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Abstract

Background: Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic
trypanosomatids is an important metabolic pathway. There is however, only limited information
available on the structure and reactivity of the component enzymes in trypanosomatids. Since
isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for
therapeutic intervention it is important to characterize the pathway components.

Results: Putative mevalonate kinase encoding genes from Leishmania major (LmMK) and
Trypanosoma brucei (TbMK) have been cloned, over-expressed in and proteins isolated from
procyclic-form T. brucei. A highly sensitive radioactive assay was developed and shows ATP-
dependent phosphorylation of mevalonate. Apo and (R)-mevalonate bound crystal structures of
LmMK, from a bacterial expression system, have been determined to high resolution providing, for
the first time, information concerning binding of mevalonate to an MK. The mevalonate binds in a
deep cavity lined by highly conserved residues. His25 is key for binding and for discrimination of
(R)- over (S)-mevalonate, with the main chain amide interacting with the C3 hydroxyl group of (R)-
mevalonate, and the side chain contributing, together with Val202 and Thr283, to the construction
of a hydrophobic binding site for the C3 methyl substituent. The C5 hydroxyl, where
phosphorylation occurs, points towards catalytic residues, Lys |8 and Asp155. The activity of LmMK
was significantly reduced compared to MK from other species and we were unable to obtain ATP-
binding data. Comparisons with the rat MK:ATP complex were used to investigate how this
substrate might bind. In LmMK, helix 0.2 and the preceding polypeptide adopt a conformation, not
seen in related kinase structures, impeding access to the nucleotide triphosphate binding site
suggesting that a conformational rearrangement is required to allow ATP binding.

Conclusion: Our new structural information, consistent with data on homologous enzymes
allows a detailed description of how mevalonate is recognized and positioned for catalysis in MK.
The mevalonate-binding site is highly conserved yet the ATP-binding site is structurally distinct in
LmMK. We are unable to provide a definitive explanation for the low activity of recombinant
protein isolated from a bacterial expression system compared to material isolated from procyclic-
form Trypanosoma brucei.
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Background

The biosynthesis of the isoprenoid precursors isopentenyl
pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) is essential for prokaryotic and eukaryotic
organisms. These ubiquitous compounds are utilized in
the construction of numerous natural products including
dolichols, sterols, terpenes and ubiquinones which con-
tribute to myriad biological functions including hor-
mone-based signaling, electron transport in respiration,
apoptosis, meiosis and photosynthesis [1]. Two distinct
pathways have evolved to provide a pool of the precur-
sors. In plant chloroplasts, algae, most eubacteria and api-
complexans, IPP and DMAPP are synthesized through the
deoxyxylulose phosphate (DOXP) pathway, so named
after an intermediate [2-4]. Alternatively, the mevalonate
(MVA) pathway supplies these precursors in eukaryotes,
archaea, a few eubacteria, in the cytosol of plants and of
particular interest to us parasites of the genus Trypanosoma
and Leishmania [4,5].

The MVA pathway starts with condensation of three
acetyl-CoA molecules to form 3-hydroxy-3-methylglu-
taryl-CoA (HMG-CoA), which is reduced to (R)-MVA by
HMG-CoA reductase. Next, two kinases phosphorylate
(R)-MVA to (R)-MVA 5-diphosphate. This compound is
subsequently decarboxylated to IPP and IPP isomerase
then produces DMAPP from some of the IPP pool. The
two phosphorylation steps and the decarboxylation are
carried out in ATP-dependent reactions by the structurally
related mevalonate kinase (MK), phosphomevalonate
kinase (PMK) and mevalonate 5-diphosphate decarboxy-
lase (MDD) respectively.

(R)-mevalonate
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We have initiated studies of MVA pathway enzymes in
protozoan trypanosomatids, parasites that cause severe
diseases of humans and livestock. In Africa, T. brucei infec-
tion results in sleeping sickness while in South and Cen-
tral America, T. cruzi causes Chagas' disease [6].
Protozoans of the genus Leishmania, found throughout
tropical and sub-tropical areas, are responsible for cutane-
ous, mucocutaneous and visceral forms of disease [7]. Vis-
ceral leishmaniasis and trypanosomiasis are fatal if
untreated and since the availability of effective drugs is
limited, there is an urgent need to develop improved ther-
apies. In support of such an effort it is important to
achieve a comprehensive understanding of parasite
metabolism, and to delineate aspects that are similar to
the host from those that, by virtue of significant differ-
ences, might provide therapeutic opportunities.

We set out to investigate the putative assignment of MK
(EC 2.7.1.36) in trypanosomatid parasites. MK catalyzes
the fourth step in the MVA pathway, the transfer of the
ATP y-phosphoryl onto (R)-MVA to give (R)-MVA 5-phos-
phate (Figure 1) [8-10]. The enzyme is, along with galac-
tokinase (GK), homoserine kinase (HSK), MK and PMK, a
founding member of the GHMP kinase superfamily [11].
Family members now also include 4-diphosphocytidyl-
2C-methylerythritol (CDPME) kinase, MDD and the
archaeal shikimate kinase [12-14]. Structures of MK are
known including the apo-structure of Methanococcus jan-
naschii MK (MjMK) and the ATP bound Rattus norvegicus
MK (RnMK) [8,9].

First it was important to prove that the putative genes do
indeed encode a functional MK. Assay of L. major MK
(LmMK) and T. brucei MK (TbMK) derived from procyclic-

(R)-mevalonate 5-phosphate
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Figure |
The reaction catalyzed by mevalonate kinase.

