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Abstract
Even the simplest environmental stimuli elicit responses in large populations of neurons in early
sensory cortical areas. How these distributed responses are read out by subsequent processing stages
to mediate behavior remains unknown. Here we used voltage-sensitive dye imaging to measure
directly population responses in the primary visual cortex (V1) of monkeys performing a demanding
visual detection task. We then evaluated the ability of different decoding rules to detect the target
from the measured neural responses. We found that small visual targets elicit widespread responses
in V1, and that response variability at distant sites is highly correlated. These correlations render
most previously proposed decoding rules inefficient relative to one that uses spatially antagonistic
center-surround summation. This optimal decoder consistently outperformed the monkey in the
detection task, demonstrating the sensitivity of our techniques. Overall, our results suggest an
unexpected role for inhibitory mechanisms in efficient decoding of neural population responses.

A fundamental feature of mammalian cerebral cortex is its use of orderly topographic maps to
represent sensory and motor information1–3. Because cortical neurons tend to respond to a
broad range of stimuli4 or movements5, and because there are generally multiple neurons tuned
to the same range of parameters within one cortical column6,7, even the simplest sensory
stimulus or motor response elicits activity that is distributed over a substantial population of
neurons5,8,9. Electrophysiological studies in behaving primates suggest that perceptual and
motor responses are indeed mediated by populations of neurons rather than by single
neurons10–13. These observations raise several fundamental questions: how are stimuli and
movements encoded by neural population responses, what are the optimal strategies for
decoding (pooling) the population responses, and how efficient are different non-optimal
pooling strategies?

Several models of neural pooling in the brain have been proposed11,14–19. These include
monitoring only the most sensitive neurons (at the extreme, a single neuron)16, simple
averaging over the active neural population11 and weighted summation, where the contribution
of each neuron in the pool is proportional to its sensitivity17 or proportional to the parameter
value at the peak of its tuning function14,15,18,19.
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Importantly, evaluating these and other decoding rules has been held back because of limited
experimental techniques for reliably monitoring neural population responses. Optical imaging
with voltage-sensitive dyes (VSD) measures neural population responses at high spatial and
temporal resolutions20. Only recently, however, has this technique been applied successfully
to behaving animals21,22. In the current study, we use for the first time VSD imaging in
behaving monkeys to investigate possible decoding rules for population responses in V1.

RESULTS
Experimental design

Two monkeys were trained to detect a small oriented visual target, indicating target presence
by making a saccadic eye movement to the target location as soon as it was detected (Fig. 1a).
While the monkeys performed this task, VSD imaging was carried out through a cranial
window over V1 (Fig. 1b). Performance in the detection task is likely to depend on neural
signals provided by topographic maps in V1 that can be directly identified by optical
imaging23–25. Because V1 is retinotopically organized, information regarding the presence
or absence of the target is confined to several square millimeters of cortex within V1. Optical
imaging allows us to localize this cortical region precisely and visualize the pattern of
population activity within this entire region, in real-time, as behavior unfolds. Furthermore, in
primates, V1 provides the main source of visual information to other cortical areas, and thus,
optical imaging may allow us to visualize most of the information that is potentially available
to subsequent processing stages in our task. However, because VSD signals are likely to be
dominated by subthres-hold synaptic activity, it is possible that some of this information is not
transmitted from V1.

To evaluate the efficiency of possible decoding mechanisms and to determine the optimal
Bayesian decoding strategy, we began by analyzing in detail the statistical properties of neural
population responses.

Statistical properties of V1 population responses
The major goal in this study was to determine how target-related neural population responses
in V1 could be pooled by subsequent processing stages in order to mediate visual detection.
The efficiency of a pooling method depends on three key properties of V1 population responses:
(i) the amplitude and spatial spread of the response, which determines the size of the neural
population that could contribute to detection; (ii) the variability of the population response,
which influences the quality of the signals provided by neurons at each imaging site (a single
pixel or a binned group of pixels); and (iii) the magnitude and extent of spatial correlations in
response variability, which can have a large impact on the gain that can be attained by
pooling14,26–29. Our first step was to examine these three key properties of V1 responses.

High-quality VSD responses were recorded in eight experiments (recording sessions) from V1
in two monkeys. We use the results from one VSD experiment as an illustrative example (Fig.
2). The VSD response in a small V1 region that corresponds to the target location increased
rapidly shortly after stimulus onset (Fig. 2a). Response amplitude decreased and response
latency increased as target contrast was reduced (Fig. 2b, thick lines). Target-evoked responses
could easily be seen in individual trials (Fig. 2b, thin green lines), indicating that population
responses in this small V1 region were highly reliable.

