genes could exert divergent effects on different airway
components (namely bronchiolar and alveolar), eventu-
ally leading to alveolar loss on one hand, and bronchiolar
proliferation on the other. Accordingly, in different sys-
tems and cell types, the activation of the Wnt pathway is
able to either trigger or inhibit survival and death by
modulating the availability of cyclin-D1 and c-myc, two
proteins that play roles in both cellular proliferation and
apoptosis.50,51 In this model, alveolar cells could be par-
ticularly vulnerable to deranged Wnt signaling, because
diverse differentiation and death inducing signals, includ-
ing p53, p21waf1, and transactivating isoforms of p63 are
simultaneously expressed in repairing alveoli after in-
jury.16,52–55 On the other hand, bronchiolar basal cells
could be protected from apoptosis by the constitutive
expression of truncated dominant-negative �N-p63 iso-
forms exerting potent anti-apoptotic signals.16,56

The pathogenic role of Wnt pathway activation in IPF/
UIP is further supported by the in situ demonstration of
abnormal expression of the metalloproteinase matrilysin
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(MMP-7), another important downstream target gene of
�-catenin/LEF-1 signaling. An abnormal increase of ma-
trilysin expression in IPF/UIP has also been demonstrated
in a recent microarray gene expression analysis.25 Fur-
ther support is also provided by experimental studies,
because matrilysin knockout mice are protected from
bleomycin-induced pulmonary fibrosis.25 The role of ma-
trilysin in the development of bronchiolar proliferative
lesions and lung remodeling can be ascribed to the
peculiar multifunctional roles of this metalloproteinase,
including the induction of epithelial cell migration, apo-
ptosis, and metaplastic conversion.57,58

A final relevant topic to be discussed in this context is
the possible involvement of EMTs in the pathogenesis of
IPF/UIP. These intriguing phenomena, known to occur in
embryogenesis and carcinoma progression, allow cells
to dissociate from the epithelial tissue from which they
originate and to migrate freely.29 In addition, definitive
experimental evidence has been provided that fibro-
blasts can directly derive from epithelial cells in tissue
fibrosis by epithelial to mesenchymal transition.30,32 In-
terestingly, �-catenin-signaling plays a relevant role in
inducing a mesenchymal phenotype in epithelial cells, as
shown in experimental EMT,28,31 thus it is possible to
argue that the aberrant nuclearization of �-catenin ob-
served in bronchiolar lesions of IPF/UIP can be involved
in a EMT-related process increasing basal-cell motility
(eg, by altering the expression of metalloproteinases),
thus promoting bronchiolization and tissue remodeling.
Another interesting possibility in this model, is that part of
the abnormal fibroblasts in IPF/UIP could directly derive
from epithelial basal cell precursors at sites of ongoing
injury/repair processes, forming the peculiar lesions in
which fibroblast-foci and abnormal bronchiolar segments
are strictly associated (as shown in Figure 2, c and e).
Interestingly, EMT can be experimentally induced by cy-
tokines (transforming growth factor-�1, fibroblast-growth-
factor-2, insulin-like growth-factor, interleukin-8), whose
expression can be tuned by complex regulatory loops
with �-catenin signaling and which are potentially in-
volved in the pathogenesis of pulmonary fibrosis.28,59–64

In conclusion, although the precise molecular mecha-
nisms leading to abnormal activation of the Wnt pathway
observed in IPF/UIP could not be defined in this study,
our findings can contribute to decipher the molecular
mechanisms involved in the pathogenesis of this disease,
and might also help in the search for new pharmacolog-
ical strategies to counteract irreversible lung remodeling.
In fact, intense investigation is currently focused on mol-
ecules exerting modulatory and inhibitory actions on the
Wnt pathway.65–67 These molecules could represent po-
tential candidates for new treatment strategies for can-
cers in which the Wnt pathway is deranged, as well as in
IPF/UIP, a deadly disease in which conventional treat-
ments have proved to be unsatisfactory.
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