Mevalonate kinase
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form T. brucei show enzyme activity, and at a greatly
enhanced level compared to LmMK derived from a bacte-
rial expression system. High-resolution crystal structures
of LmMK are reported and provide, for the first time,
insight into the binding of substrate by any MK. There are
significant structural differences at the ATP- binding site
compared to other GHMP kinases. Consideration of pre-
viously published kinetic data on MK, derived from differ-
ent species, and comparisons allows us to describe generic
aspects of MK specificity and mechanism.

Results and discussion

Enzyme activity of LmMK and TbMK

The gene assigned as encoding a putative LmMK was
cloned into an Escherichia coli expression system and
yielded 30 mg/L of purified protein. A coupled spectro-
photometric assay has been successfully applied to ana-
lyze wild type and mutant MK enzymes from different
species [10,15-18]. However, no activity was observed for
recombinant LmMK using this method although the con-
trol experiment with MjMK agreed well with literature val-
ues (data not shown). In a further experiment, the
fluorescent ATP analogue 2'(3')-O-(2,4,6-trinitrophenyl)
adenosine 5'-triphosphate (TNP-ATP) was used to investi-
gate ATP binding following an established protocol [19].
In the presence of LmMK, however, no enhancement in
fluorescence could be detected compared to free TNP-ATP
indicating that the derivative does not effectively bind the
recombinant LmMK (data not shown). This observation is
consistent with the conformation of the ATP-binding site
observed in the crystal structure and will be discussed
later.

We considered the possibility that recombinant LmMK
activity might be too low for the spectrophotometric assay
and so developed a more sensitive, radioactive assay.
Activity of LmMK was observed after incubation of the
enzyme with radiolabeled [3H] (R)-MVA and ATP. After
two hours, 22 pmoles of the 83.3 pmoles of [3H] (R)-MVA
present were converted to [3H] (R)-MVA 5-phosphate, a
turnover rate of 26 % or 1.6 pmol/min/mg.

Next, LmMK and TbMK were cloned, over expressed in
procyclic-form T. brucei and immunoprecipitated (Figure
2) prior to undertaking the radioactive assay with each
enzyme. A 100-fold lower protein concentration of LmMK
and TbMK was assayed, resulting in 2.4 pmoles and 2.7
pmoles of substrate being transformed to product, respec-
tively. This corresponds to turnover rates of 2.9 % (18
pmol/min/mg) and 3.3 % (20 pmol/min/mg), respec-
tively. The radioactive assays prove for the first time, an
ATP-dependent MK activity in Leishmania and Trypano-
soma and therefore that the putative genes do indeed
encode MK. There is a consistent level of MK activity for
the enzymes isolated from procyclic-form T. brucei and
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Figure 2

The over-expression of TbMK and LmMK in procyclic-form
T.brucei. TbMK and LmMK were cloned into the pLew82 vec-
tor and transformed into procyclic T. brucei to express
ectopic C-terminal HA-tagged proteins under tetracycline
control. Mid-log procyclic cells over-expressing ThBMK-HA
(lanel), LmMK-HA (lane 2) and wild type (lane 3) were
washed, lysed and run on an SDS/10 % polyacrylamide gel
and transferred to an ECL-Nylon membrane by Western
blotting and detected with anti-HA antibodies. The expected
molecular weight of both TBMK-HA and LmMK-HA is 36.9
kDa.

these enzymes are an order of magnitude more active than
the bacterially expressed enzyme. One possible explana-
tion for this difference is that the eukaryotic protein is not
optimally folded when produced in E. coli. Other possibil-
ities are that a parasite-specific factor might influence MK
efficiency, for example, post-translational modification,
or some associated parasite protein. Alternatively, that
some bacterial specific factor might compromise LmMK
activity. However, we have no evidence to support post-
translational modification or the presence of additional
protein or small molecule species.
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Table I: Crystallographic statistics
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SeMet LmMK LmMK:R-MVA complex
Unit-cell parameters
a,b, c (A), 41.3,885,882 41.2, 884, 87.7
B () 103.6 103.5
Space group P2, P2,
Resolution range (A) 40.0-1.75 40.0-1.9
Observations/redundancy 120,161/3.4 (3.2) 43,849/4.0 3.2)
Completeness (%) 97.2 (92.6) 91.2 (65.4)
Mosaicity (°) 0.5 1.0
<l/o(l)> 20.1 (2.9) 15.3 (2.8)
R-merge (%)b 5.6 (41.1) 7.3 (44.4)
R-work/R-free(%)c 21.7127.7 17.6/23.0
r.m.s.d. bond lengths (A) 0.011 0.006
r.m.s.d. bond angles (°) 1.227 0.952
Wilson B value (A2) 16.3 22.1
Number of atoms
Protein 5026 5157
R-MVA 10
Solvent 590 695
Average B values (A2)
Protein 16.5 21.1
R-MVA 26.0
Solvent 24 319
Ramachandran plot
Most favored (%) 94.6 94.6
Additional allowed (%) 5.0 5.0
Disallowed region (%)d 0.4 0.4

a Numbers in parenthesis refer to an outer resolution bin of width approximately 0.1 A.
b R-merge = X, XI(h,i) -<I(h)>|/Z,Z; 1(h,i), where I(h,i) is the intensity of the ith measurement of reflection h and <I(h)> is the mean value of I(h,i) for

all i measurements.

¢R-work = X, ||Fo|-|Fc||X|Fo|, where Fo is the observed structure-factor amplitude and Fc the structure-factor amplitude calculated from the model.
Rirce is the same as R, except only calculated using a subset, 5%, of the data that are not included in any refinement calculations.

dHis25 in all molecules.