Spread of V1 population response
To quantify the amplitude of the VSD response in single trials, the average response was
computed for each site in the imaged area over a short interval following the onset of the neural
response and prior to the behavioral response (see Methods). The neural response to the small
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target increased with contrast and extended over an area of several square millimeters (Fig. 2c,
left column), indicating that a large population of V1 neurons carries target-related signals that
could be used by the monkey to detect the target. Consistent with previous studies
demonstrating anisotropy in the map of visual space in V1, the response to the target was
anisotropic, with the long axis of the response oriented parallel to the V1/V2 border along the
lunate sulcus8,30. Average response across all target contrasts (Fig. 2d) was well fitted by a
two-dimensional (2D) Gaussian with a standard deviation along the major axis (σ maj) of 1.97
mm, and along the minor axis (σmin) of 1.34 mm (Fig. 2e). Although response amplitude
depended strongly on target contrast, the spatial profile of the response was not significantly
affected by contrast (Supplementary Fig. 1 online).

The extent of spatial spread varied somewhat across experiments (σ maj = 2.20 ± 0.07 mm,
σ min = 1.54 ± 0.13 mm, n = 8; values are given as mean ± s.e.m.). Because VSD responses
are thought to be dominated by subthreshold activity20, the spread of spiking activity in V1
may be more limited. Control analysis demonstrated that the large spread was not due to
variability in eye position (Supplementary Fig. 2 online). Thus, our results show that a large
population of V1 neurons, encompassing several square millimeters of cortex, carries
information regarding the presence or absence of the target in our task.

Reliability of V1 population responses
The reliability of neural population responses depends on their variability across trials. A
common measure of reliability is the signal-to-noise ratio d′ , which is based on signal detection
theory31:

d ′ = | ES − EN | /
(σS)

2 + (σN)2

2 ,

where ES represents the mean amplitude of the response in target-present trials (signal trials),
EN represents the mean amplitude of the response in target-absent trials (noise trials) and σS
and σN represent the corresponding standard deviations.

We find that σS does not increase with stimulus contrast and is not significantly different from
σN (Supplementary Fig. 3 online). This is surprising because in single cortical neurons, the
variance of the spike count during a short interval is proportional to the mean17,32. However,
as described in the next subsection, the relationship of the mean and the variance of the response
can be significantly weaker in large pools of weakly correlated neurons (such as the ones
contributing to each site in our VSD experiments). Response variance was nearly constant
across space within our 8 × 8 mm region of interest (ROI, red square in Fig. 2c).

As with response amplitude, positive values of d′ were widespread and the values increased
significantly with target contrast (Fig. 2c, right column). Note that even for contrast as low as
3%, reliable responses (d′ > 1) could still be measured.

Spatial correlations in V1 population responses
To characterize the spatial correlations in V1 population responses, we computed the average
Pearson correlation (across trials) between the VSD responses at pairs of sites, as a function
of their separation (Fig. 2f). The average correlations between neighboring sites in the imaged
area were high, and fell off gradually with distance. The correlation structure was not
significantly different between target-present trials (thin black curve) and target-absent trials
(thin gray curve) (also, see Supplementary Fig. 3), suggesting that correlated variability in
population responses is independent of the stimulus. These spatial correlations are well
described by Gaussian noise (Supplementary Fig. 3) that is the sum of three components (Fig.
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2f, thick black curve): a spatially independent noise (white noise), a correlated noise, where
the correlations fall off exponentially over space, and a spatially uniform noise that varies only
across trials (random DC).

The observed correlation values seem, at first, surprisingly high and widespread given the low
correlations in spiking activity typically observed between pairs of cortical neurons27,33–35.
However, it is important to note that such high correlations at the level of neural populations
are expected even if the underlying correlations between individual neurons are very weak. In
large pools of neurons, the independent neural noise within the pool averages out, leaving the
weak correlated noise unaffected; this leads to much higher correlations between the pooled
responses. For example, assuming approximately 200,000 neurons per mm2 of V1 cortex and
a uniform pairwise correlation of 0.001 between neurons, the expected correlation between
two neighboring 0.25 × 0.25 mm pixels is 0.926 (Supplementary Fig. 4 online; see also
Supplementary Methods online). This simple computational analysis demonstrates that
pairwise correlations that are undetectable at the level of single neurons can create dramatic
correlations at the level of neural pools. Therefore, single-unit electrophysiology may be an
inadequate tool for studying the correlations that are relevant at the level of neural populations.

Our results are also consistent with the long-range correlations observed between
electrophysiological responses and VSD responses in the visual cortex of anesthetized
cats36. Control measurements using an ‘‘artificial cortex’’37 verified that the imaging system
does not contribute significantly to the spatial correlations reported here (Supplementary Fig.
5 online). The effect of pooling may also explain the weak relationship between mean and
variance in the VSD responses: in large pools, the variance is dominated by the weak correlated
noise, which may be relatively stimulus-independent.

Widespread correlations were observed in all of our experiments (mean τ = 2.07 ± 0.1 mm, n
= 8; where τ is the space constant of the exponential noise component). As will be described
below, such correlations impose significant constraints on the way information from pools of
neurons should be combined.

To summarize, we found that V1 population responses, as measured by VSD imaging, can be
described as the sum of (i) a spatially extended stimulus-evoked response that varies in
amplitude (but not shape) with stimulus contrast and (ii) a stimulus-independent Gaussian noise
with widespread spatial correlations.

Candidate spatial pooling rules
The results presented in the previous section demonstrate that target-related neural responses
are widespread in V1. Neural responses at some, or all, of these V1 sites could contribute to
the monkey’s behavior. How might these responses be combined over space to detect the
target? How do different candidate pooling rules compare in terms of the detection sensitivity
they support? How should V1 signals be pooled to maximize detection accuracy?

To address these questions, we explored different candidate decoding rules that combine
information from multiple sites in V1 (the important issue of how to dynamically pool
information over time will be addressed elsewhere). The rules that we consider here (see Table
1) are based on linear summation, in which the VSD responses from each site in V1 are summed
to form a pooled response,

xpooled = ∑
i=1

n
wixi (1)
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where wi is the weight given to response xi from site i. This pooled response is the ‘decision
variable’ used to determine if the target is present or absent on a given trial (discussed below).
The rules differ in the weights that they assign to each site. Pooling rules can be divided into
two classes. In the first, detection is based on signals provided only by a single V1 site. In rule
1 the selected site is the one with the Maximal Average Amplitude; in rule 2 the selected site
is the one with the Maximal d′ ; in rule 3 the selected site is the one with the Maximal Amplitude
(in this case, the site may vary from trial to trial).

In the second class of rules, detection is based on the weighted average of VSD responses from
all sites within a given pooling area (i.e., an area containing the whole active population). In
rule 4 equal weights are given to all sites (Mean Amplitude). In rule 5 the weights are
proportional to the average amplitude (Weighted Average Amplitude). In rule 6 the weights
are proportional to d′ (Weighted d′ ). Finally, under certain assumptions it is possible to derive
an Optimal pooling rule (rule 7) for combining information from multiple sites26,38. The
derivation of this Optimal pooling rule is described in the next section.

Optimal spatial pooling
The first six pooling rules in Table 1 do not take into account possible spatial correlations in
population responses. Our results, however, indicate that at the level of large populations of
neurons, spatial correlations are strong and widespread (Fig. 2f). What is the optimal way to
pool correlated neural responses?

The optimal rule for combining information from multiple sites can be derived if the response
amplitude in each site is a Gaussian-distributed random variable that is independent across
trials (but not necessarily independent across space and time within a trial), and if the
covariance of the responses is independent of the stimulus. Under these assumptions, which
apply to the measured responses (Supplementary Fig. 3), a linear summation rule (equation
(1)) is optimal, and no nonlinear rule can significantly exceed its sensitivity38.

The optimal set of weights, w = {w1, …, wn}, is given by

w = Σ−1s (2)

where ∑−1 is the inverse of the response covariance matrix ∑ , and s is the mean difference in
response between the signal and noise trials (see Supplementary Methods). The expected
sensitivity of the decoder that uses the optimal weights is given by the Mahalanobis distance
between the mean of the noise and signal distributions38:

dpooled
′ = sTΣ−1s

1/2
(3)

where sT is the transpose of s.

To demonstrate the principles of optimal pooling in correlated noise and provide intuitions
about how correlated noisy responses should be combined, we first consider the simple case
of combining responses from two sites. We then proceed to the general case of pooling across
n sites, where n can be arbitrarily large.

Optimal pooling from two sites
Consider responses from a pair of sites with sensitivity {d′1, d′2} and correlation r. Using
equations (2) and (3) we derived the optimal weights and the combined sensitivity at the two
sites (see equations (4) and (5) in Supplementary Methods). We then computed the values of
d′pooled as a function of r, for different values of d′2, with d′1 set arbitrarily to 1.0 (Fig. 3a). As
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can be seen, there are two basic regimes and corresponding strategies for efficient pooling of
information, depending upon the values of d′2 and r. When d′2 is equal to d′1 (blue curve), the
best pooled performance occurs when the two sites are uncorrelated (d′ pooled = √2). On the
other hand, when d′2 is much lower than d′ 1 (e.g., d′2 = 0, yellow curve), the best pooled
performance occurs when the responses at the two sites are highly correlated (e.g., d′pooled >
2 for r = 0.9). In this case, d′pooled can be much higher than when the two d′ values are high
and uncorrelated. This demonstrates that under some conditions, correlations can significantly
improve neural sensitivity26,28,35. The reason for this improvement is simple. If the variability
in an uninformative site is highly correlated with the variability in an informative site, then
pooled sensitivity can be improved by estimating the common noise and removing it from the
informative site. This is accomplished by giving a negative weight to the uninformative d′2
site.