Overall structure

Recombinant LmMK and a selenomethionine (SeMet)
derivative produced ordered, isomorphous monoclinic
crystals and a single-wavelength anomalous dispersion
(SAD) experiment provided initial phase information to
solve the structure. The SAD approach was required
because molecular replacement calculations using known
MK structures failed. Although the non-hydrolysable ATP
analogue adenosine  5'-(B,y-imido) triphosphate
(AMPPNP) and (R/S)-MVA were included in crystalliza-
tion solutions there was no indication of ordered ligand
binding. A complex was subsequently obtained by soak-
ing crystals in higher concentrations of (R/S)-MVA. Here,
we describe the high-resolution structures of apo-SeMet
LmMK and the binary complex of native LmMK with (R)-
MVA present in one active site. Crystallographic statistics
are presented in Table 1.

There are two molecules in the asymmetric unit (A and B)
related by a non-crystallographic (NCS) two-fold axis of
symmetry and the surface area between the two is 930 A2

per molecule, only 6% of the total surface area of the pro-
tein. Such a low value is consistent with results from gel
filtration and ultracentrifugation experiments that indi-
cate LmMK is a monomer in solution. Molecules A and B
overlay with an r.m.s.d. of 1.2 A for all atoms. Minor dif-
ferences are observed in the conformation of the three C-
terminal residues, several flexible residues at the N-termi-
nal end of 0.6 and loop regions following 35 and 2. Mol-
ecule A of LmMK binds the substrate and overlays on the
apo-enzyme molecule A with an r.m.s.d. of 0.7 A for all
atoms. This indicates that there no large-scale conforma-
tional changes result from substrate binding and the mol-
ecules are so similar that it is only necessary to detail
molecule A.

That LmMK presents a monomer in solution makes it dif-
ferent from rat and human MK, which are reported to be
dimeric [9,10]. The crystal structure of the rat enzyme has
a monomer in the asymmetric unit and a crystallographic
two-fold axis of symmetry generates an extended dimer
[9]. The alignment of the two molecules in the asymmet-
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ric unit of LmMK is similar to that of the rat enzyme in that
an extended structure results. However, the orientation of
the molecules is very different (not shown).

The GHMP kinase fold and three conserved motifs
LmMK exhibits the characteristic GHMP kinase fold con-
sisting of two domains [20]. The fold and the correlation
of sequence and secondary structure are presented in Fig-
ure 3. The N-terminal domain (residues 1-179) is formed
around a six-stranded B-sheet (B1-f6). A small helical
segment (ou1) is inserted between B1 and B2 and four hel-
ices (02-05) are positioned on one side of the -sheet. In
the GHMP family this domain is primarily responsible for
ATP binding. The C-terminal domain (residues 180-329)
contains an anti-parallel four-stranded B-sheet (7-10),
bordering one end of the N-terminal domain (-sheet,
placed on a structure created by five helices (0.6-0110).

LmMK shares a high sequence identity with TbMK (57 %)
and T. cruzi MK (TcMK; 60 %, Figure 4) and the structure
of LmMK is taken to be representative of trypanosomatid
MK. The identity with homologues from archaea and
mammals falls below 30 % (data not shown) and the
human and rat enzymes are increased in length by about
65 residues. The program DALI [21] identified MjMK (Z-
Score: 32.1)* and RnMK (Z-Score: 28.4) as most similar
structures to LmMK. The Co atoms of these structures
overlay on LmMK with an r.m.s.d. of 1.7 and 2.1 A, respec-
tively (not shown).

The GHMP kinase family possesses three conserved motifs
that create a network of interactions to stabilize the con-
formation of the catalytic center (Figures 4 and 5) [11,22].
In LmMK, motif 1 is B1 through to a short o.1. Residues on
this motif create part of the substrate-binding site and side
chains of Glu24 and His25 interact with the adjacent
motif 3, which is in the C-terminal domain. Glu24 accepts
hydrogen bonds donated from Lys279 NZ and the amide
of Gly283, His25 donates a hydrogen bond to the carbo-
nyl group of Thr283 (shown later). Functional groups
associated with motif 3, such as the amide and hydroxyl
groups of Thr283 could interact with the y-phosphate of
ATP. Motif 3 comprises residues on 8 and the hairpin
bend to B9. Residues on one side of this motif interact
with motif 1 as explained previously; on the other side
there are interactions with components of motif 2. For
example, Lys279 NZ and Ser281 OG participate in hydro-
gen bonds with the carbonyl group of Leu21 and amide of
I1e20 respectively. Motif 2 comprises the N-terminal sec-
tion of a3 and the preceding loop. Here the polypeptide
conformation aligns several main chain amides, in con-
junction with the a3 helix dipole, to bind the anionic tail
of ATP in particular a- and B-phosphate groups. Some of
the residues within these motifs are important for sub-
strate binding and further details will follow.

http://www.biomedcentral.com/1472-6807/7/20

The ATP-binding site of LmMK is distinct from related
enzymes

A most striking difference in the arrangement of second-
ary structure elements in LmMK compared to other GHMP
kinases occurs in the N-terminal domain adjacent to the
ATP binding site. This is best illustrated by the overlay of
LmMK and RnMK, part of which is shown in Figure 6. The
first four elements of LmMK secondary structure (assigned
as B1, a1, B2, B3) align well on the corresponding struc-
tural features of RnMK (assigned by Fu et al., [9] as B1 and
B2, a1, B3 and B4, B5). The structures then diverge as the
mammalian MK sequence carries an insert forming a [3-
strand (6) anti-parallel to B5, then an extended helix-
loop-helix structure of 0.2, a disordered flexible segment
and o3. A tight turn, in the vicinity of where adenine
binds, then leads to a4. In LmMK there is no strand equiv-
alent to 36 (RnMK). Strand B3, which is equivalent to 35
in RnMK, is followed by a tight turn into a.2. The helices
o4 (RnMK) and a2 (LmMK) overlay well though in the
parasite protein this helix is extended by two turns at the
N-terminal end. The replacement of the insert and two
helical segments in the rat enzyme with the short loop
connecting B3-02 in LmMK results in a polypeptide con-
formation, not observed in structures of GHMP kinases,
that lies across and restricts access to the ATP binding cav-
ity (Figure 6). The detailed conformation of the B3-02
loop in LmMK may be influenced by contacts between
symmetry related molecules. This loop is beside and
forming hydrogen-bonding interactions with residues at
the N-terminal end of B1, the C-terminal end of a3 and
the a3-04 loop of a symmetry-related molecule (not
shown). Once into 0.2/04 the LmMK and RnMK structures
align well and then form a strand-loop-helix structure
(motif 2, discussed earlier) that serves to create the base of
the ATP-binding site (Figure 5). In LmMK this is B4-loop-
a3, in RnMK B7-loop-05.