The key property that determines which form of pooling is more efficient is the relative rates
of falloff in d′ and r over space. Specifically, if the ratio of the d′ values at two sites falls below
the correlation between the two sites, then the activity from the sites should be combined using
a negative weight. To examine the interactions between d′ and r, we fitted descriptive functions
for d′ and r from the VSD imaging data in the example experiment (Fig. 3b). Because d′ falls
off more rapidly than r (note that r = 1 at a distance of 0), the highest sensitivity (improvement
of 7% relative to d′max) is obtained by combining the site with maximal d′ with a second site
approximately 3.2 mm away, using a negative w2 (see Supplementary Fig. 6 online).

Optimal pooling from multiple sites
The basic results for optimal pooling over two sites apply in the more general case where
responses are pooled from multiple sites. We obtained the optimal weights for the example
experiment (Fig. 3d) by using a decorrelating filter (whitening filter) (Fig. 3c; see
Supplementary Methods). This set of weights contains positive and negative values, just as
when optimally pooling VSD signals from two sites. The exact shape of the optimal weighting
function depends on the spatial pattern of the neural responses and on the correlated variability.
In all eight experiments examined here, the optimal weights contained a central positive region
and a larger negative surround. To the best of our knowledge, such antagonistic center-surround
pooling models have not been previously considered for decoding neural population responses
in the cortex.

Using equation (3) we can compute the expected d′pooled when responses are pooled from all
sites in an 8 × 8 mm ROI (e.g., Fig. 2c) using the optimal weights (e.g., Fig. 3d). While the
maximal improvement when pooling only two sites was ~7% relative to d′max, the improvement
when using the optimal weights and pooling over all sites in a ROI of 8 × 8 mm was much
larger (an average increase of 61 ± 17%, n = 8).

Neural and behavioral detection sensitivity
To evaluate the relative efficiency of different candidate pooling rules, we next developed a
method for measuring detection sensitivity from the VSD signals that also allows direct
comparison with the behavioral sensitivity of the monkey.

Consider first the sensitivity of the monkey. The proportion of trials in which the monkey
reported that the target was present increased monotonically as a function of target contrast
(Fig. 4b, black triangles). At 25% contrast, the monkey detected the target on every trial. As
the contrast was lowered, the probability of detection dropped monotonically. The monkey’s
performance was first fitted with a standard psychometric function39 (see Methods), and then
the overall accuracy (overall percent correct) and the contrast threshold (contrast at which
accuracy is 75%) were computed.
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Detection sensitivity of the optimal pooling rule
Next, consider the sensitivity of V1 population responses in the example experiment. For each
trial, the neural responses were pooled across space using the optimal set of weights (Fig. 3d).
Pooled responses in target-present trials (Fig. 4a, gray bars) and target-absent trials (Fig. 4a,
black bars) are plotted separately for each target contrast. There was no overlap between the
two distributions at high target contrasts. The overlap increased significantly as target contrast
was reduced.

To determine the approximate detection sensitivity implied by these distributions, we
computed how well an observer could detect the target from these pooled responses. The
observer uses a criterion to decide whether the target is present or absent on a given trial. This
criterion (Fig 4a, vertical line) is the one that minimizes the error rate for the combined
distributions (Fig. 4a bottom panel). Once this criterion is found, we can compute for each
target contrast the probability that the observer would report that the target was present; this
is simply the proportion of trials in which the pooled response at that target contrast exceeds
the criterion. To ensure that we did not overestimate the detection sensitivity, the analysis was
performed separately for each trial using a jackknife procedure40 (see Supplementary
Methods).

Next, we compared the performance of the Optimal rule (Fig. 4b, gray circles) with the
performance of the monkey (Fig. 4b, black triangles). The solid curves show the monkey’s
psychometric function (black) and the neuro-metric function obtained with the Optimal rule
(gray). The threshold of the neurometric function is significantly lower than the threshold of
the psychometric function. In other words, under conditions in which the monkey fails to detect
the target, neural population responses in V1 continue to provide reliable information regarding
the target. This result was consistent across all eight experiments (Fig. 5c). This finding is
important for two reasons. First, it demonstrates that VSD imaging in behaving monkeys is
highly sensitive. Second, it shows that V1 population responses are not used optimally by the
brain in this task.

Our next step was to compare the detection sensitivity of the different pooling rules in Table
1.

Detection sensitivity of all pooling rules
Detection sensitivity for all the pooling rules was obtained using the same procedure described
above. We computed the difference in overall percent correct between the first six pooling
rules in Table 1 and the Optimal rule, for the example experiment (Fig. 5). As expected, all
pooling rules performed significantly worse than the Optimal rule. Importantly, rules based on
averaging, such as Mean Amplitude or Weighted Average Amplitude, performed significantly
worse than the Maximal d′ rule, which uses a single, highly informative, 0.25 × 0.25 mm site.
The Maximal Amplitude rule also performed poorly. The same pattern of results holds across
all eight experiments (Fig. 5b). Finally, we note that the threshold of the Optimal rule was
consistently lower than the threshold of the monkey (Fig. 5c).