In CDPME kinase [12] and HSK, [22,23] a helical insert
also occurs before the a-helix equivalent to LmMK 0.2, and
similar to RnMK, is placed to configure an open ATP bind-
ing site. Here, CDPME kinase and HSK carry residues that
bind the ATP adenine in the less common syn conforma-
tion with respect to the ribose. In Streptococcus pneumoniae
PMK [24] the polypeptide conformation also produces an
open cavity into which ATP binds. In this case a segment
of the polypeptide around the ATP-binding site is absent
from the structural model due to disorder, and this
implies a degree of conformational flexibility. Kinetic
studies with Enterococcus faecalis MK indicate that GTP and
CTP can also serve as substrates [25]. To investigate if such
promiscuous substrate utilization also applied to LmMK
we tested the same compounds in the enzyme assay and
also by co-crystallization in the absence and presence of
(R)-MVA. In the latter case, to prevent possible turnover of
the substrate we used the non-hydrolysable guanosine 5'-
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loop _/ W X (R)-MVA

C-terminal
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Figure 3
Fold of LmMK. Overall structure of LmMK in complex with (R)-MVA. Elements of secondary structure are labeled, helices as

on, and strands numbered, the N and C-termini are marked. The substrate is depicted in a stick representation colored
according to atom type (C green, O red).
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Figure 4

Secondary structure and sequence of LmMK. Invariant or well-conserved residues are boxed in red, orange and lime. Red sig-
nifies residues conserved in the three trypanosomatid, RnMK and MjMK sequences, orange residues conserved in any four out
of the five sequences, green those conserved in the parasite enzymes. Residues involved in substrate binding are marked with
cyan dots and the catalytic aspartate and lysine residues with green stars. The secondary structural elements, as shown in part
A, are given above the sequence. Three highly conserved GHMP motifs are marked.
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motif 3

Figure 5
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motif 1

The position of the three conserved GHMP motifs in LmMK. A Co trace (grey) around the active site is shown and substrate
included (shown in stick-mode with C green, O red). Motifs |, 2 and 3 are shown as ribbons colored cyan, purple and green

respectively. The view is similar to that employed in Figure 2A.

(B,y-imido) triphosphate and CDP. Despite our efforts,
extending to the complete structural analysis of several
diffraction datasets (not shown), we were unable to
obtain a binary structure of LmMK in complex with ATP,
any nucleotide, or a ternary dead-end complex.

To model ATP binding, the structures of LmMK and the
RnMK:ATP binary complex were superimposed. In the
RnMK:ATP complex, the adenine is anti with respect to the
ribose. The B and y-phosphoryl groups together with
Ser146 and Glu193 coordinate a Mg2+. In LmMK the mod-

eled adenine and ribose groups clash with the side chains
of Tyr67, Lys71 and Glu74 at the N-terminal end of o2,
Arg61 and GIn75 in the preceding loop region and Tyr147
in o4. These residues are positioned by a network of
hydrogen bonding interactions, some mediated by water
molecules. As discussed, the polypeptide conformation at
the N-terminal segment of 0.2 and in the preceding loop
is distinct from other MK structures and reduces access to
the ATP binding site. The ATP-binding cavity in RnMK, in
contrast, is more open and the nucleotide is embedded
into an environment with significant hydrophobic charac-
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Figure 6
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(R)-MVA

B7—as
Pd—o3
loops

Co-trace overlay for part of the N-terminal domains of the LmMK and RnMK structures. The Ca. trace and labels for LmMK
are gray, and for RnMK red. The substrate, (R)-MVA is from the LmMK structure and shown as sticks colored green for C, red
for O. The ATP (also in stick-mode, colored C yellow, N blue, O red, P purple) is from the RnMK structure. Selected elements
of secondary structure are labeled and colored according to the structure, grey LmMK, red RnMK.

ter. Conformational changes would have to occur, a
number of hydrogen bonds would have to be disrupted
and water molecules displaced to facilitate ATP binding
by LmMK as represented by the crystal structure.

The triphosphate moiety is placed to interact with the gly-
cine-rich loop of the ATP-binding motif 2 in LmMK. The
B-phosphoryl group of ATP most likely interacts with
Ser111 and Ser112, the latter a residue invariant in MK
sequences, corresponding to Ser146 in RnMK, the serine
that participates in Mg?+ coordination. The other residue
involved in cation binding (Glul193 in RnMK) is con-
served (Glu144) in LmMK and so conservation of the tri-
phosphate positioning and interaction with MKs is likely.
The model positions the y-phosphoryl group in proximity
to the strictly conserved catalytic residues Lys18 and
Asp155 of LmMK and the C5 hydroxyl group of substrate.

Binding and recognition of mevalonate

(R)-MVA, binds in the deep cavity formed between the N-
terminal and C-terminal domains, surrounded by resi-
dues on a1, the N-terminal end of a6, the C-terminal end
of B1 and B5 and the a4-a5 loop (Figures 3, 4, 5, 6). The

substrate carboxylate interacts with the guanidinium of
Arg169, which is held in place by a hydrogen bond with
the hydroxyl of Tyr167. This tyrosine also forms a hydro-
gen bond with the substrate carboxylate and is conserved
both in terms of sequence and position in RnMK
(Tyr216). Sequence comparisons of MK from other spe-
cies (not shown) reveal that Arg169, situated on a flexible
loop between B5 and (6 is conserved in some species, e.g.
in TbMK and TcMK. In other sequences this loop carries
asparagine, glutamine, histidine and lysine residues,
which would contribute a similar role in substrate bind-
ing. The carboxylate of (R)-MVA is also linked to the side
chain of Ser152 via a water molecule. The side chains of
11e20, His25, Val27, Val28 and Val202 in LmMK place (R)-
MVA in the cavity by forming hydrophobic interactions
with the substrate. The C3 hydroxyl group forms an
intramolecular hydrogen bond to the carboxylate, which
serves to stabilize the conformation of the substrate itself.
This hydroxyl group accepts a hydrogen bond donated by
the main chain amide of His25, a component of motif 1.
The C3 methyl group is directed into a hydrophobic envi-
ronment formed by the Ca of Thr283, the side chain of
His25, Val28 and Val202. These interactions with the C3
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substituents serve to discriminate for (R)-MVA over (S)-
MVA. The C5 hydroxyl, the site of phosphorylation, is
directed towards Lys18 NZ at a distance of approximately
4 A, in addition a water molecule provides a bridge over
to Asp155 and Thr198 (Figure 7).

Site-directed mutagenesis studies highlight the impor-
tance of the strictly conserved Glu24, His25 and Ser152
(LmMK numbering) in MK. The replacement of the histi-
dine by leucine or tyrosine significantly reduced activity of
human MK whereas a lysine mutant did not fold correctly
[17]. Houten et al. reported that a His25Pro mutant has
no detectable MK activity [26]. In LmMK, the side chain of
His25 forms hydrogen-bonding interactions to its own
main chain carbonyl, via a water molecule, and to the car-
bonyl group of Thr283, a residue in motif 3. In turn the
side chain of Thr283 is held in place by a hydrogen bond
with Thr198 (Figure 7). The preceding residue Glu24 par-
ticipates in a salt bridge interaction with Lys279. Such
interactions, help to force the main chain between Glu24
and His25 into a strained conformation, with a ¢/y com-
bination of 75/-45°, directing the amide group towards
the substrate. The corresponding histidine and glutamate
residues in MjMK and RnMK are located at nearly identical
positions, but there is a peptide-flip compared to LmMK
so that the carbonyl not the main chain amide is directed
towards the substrate-binding site. A peptide-flip does not
accompany substrate binding since apo-LmMK molecules
retain the strained conformation. The conformation in
other MK structures may be a consequence of analyses at
medium resolution. The strictly conserved Glu24 is also
important for stability. Mutations of the equivalent resi-
due in human MK (Glul9Ala and Glul9GIn) destabilize
the enzyme while a Glul9Asp change only slightly
decreased activity [10]. The placement of an acidic side
chain to interact with the nearby lysine (Lys330 in rat and
human sequences) is therefore beneficial for function.
Mutation of Ser201, equivalent to Ser152 in LmMK, to
alanine in human MK leads to a 100-fold decrease in
binding affinity for substrate so proving an important role
in substrate binding [16]. Ser152 OG also contributes to
forming a hydrogen-bonding network, with the amide
group of Ala154 and via water molecules, to stabilize the
position of the catalytic Asp155 (not shown).

Fu et al. [9] and Yang et al. [8] modeled (R)-MVA into
MjMK and RnMK respectively, and suggested a different
binding mode compared to the experimentally deter-
mined complex reported here. They proposed, independ-
ently, that the substrate carboxylate interacts with an
arginine (Arg241 or Arg201 in RnMK and MjMK respec-
tively) and main chain amides contributed from motif 3.
Although the guanidinium groups of Arg241 and Arg201
are similarly placed in the RnMK and MjMK structures, in
LmMK this is Ala196. The lack of conservation of an
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arginine at this position in MK sequences has already been
discussed [18].

In this section, we have described the contributions and
importance of 14 residues to the binding of substrate in
the LmMK:(R)-MVA complex either by direct or solvent
mediated interactions, or by creating the binding site.
These residues are depicted in Figure 7 together with
selected hydrogen bonding interactions. Twelve of these
residues are strictly conserved in mammalian MK
sequences. The two exceptions are Arg169, which is equiv-
alent to GIn218 and is a conservative change, and Thr283,
equivalent to Ala334. This high degree of conservation in
the substrate-binding site suggests that the substrate is
bound to MKs in a similar conformation compared to (R)-
MVA in LmMK.

The catalytic mechanism

Knowledge of how (R)-MVA binds to LmMK provides new
information concerning the molecular recognition of sub-
strate within the enzyme active site. In combination with
biochemical and kinetic data, in particular that derived
from human MK [10], this allows us to detail how the
substrate is positioned and processed (Figures 7 and 8).
MK carries out an ordered sequential reaction with meval-
onate binding first, then ATP and, following catalysis the
(R)-MVA 5-phosphate is released ahead of ADP Product
inhibition by ADP is observed [27].