To examine the effect of the pooling area on the performance of the models, we computed the
average accuracy of the seven models across all experiments, for three pooling areas (Fig. 5d).
Because the pooling area was always centered on the peak of the average response, the
performance of the Maximal d′ and the Maximal Average Amplitude rules remained constant
as pooling area changed. As the pooling area was increased, the performance of most pooling
rules decreased. Thus, including more neurons in the pool caused a significant decrement in
the overall accuracy of most pooling models. The Optimal rule was the exception; it was the
only rule where performance improved as the pooling area increased.
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The non-optimal rules perform poorly when pooling over a large area due to the spatial
correlations (Fig. 2f). Because the pool contains both highly sensitive and weakly sensitive
neurons, averaging these together reduces the signal without reducing the correlated noise.

Importantly, rules that rely on a single-site, such as Maximal d′, performed poorly when
considering sites that are significantly smaller than 0.25 × 0.25 mm (Fig. 6). With smaller sites,
independent noise dominates the response, leading to decreased performance.

Finally, we determined how the parameters of the temporal intervals used in our analysis affect
the accuracy of the seven pooling rules (Fig. 7). The results of this analysis demonstrate that
the relative performance of the different pooling rules is insensitive to the exact values of these
temporal parameters.

DISCUSSION
In summary, our primary goal here was to characterize the statistical properties of population
responses in V1, as measured by VSD imaging, and to determine the neuro-computational
implications of those statistical properties for efficient decoding of population responses. We
found that V1 population responses can be exquisitely sensitive to the presence of the visual
target, and provide reliable information even at contrasts that are below psychophysical
detection threshold. Target-related signals are distributed over several mm2 in V1, even for
small targets, and thus responses from a large population of neurons are available to subsequent
decision and preoculomotor circuits. We observed strong and widespread spatial correlations
in V1 responses, which set limits on the improvement that can be attained by pooling across
the neural population. We found that the effect of these spatial correlations on subsequent
processing stages could be minimized by using a simple pattern of excitatory and inhibitory
connections.

The optimal antagonistic center-surround decoding rule that we report here for VSD signals
in V1 is similar to decorrelation mechanisms that have been discussed extensively in the
literature in the context of encoding41. These mechanisms, however, are conceptually quite
different. While the decorrelation operation in the context of encoding is done for the purpose
of redundancy reduction, the decorrelation at the decoding stage has to do with noise rejection.
To the best of our knowledge, decorrelation for noise rejection has not been considered as an
important decoding strategy at the level of neural populations.

It is important to note that, in general, it is difficult to draw strong conclusions about which
decoding strategy is actually used by the subject from comparisons of neural and behavioral
sensitivities. A decoding model could outperform the subject and still be used by the brain if
inefficiencies downstream of the recorded area lead to a drop in behavioral performance.
Similarly, a decoding model that performs worse than the subject could, in principle, still be
used in the brain since recorded signals inevitably contain only a subset of the available neural
information and may be contaminated by non-neural sources of noise. Therefore, our analysis
is not aimed at determining which pooling rule is most consistent with the monkeys’ behavior.

Our finding that optimal pooling of VSD signals consistently outperforms the monkey
demonstrates that VSD imaging is a sensitive measure of neural population responses and that
inefficiencies at, or downstream to, V1 limit behavioral performance in our detection task. This
finding would be less compelling if the monkeys were not performing as well as possible,
perhaps because easy high-contrast trials were mixed with difficult low-contrast trials. This
possibility is unlikely for three reasons. First, monkeys are heavily trained on this task and
their performance is stable. Second, the monkeys’ performance at low contrast was not
significantly improved when tested in control experiments in which only low-contrast targets
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were present. Finally, human performance on the same task, under identical conditions, did
not differ significantly from monkey performance.

Recent results from our laboratory (C.R. Palmer, S.Y. Cheng and E.S., Soc. Neurosci. Abstr.
31, 509.11, 2005) suggest that some single units in V1 can be as sensitive as the monkey in
the detection task. However, it is not clear whether subsequent processing stages can isolate
the signals from those specific neurons and use them for performing the task. A more global
pooling rule with excitatory and inhibitory connections could be more robust, efficient and
easier to implement with neural circuits.

Communication between brain areas is primarily mediated by spike activity, whereas VSD
responses emphasize subthreshold activity. It follows that some of the information in the VSD
responses may not be transmitted from V1 to subsequent processing stages. Nonetheless, we
note that the subthreshold responses are produced by spike activity in presynaptic neurons that
are predominantly located within V1 (ref. 42), and thus, the VSD signals are still likely to be
tightly linked to spike activity in V1.