In the LmMK:(R)-MVA complex, the substrate C5
hydroxyl group is directed towards the side chains of
Lys18 (~4 A) and Asp155 (~5 A) as well as the y-phospho-
ryl of the modeled ATP (~6 A). The positions of the strictly
conserved lysine/aspartate pair are nearly identical in
LmMK, MjMK and RnMK. In kinetic studies of human MK,
no significant activity of the Asp155Ala and Asp155Asn
mutants was observed and a replacement of the basic
Lys18 by methionine resulted in a 56-fold decrease of
Viax I RnMK [15]. Asp155 acts as a catalytic base and
abstracts the proton from the C5 hydroxyl group of (R)-
MVA to generate a potent nucleophilic alkoxide. The pKa
of the C5 hydroxyl group must be lowered in order for
proton abstraction to occur, a process required to generate
anucleophilic alkoxide. Presumably the basic Lys18 is pri-
marily responsible for lowering the pKa and perhaps also
stabilizing the alkoxide. Once the ATP is in place then the
C5 alkoxide will attack and acquire the y-phosphoryl
group. A pentacoordinate transition state is likely and
may be stabilized by Lys18 and the presence of a divalent
cation, as commonly observed in many kinases.

Conclusion

Our study reveals, for the first time, MK activity in
trypanosomatids. High-resolution crystal structures of
LmMK have been determined and provide the first exper-
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Thr283

The substrate-binding site of LmMK. Molecules are depicted in stick representation, all N positions are blue, O red. C atoms

are grey except for (R)-MVA and the catalytic residues where they are green and cyan respectively. For the purpose of clarity
only selected water molecules (red spheres) and hydrogen bonding interactions (red dashed lines) are shown. An omit differ-
ence density map (blue chicken wire) covering the substrate and the water molecule adjacent to the carboxylate group is

shown. The map was calculated with coefficients |Fo-Fc|, o
lated structure factor amplitudes respectively, ¢,
including the substrate or water oxygen.

calc

calc

and contoured at 1.5 6. Fo and Fc represent observed and calcu-
phases calculated on the basis of atomic coordinates of the model but not

imentally derived model for any MK in complex with
mevalonate. The structure reveals how this substrate
binds, the structural basis for chiral discrimination of (R)-
against (S)-form MVA and is consistent with previously
published biochemical data regarding mechanism. The
enzyme, not surprisingly displays the GHMP kinase fold
and structural overlay indicates close similarities to RntMK
for most of the structure. However, comparisons reveal a

significant difference at the ATP-binding site that may
help explain the low activity of recombinant LmMK and
our inability to obtain structural information on an ATP
complex. Sequence comparisons suggest that the B3-02
loop and o2 segments, including many of the hydrogen
bonding interactions in LmMK are conserved in other
trypanosomatid enzymes, TboMK and TcMK. As LmMK and
TbMK expressed in procyclic-form T. brucei exhibit a
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Figure 8

The proposed mechanism of catalysis and position of selected residues.

greatly enhanced enzyme activity compared to the recom-
binant LmMK, it is possible that some parasite specific fac-
tor may influence the catalytic reaction and further studies
are required to investigate such a hypothesis.

The high degree of conservation between trypanosomatid
and mammalian MKs suggests that it would be difficult to
develop a small molecule that would selectively inhibit
the parasite enzyme by interacting within the mevalonate-
binding site. The differences observed in the ATP-binding
sites might be exploitable for structure-based inhibitor
design but a decision would best be taken when a struc-
ture of a trypanosomatid MK in complex with ATP has
been determined.

Methods

Cloning, expression, purification of LmMK for biophysical
characterization

The putative gene encoding LmMK (UniProt entry
Q4Q6K7) was isolated from genomic DNA by PCR with
forward 5'-CATATGTCTAAGCCCGTCAAGAGC-3' and
reverse 5'-CTCGAGTTAT AGGTTCGACGCGGCG-3' prim-

ers containing Ndel and Xhol restriction sites respectively
(underlined). The gene was cloned into the pCR blunt II
TOPO vector (Invitrogen) then subcloned into the
pET15b vector (Novagen). The resulting plasmid was
transformed into E. coli BL21 (DE3) (Stratagene). The His-
tagged protein was produced overnight at 30°C in LB
medium containing ampicillin (100 mg/L) after induc-
tion with 1 mM isopropyl-f-D-thiogalactopyranoside.
Cells, suspended in 50 mM Tris- HCl pH 8.5, 250 mM
NaCl and 3 mM B-mercaptoethanol, were lysed at a pres-
sure of 25 Kpsi (One Shot, Constant Cell Disruptions Sys-
tems) and the extract clarified by centrifugation (20,000 g,
30 min, 4°C). The supernatant was loaded onto a nickel
chelating chromatography column (GE Healthcare) and
eluted with a linear gradient from 70 to 800 mM imida-
zole. The His-tag was removed from LmMK by digestion
with thrombin for 6 h at 4°C. After dialysis against 50 mM
Tris-HCl pH 7.7, 50 mM NaCl and 1 mM DTT, the
enzyme was purified further by anion exchange chroma-
tography and pooled fractions dialyzed against 10 mM
Tris- HCI pH 8.5, 20 mM NaCl and 1 mM DTT. The pro-
tein was concentrated by centrifugation with a VivaSpin
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20 MW cutoff 10,000 Da (Vivascience) and the protein
concentration determined spectrophotometrically using
an extinction coefficient of 28,000 M-! cm-! (280 nm).

For the production of SeMet LmMK, the plasmid was
transformed into E. coli strain B834 (Stratagene). Bacteria
were grown in M9 medium, which was supplemented
with 4 mg/L FeSO,-7H,0 and 0.5 g/L each of adenine,
guanosine, thymine and uracil. In addition, 40 mg/L of
the usual amino acids except methionine, which was
replaced by 100 mg/L L-SeMet (Sigma-Aldrich), were
added. Protein production and purification was per-
formed according to the protocol described for the native
enzyme. Full incorporation of SeMet was confirmed by
matrix-assisted laser desorption/ionisation time-of-flight
mass spectrometry (data not shown).