The widespread correlations and the relatively stimulus-independent response covariance
observed here seem surprising at first, but in fact, are an expected consequence of pooling
weakly correlated single neuron responses (whether subthreshold or suprathreshold).
Furthermore, at each stage of processing, weak correlations may be an inevitable consequence
of the cortical architecture with its massive convergence and widespread lateral and feedback
connections. Given these considerations, it seems likely that decorrelation mechanisms (such
as the one we propose) are widespread throughout the central nervous system.

The finding that antagonistic center-surround pooling is optimal in the face of significant spatial
correlations may provide an additional and unexpected explanation for the pervasive center-
surround receptive field organization, and the lateral inhibitory interaction between nearby
populations of neurons in the cortex. More generally, our analysis shows that under conditions
where the correlation between populations of neurons is high, computing the difference in the
response between two highly correlated populations of neurons with different tuning properties
should dramatically improve sensitivity. This could help explain why populations of neurons
with opposite tuning properties are commonly found at adjacent locations in the cortex. For
example, in macaque MT, neurons with opposite direction preferences are frequently located
in adjacent columns43. This architecture could allow subsequent mechanisms to remove
correlated noise by pooling over a few nearby columns.

Although there are many ways in which the brain could deal with wide-spread spatial
correlations, one general and efficient method would be to decode the population responses in
two steps. First, apply a local whitening filter to the neural responses, and then apply a rule
such as Weighted d′ (which is optimal for signals with uncorrelated variability) to the whitened
signals. In this scheme, the whitening operation in the first step could be beneficial for multiple
tasks.

In conclusion, we report that (i) most previously proposed models for decoding population
responses are highly inefficient because of the strong and long-range spatial correlations, and
(ii) a simple, biologically plausible decorrelation operation that uses excitatory and inhibitory
mechanisms leads to optimal decoding in pattern detection tasks. These correlations have a
potential detrimental impact on neural information processing in any perceptual or motor task.
Thus, antagonistic pooling over populations of neurons with different tuning properties could
be a general and robust strategy that is employed by the brain for efficient decoding of
correlated neural population responses.
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METHODS
Behavioral task and visual stimulus

Monkeys were trained to detect a small oriented Gabor target (sine wave grating multiplied by
a Gaussian window) in a uniform gray background (Fig. 1a). Gabor targets have the advantage
of being localized both in space and in the Fourier domain. Such targets are well optimized for
activation of V1 neurons. Gabor target parameters were: σ = 0.25–0.33° , spatial frequency =
1.4–1.7 c.p.d., eccentricity = 2.7–4.0° ; orientation was typically horizontal. During each
recording session, the monkey performed several hundred detection trials. Each trial began
when the monkey fixated a small spot of light (0.1° × 0.1° ) on a video display. Following an
initial fixation, the fixation point dimmed. In 50% of the trials, no target was presented and the
monkey was required to maintain gaze within a small window (<2° full width) around the
dimmed fixation point for a total of 1,500 ms, in order to receive a liquid reward. In the
remaining trials, a target appeared 300 ms after the fixation point dimmed and remained on for
300 ms. The monkey was required to shift gaze to the location of the target within 600 ms from
target onset and maintain gaze at that location for an additional 300 ms in order to receive the
reward. Monkey reaction times (time of saccade initiation) were short for the highest contrast
(median reaction time across all experiments ≈150 ms) and significantly longer for the lower
contrasts (median reaction time > 300 ms), suggesting that a longer integration time is required
for detection of low contrast targets. Within a block of trials, the target contrast was varied
pseudorandomly between four to six levels, spanning the monkey’s detection threshold.

Behavioral results were fitted by a Weibull function39:

P(C) = 1 − (1 − FA) ⋅ e−(C/α)β

where FA is the false alarm rate, C is the target contrast, and α and β are the offset and slope
terms, respectively. The threshold was computed as the contrast at which accuracy is 75% (note
that the threshold takes into account the false alarm rate).

Visual stimuli were presented on a high-end 21’’ color display. The display subtended 20.5°
× 15.4° at a viewing distance of 108 cm, had a pixel resolution of 1024 × 768, 30-bit color
depth and a refresh rate of 100 Hz. Visual stimuli were generated using a high-end graphics
card on a dedicated PC, using custom-designed software. All stimuli were presented at a fixed
mean luminance of 30 cd/m2 on a gamma-corrected monitor. Behavioral measurements and
data acquisition were controlled by a PC running a software package for neurophysiological
recordings from alert animals (Reflective Computing). Eye movements were measured using
an infrared eye-tracking device (Dr. Bouis Inc.).