Cloning of T. brucei and L. major MK genes for ligation
into the pLew 82 vector

Putative MK genes were identified in T. brucei (entry
Q4QO6K?7 in the UniProt database) and L. major genome
databases (see above) in advance of annotation (Sanger
Centre) using the S. cerevisiae gene sequence as the query.
The open reading frame encoding ThbMK was amplified
from T. brucei genomic DNA using forward and reverse
primers 5'-GAGGAGAAGCTTATGCACGTGGCTGTITAAG-
GAC-3' and 5'-TGCTTAATTAATAGCITACITCCGCCG-
GGCTG-3' containing HindIIl and Pacl restriction sites
respectively (underlined). The open reading frame encod-
ing LmMK was amplified from L. major genomic DNA
using the forward and reverse primers 5'- GAGGA-
GAAGCITATGTCCGITITITTCGCTGTGACT-3"' and 5'-
TGCITAATTAATAGGTTCGACGCGGCGGACGGCTG-3'
containing HindIIl and Pacl restriction sites respectively
(underlined). Bands of the expected size of ~ 1 Kb for both
genes were amplified using Pfu polymerase, purified
(QIAquick PCR purification kit, Qiagen) and cloned into
pCR-Blunt II TOPO (Invitrogen). The ORFs were excised
then ligated into the tetracycline inducible expression vec-
tor pLew82 [28], which integrates a C-terminal HA-
epitope tag.

Cultivation and genetic modification of T. brucei

Procyclic form T. brucei strain 427, previously modified to
express T7 polymerase and the tetracycline repressor pro-
tein, were grown in SDM-79 media supplemented with
5% sodium bicarbonate and the appropriate drug selec-
tion, at 28°C with 5 % CO, as described elsewhere
[29,30]. Mid-log cells were electroporated with 50 pg of
Not1-linearized pLew82 plasmids in a total volume of 400
UL of cytomix buffer. Transfected parasites were selected
in medium containing phleomycin (2.5 pug/mL) to obtain
the cell lines TboMK-HATi, and LmMK-HATi. When tetracy-
cline was added to the media to induce over-expression, a
final concentration of 1 pug/mL was used. Cells were
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counted each day and passaged when the density was
between 2 and 3 x 10¢ (normally every second day).

Over expressing T. brucei and L. major MK genes in
procyclic form T. brucei

Mid-log T. brucei TbMK-HAT, LmMK-HA™ and wild type
procyclic form cells which had been grown in the presence
of tetracycline for one day, were harvested by centrifuga-
tion (800 g, 10 min), the cell pellets were washed in TDB
buffer (25 mM KCl, 400 mM NaCl, 5 mM MgSO,, 100
mM Na,HPO,, NaH,PO,, pH 7.4, 100 mM glucose) and
used either for western blotting or immunoprecipitation
(Figure 2). For western blotting the cells (2 x 10°) were
lysed and denatured directly in hot sample buffer and run
on an SDS/10 % polyacrylamide gel and transferred to an
ECL-Nylon membrane (Amersham). After blocking over-
night in PBS-5 % skim milk powder, protein was detected
using the primary monoclonal antibody; rat anti-HA
(Roche), followed by a secondary horseradish peroxidase
conjugated rabbit anti-rat immunoglobulin (Jackson) and
ECL western detection reagents (Amersham). For immu-
noprecipitation, cells (1 x 108) were lysed in 1 mL of Tris-
HCI (20 mM pH 7.0), NaCl (0.15 M) and NP-40 (1%).
After agitating for 30 min the cell ghosts were spun down
and the supernatant added to 100 uL of equilibrated anti-
HA affinity matrix (Roche) and agitated at 4°C overnight.
The beads were spun down and washed twice with 500 uL
of lysis buffer and resuspended in 100 pL of potassium
phosphate buffer (0.1 M) and stored at -20°C until
required.

MK assays and binding studies

A coupled spectroscopic assay was performed according to
a published protocol with varying concentrations of
recombinant LmMK; MjMK provided the positive control
[18]. Briefly, in a 1 mL cuvette, 0.1 M Tris- HCl pH 7.5, 5
mM MgCl,, 0.5 M phosphoenolpyruvate, 0.1 M NADH,
0.1 M ATP, 0.1 M (R/S)-mevalonic acid, 40 U pyruvate
kinase and 27.5 U lactate dehydrogenase were incubated
at 25°C. The enzyme activity was monitored at 340 nm
for 300 seconds (Shimadzu UV-1601).

In a radioactive assay, 0.1 M KH,PO,/K,HPO,pH 7.0, 0.1
M ATP, 10 uM reduced glutathione, 5 uM MgCl,, 833 uM
[3H] (R)-MVA (60 Ci/umol) (ARC) with either 31.0 uM
LmMK (approximately 115 pg) or with 20 uM of immu-
noprecipitate o-HA LmMK or ToOMK (equivalent to 2 x 107
procyclic cells) in a volume of 100 UL were incubated for
2 h at 30°C. The reaction was quenched by heat inactiva-
tion at 100°C for 2 min, the protein was spun down and
the supernatant applied to a 30 cm strip of Whatman
paper. The pellet was mixed with 20 pL water, centrifuged
and the washing added to the Whatman paper. Unreacted
[3H] (R)-MVA was separated from the [3H] (R)-MVA 5-
phosphate product by descending thin-layer chromatog-
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raphy using propan-1-ol:NH;:H,O (6:2:1). The same
amount of [3H] (R)-MVA provided a negative control.
[3H] (R)-MVA and [3H] (R)-MVA 5-phosphate were local-
ized using a Bioscan AR-200 linear analyzer at a distance
of 4 cm or 23.5 cm from the origin, respectively. The
Whatman paper was cut into 1 cm strips and the radioac-
tivity per strip quantified by liquid scintillation counting.
The combined counts corresponding to [3H] (R)-MVA 5-
phosphate were then compared with the initial amount of
[3H] (R)-MVA utilized in the enzymatic reaction.

The potential association of TNP-ATP (Molecular Probes)
with LmMK was investigated following a published proto-
col [19]. Measurements were carried out in 100 mM Tris-
HCI pH 7.0, 100 mM NaCl and 10 mM MgCl, at enzyme
concentrations of 3.2 UM or 12.8 uM, respectively. TNP-
ATP concentration was varied between 15 uM and 152
UM. For measurements, (Varian Cary Eclipse Fluorescence
Spectrometer) the excitation wavelength was 408 nm and
the emission spectra obtained by scanning 500 to 600
nm. The positive control was binding of TNP-ATP to T.
brucei MDD (data not shown).

Quaternary structure investigation

The possibility of an oligomeric assembly was investi-
gated by gel filtration and analytical ultracentrifugation.
The gel filtration column HilLoad 16/60 Superdex™ 200
prep grade (GE Healthcare) was calibrated with the Gel
Filtration LMW Calibration Kit (GE Healthcare). The
LmMK eluted from the column at a volume of 92 ml,
which corresponds to a molecular mass of approximately
35 kDa (data not shown).

A sample of LmMK, (0.5 mg/mL in 10 mM Tris- HCI pH,
20 mM NaCl and 1 mM tris(2-carboxyethyl)phosphine
hydrochloride) was used in sedimentation velocity exper-
iments performed at a wavelength of 280 nm, at 45,000
rpm and 20°C, using a Beckman Coulter XL-i analytical
ultracentrifuge. The sample was centrifuged with A,q,
measured every 5 min over a period of 15 hours. The
resultant data were analysed using the program SEDFIT
[31]. The sedimentation co-efficient that was obtained,
2.97 s, corresponds to a mass of approximately 33.6 kDa.

Crystallographic methods

Crystallization

LmMK crystallized using hanging drop vapor diffusion at
18°C. Drops were assembled from 2 pL reservoir (1.15 M
sodium citrate pH 6.2) and 2 pL protein solution (7.5 mg/
mL protein, 3 mM AMPPNP and 6 mM (R/S)-MVA). The
enantiomeric mixture of the substrate was prepared from
RS-mevalonolactone (Sigma-Aldrich) according to litera-
ture methods [32]. Thin monoclinic plates (0.4 mm x 0.2
mm x < 0.1 mm) grew after approximately one week.
Crystals of the native protein in complex with (R)-MVA
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formed under similar conditions with 25 mM AMPPNP,
50 mM (R/S)-MVA and 10 mM MgCl, in the drop.

Data collection

A crystal of SeMet LmMK was flash cooled directly in a
stream of gaseous nitrogen at 100 K and diffraction data
were measured on beam-line ID14-4 at the European Syn-
chrotron Radiation Facility (Grenoble, France). A fluores-
cence scan was used to determine the Se K absorption
edge wavelength for data collection, A = 0.97945 A, and
data recorded using a Q315r ADSC CCD detector. Data
for the binary substrate complex were collected using a
Rigaku 007 Micromax rotating-anode generator (Cu K, A
= 1.5418 A) operating at 30 mA and 40 kV, coupled to a
R-AXIS IV++ dual image plate system. All data were proc-
essed and scaled with Denzo/Scalepack [33].

Structure determination

We were unable to solve the LmMK structure by molecular
replacement and therefore adopted a single wavelength
anomalous dispersion approach. Data to 2.0 A identified
six Se positions out of eight (SOLVE[34]) and the correct
enantiomorph gave a figure-of-merit of 0.38 and a Z-Score
of 40. After density modification (RESOLVE [35]) the fig-
ure-of-merit increased to 0.72 with a correlation coeffi-
cient of 0.75. Automated model building (ARP/wARP
[36]) constructed an initial model of 531 (out of 658) res-
idues and the structure was refined (REFMACS5 [37]) to an
R-factor/R-work of 26.2 % and an R-free of 32.4 % of 1.75
A employing strict NCS restraints. 5% of the data were set
aside for the calculation of R-free. Additional residues and
water molecules were placed manually into the electron
density with COOT [38] interspersed by refinement with
REFMACS5. Towards the end of the refinement, the NCS
restraints were released. The quality of the structure was
assessed with PROCHECK [39]. All residues are situated in
most favored or additionally allowed regions of the Ram-
achandran plot apart from His25 in both molecules.
Three residues at the C-terminus are disordered and not
included in the structure.

The crystal structure of SeMet LmMK was used in molecu-
lar replacement calculations (MOLREP [40]) to provide
the initial model for the substrate complex. The correla-
tion coefficient of the first model was 0.67 and R-work
33.1 %. The electron density clearly indicated the presence
of (R)-MVA in molecule A of the asymmetric unit. The
refinement process was completed in a similar fashion to
SeMet LmMK. Statistics are presented in Table 1. Figures
were prepared with Chemdraw (Adept Scientific), PyMOLS
and ALINE (C. S. Bond, personal communication). Coor-
dinates and structure factors have been deposited in the
Protein Data Bank [PDB:2HFS and PDB:2HFU].
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Footnotes

# Z-score measures the statistical significance of the best
alignment and typically, dissimilar structures present a Z-
score less than 2.0.

$ DeLano, W. L. (2002) The PyMOL Molecular Graphics
System, DeLano Scientific, San Carlos, CA, USA.
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