Optical imaging with VSD
The experimental techniques for optical imaging with VSD in behaving monkeys have been
described elsewhere21,22,44. All procedures have been approved by the University of Texas
Institutional Animal Care and Use Committee and conform to NIH standards. Briefly, we used
oxonol voltage-sensitive dyes45 to stain the cortical surface and an Imager 3001 system
(Optical Imaging) to image brain activity. VSD responses measure the sum of changes in
membrane voltage across all the elements within the superficial layers of the cortex20.

Imaging data were collected using resolution of 512 × 512 at 110 Hz. For most further analysis,
the VSD responses were further binned to a resolution of 64 × 64 pixels (sites), where each
site corresponds to 0.25 × 0.25 mm. Bin size had a significant effect on the pooling models
that rely on a single site (Fig. 6), but no significant effect on other pooling models (data not
shown).
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Our recording chambers were located on the dorsal portion of V1, with the anterior portion of
the chamber reaching close to the lunate sulcus and the border between V1 and V2. We used
intrinsic imaging and electrophysiology to determine the retinotopical organization in each
recorded region and the layout of orientation columns. The cortex in our cranial windows
represents stimuli that are ~2.5–5° away from the fovea in the lower quadrant of the
contralateral hemifield.

Analysis of imaging data
We completed 15 VSD experiments in two hemispheres of two macaque monkeys. From these
experiments, we selected for further analysis eight experiments in which the maximal d′ at 25%
contrast stimulus exceeded 3.0. Experiments with lower sensitivity were usually attributable
to poor staining or excessive noise.

Our analysis was divided into three steps: (i) we removed trials with aberrant VSD responses
(generally less than 5% of the trials); (ii) we normalized the responses in each site by the average
fluorescence in a 100 ms interval prior to stimulus onset; and (iii) we extracted from the VSD
responses at each site the average response amplitude over a given temporal interval. The
normalization in (ii) serves to minimize the effects of uneven illumination and staining, and to
eliminate the effect of slow drift across trials in the VSD response. VSD responses were
averaged during an interval that started 36 ms after stimulus onset and ended either 200 ms
after stimulus onset or 20 ms before saccade onset in trials where reaction time was shorter
than 220 ms (Fig. 7a). Our results are relatively insensitive to the exact values of these temporal
parameters (Fig. 7b–e).

To remove trials with aberrant VSD responses, we evaluated the average response amplitudes
at the site with the maximal d′. For each condition, the average across all repetitions was
subtracted from the response in each trial and the standard deviation of the distribution of
residuals was computed. Trials with residual response greater than two standard deviation
values were excluded from further analysis. This simple procedure eliminates trials where the
animal made excessive movements.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Behavioral task and recording chamber. (a) Task and stimulus (see Methods). (b) The cranial
window over V1 in the left hemisphere in one monkey. The cortex is seen through a transparent
artificial dura44. A typical imaged area of 10 × 10 mm is indicated by the black square.
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Figure 2.
Neural population responses in V1 to a Gabor target (see Methods) measured with VSD
imaging in one experiment. Gabor target parameters: σ = 0.33° , spatial frequency = 1.4 c.p.d.,
eccentricity = 2.7° . (a) Average time course of VSD responses. Response was measured in a
small region of 0.25 × 0.25 mm, centered at the location of the small circle in c, bottom panels.
Time courses are averaged across repetitions (n = 10 for each target contrast for target-present
trials; n = 50 for target-absent trials). For display purposes, the average time course in target-
absent trials is subtracted from each curve. Note that the animal was allowed to saccade to the
target as soon as it was detected. Arrows indicate median reaction times at target contrasts in
which at least three saccades were made. At high target contrasts, reaction times were short,
leading to an early drop in the VSD response. (b) Single-trial time courses (thin lines) in the
first 200 ms after target onset. The average time courses for each condition are shown in thick
lines. (c) Spatial distribution of response amplitudes (left column) and response sensitivity
(right column) for different target contrasts. Top right panel, image of cortical vasculature. To
compute response amplitude, the response at each site is time averaged during a short interval
after target onset and then averaged across repetitions (see Methods). Response sensitivity is
measured as the signal-to-noise ratio d ′ (see text). Red squares in the bottom panels indicate
the 8 × 8 mm ROI used for further data analysis. The circle indicates the site with maximal d
′ . Non uniform responses at 0% contrast (top left panel) represent residual noise in the mean
response around large blood vessels. (d) Response amplitude in target-present trials averaged
across all target contrasts after subtraction of the mean response in target-absent trials. (e) Two-
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dimensional Gaussian fit to the average response in d. (f) Average spatial correlations between
pairs of sites as a function of their separation. To eliminate the effect of target contrast on
spatial correlations, the average response (across repetitions) for each condition was first
subtracted from the response in each trial before computing the correlations between the
residual responses.
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Figure 3.
Optimal two-site and multiple-site pooling. (a) Each colored curve represents pooled
sensitivity over two sites with different relative sensitivities as a function of the correlation
between the sites (computed using equation (5), Supplementary Methods). Dashed vertical
lines indicate the point of transition from positive pooling (on the left) to negative pooling (on
the right). (b) Normalized falloff in sensitivity along the minor axis of the average response in
Figure 2e (gray) and falloff in correlations along the same axis (black). (c) One-dimensional
cut through the optimal whitening filter that, when convolved with the imaging responses,
generates responses that are statistically independent across space. (d) Optimal set of weights
obtained by convolving the whitening filter twice (see Methods) with the average response
amplitude (Figure 2e). Note that the optimal filter contains a positive region at the center and
a large negative region in the surround.
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Figure 4.
Methods for measuring neural and behavioral detection sensitivity. (a) Distributions of the
VSD responses in the example experiment, pooled over an area of ~8 × 8 mm of cortex using
the optimal set of weights (Fig. 3d). Pooled responses in target-present trials (gray) and target-
absent trials (black) are separated according to target contrast. The bottom panel shows
combined distributions across all target-present and all target-absent trials. The vertical line
represents an optimally placed criterion for separating target-present trials from target-absent
trials (see text). (b) Proportion of trials in which the observer reported that the target was present
as a function of target contrast. Zero contrast represents target-absent trials (the probability at
this point is the false alarm rate). Black triangles, monkey’s performance. Gray circles,
performance of an observer that uses the Optimal rule to pool V1 responses. Solid curves are
the best fitting Weibull functions39. The dashed vertical lines and the corresponding numbers
are the thresholds (see Methods). The model’s detection threshold was significantly lower than
the monkey’s detection threshold (bootstrap test, P < 0.001). Horizontal error bars indicate
95% confidence interval. The model’s threshold was still significantly lower than the monkey’s
threshold even with suboptimal criterion that reduced the false alarm rate of the model to a
level comparable to that of the monkey.
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Figure 5.
Comparing detection sensitivity of candidate pooling rules. (a) Difference in overall percent
correct between the first six pooling rules from Table 1 and the Optimal rule, in the example
experiment. Asterisks indicate rules with performance significantly different from the Optimal
(bootstrap test, P < 0.05; error bars = 95% confidence interval). (b) Average difference across
all eight experiments in overall percent correct between the six pooling rules and the Optimal
rule. Same conventions as in a. Asterisks indicate rules with performance significantly different
from the Optimal rule across experiments (paired t-test, n = 8). (c) Scatter plot of threshold for
the Optimal pooling rule vs. the monkeys. Filled symbols indicate experiments in which the
Optimal model’s detection threshold was significantly lower than the monkey’s threshold
(bootstrap test, P < 0.05). Error bars indicate one s.e.m. centered on the mean. (d) Average
difference in overall percent correct between the Optimal rule using an 8 × 8 mm pooling area
and the seven pooling rules at three pooling areas (2 × 2 mm, light gray; 4 × 4 mm, dark gray;
8 × 8 mm, black). Error bars in b and d show one s.e.m.
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Figure 6.
Effect of spatial binning on accuracy of the three pooling rules that rely on the response in a
single site. Each bar indicates the difference in percent correct between the three pooling
models at different bin size and the Optimal rule at the original bin size. Pooling rules that
combine signals from a large area were relatively insensitive to the site size. For example, the
Mean Amplitude rule gives exactly the same results irrespective of the site size. Error bars =
one s.e.m.
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Figure 7.
Effects of timing parameters on the accuracy of the seven pooling rules. (a) A diagram
illustrating the four timing parameters used in our analysis. VSD signals at each site in each
trial were first normalized by the average signal during a short normalization interval (blue
bar) and then averaged during a short temporal interval (light red bar). The averaging interval
started at a fixed time after stimulus onset (Start) and ended either at a fixed time before saccade
initiation (the beginning of a Motor prep., green bar), or, if saccade did not occur or was
sufficiently late, at the maximal time of averaging (Max end avg.). In the example in the
diagram, the averaging period ends before the maximal averaging time because the maximal
averaging interval and the motor preparation interval overlap (dark red region). (b–e) The
average difference in percent correct between the Optimal rule using the default timing
parameters and each of the seven models using different combinations of timing parameters,
averaged over the eight experiments. (b) Effect of start time. (c) Effect of maximal averaging
time. (d) Effect of normalization period duration. (e) Effect of motor preparation duration.
Dashed blue vertical lines indicate default values.
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Table 1
Candidate pooling rules

1 Maximal Average Amplitude: wi ≠ 0 only for the site with maximal average amplitude

2 Maximal d ′ : wi ≠ 0 only for the site with maximal d ′

3 Maximal Amplitude: wi ≠ 0 only for the site with maximal amplitude in a given trial

4 Mean Amplitude: wi = 1/n

5 Weighted Average Amplitude: wi ∝ E(xi)

6 Weighted d ′: wi ∝ d ′i

7 Optimal: see equation (2) and Supplementary Methods
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