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Coordination between cell proliferation and differentiation is important in normal development and oncogenesis. These
processes usually have an antagonistic relationship, in that differentiation is blocked in proliferative cells, and terminally
differentiated cells do not divide. In some instances, cyclins, cyclin-dependent kinases (CDKs) and their inhibitors (CKIs) play
important roles in this antagonistic regulation. However, it is unknown whether CKIs and cyclin/CDKs regulate the
uncommitted state in quiescent cells where CDK activities are likely to be low. Here, we show in C. elegans that cye-1/cyclin E
and cdk-2/CDK2 repress terminal differentiation in quiescent cells. In cye-1 mutants and cdk-2(RNAi) animals, after asymmetric
division, certain quiescent cells adopted their sister cells’ phenotype and differentiated at some frequency. In contrast, in cki-
1(RNAi) animals, these cells underwent extra divisions, while, in cki-1(RNAi); cdk-2(RNAi) or cki-1(RNAi); cye-1 animals, they
remained quiescent or differentiated. Therefore, in wild-type animals, CKI-1/CKI in these cells maintained quiescence by
inhibiting CYE-1/CDK-2, while sufficient CYE-1/CDK-2 remained to repress the terminal differentiation. The difference between
sister cells is regulated by the Wnt/MAP kinase pathway, which causes asymmetric expression of CYE-1 and CKI-1. Our results
suggest that the balance between the levels of CKI and cyclin E determines three distinct cell states: terminally differentiated,
quiescent and uncommitted, and proliferating.
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INTRODUCTION
In animal development, cell proliferation and terminal differen-

tiation must be strictly linked and coordinated [1,2]. A disruption

of this process can cause developmental abnormalities or cancer.

Cyclins, CDKs, and CKIs, are key regulators of this coordination.

For example, p27xic1/CKI is highly expressed in the terminally

differentiated cells of the retina [3], and its forced expression in the

retina not only blocks cell proliferation but also induces differ-

entiation. In myoblasts, p57kip2/CKI induces muscle differentia-

tion by inhibiting the cyclin E/CDK2 complex that phosphor-

ylates and destabilizes MyoD [4]. In sensory hair cells, p19ink4d/

CKI is required to maintain the differentiated state [5]. These

observations indicate that CKI and cyclin/CDK complexes

regulate not only proliferation but also an antagonistic coordina-

tion between proliferation and differentiation. Although this

antagonistic relationship occurs frequently during development,

some cells do not follow this rule. For example, certain stem cells

have both quiescent and uncommitted characteristics and do not

divide until they receive the appropriate signals [6]. In

hematopoietic stem cells, p21cip/CKI can maintain the quiescent

state [7]. However, it is not known whether CKIs and cyclins also

regulate the uncommitted state of stem cells.

Even in C. elegans, cell-cycle regulators are involved in cell-fate

acquisition. It was reported that cki-1/CKI (RNAi) animals have

extra distal tip cells (DTCs), which are terminally differentiated

cells that migrate and guide the gonadal arms [8]. Laser ablation

and lineage analyses showed that the extra DTCs often result from

extra divisions of cells that normally do not produce DTCs,

indicating that cki-1 has an important role in linking cell division

with cell fate. Similarly, in cye-1/cyclin E mutants, some non-

vulval cells adopt vulval fates [9]. However, it remains to be

elucidated whether these cell-cycle regulators are involved in cell-

fate acquisition directly or through their conventional functions in

cell-cycle regulation. A recent report showed that a cyd-1/cyclin D

mutant lacks DTCs [10]. In this case, an abnormal asymmetric

distribution of POP-1/TCF between daughter cells indicated that

cyd-1 regulates the polarity of the first asymmetric divisions of

DTC ancestors (Z1/Z4 cells). As a consequence of the abnormal

polarity, both daughter cells acquire non-DTC fates in cyd-1

mutants. A similar role in the regulation of cell polarity was

reported for cyclin E in Drosophila [11]. These results indicate that

cyclins play crucial roles in the fate determination of proliferating

cells. However, it has not been shown in any organism whether

cyclins and CDKs also regulate cell fate in quiescent cells.

We found that cye-1/cyclin E mutants in C. elegans have extra

DTCs. By laser ablation and lineage analyses, we showed that in

cye-1 animals, the sister cells of DTCs, which are normally

quiescent, differentiate into DTCs. Unlike in cki-1(RNAi) animals,

these cells in cye-1 mutants became DTCs within a few hours after

they were born, without further cell divisions, indicating that, in

normal animals, cye-1 represses their differentiation before it

functions to promote S-phase entry. We observed a similar extra-

DTC phenotype in animals of cdk-2(RNAi), a putative orthologue

of CDK2. Our results indicate that cyclin E/CDK2 can suppress

differentiation even in quiescent cells.
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RESULTS

The sister cells of DTCs become DTCs in cye-1

mutants
We found that cye-1 mutants have extra gonadal arms (Fig. 1B;

Table 1). The somatic gonad is produced from two precursor cells,

Z1 and Z4 (Fig. 1C) [12]. Each of these divides to generate four

cells at the L1 stage. Among the progeny, the most distal cells,

Z1.aa and Z4.pp, become DTCs, which normally migrate to

generate two gonadal arms, without further divisions. We found

that cye-1 mutants (os66, ar95, eh10 and RNAi) had up to two extra

DTCs per animal, all of which were positioned at the distal ends of

the gonadal arms, as judged by the expression of lag-2::GFP, which

is expressed in DTCs (Table 1) [13]. This phenotype has not been

reported, even in analyses of the cye-1(RNAi) gonadal phenotype

[10], probably because the feeding-RNAi method produces

a weaker effect than we observed using RNAi injection or

nonsense mutants. However, it was reported that cye-1 mutants

have an abnormally shaped gonad [9]. Such an abnormality might

be caused by extra DTCs. We analyzed the divisions of the

gonadal precursor cells at the L1 stage in cye-1 mutants and found

that they divided twice with the same timing and orientation as in

wild type (n.10, data not shown).

To identify the cells that generated the extra DTCs in cye-1

mutants, we performed laser ablation experiments (Figs. 1D–I).

Ablating both the Z1 and Z4 cells yielded no DTCs in cye-1

mutants (Fig. 1D), indicating that the extra DTCs were generated

from the Z1/Z4 lineages. We next ablated the Z1 and Z4

daughter cells. When both the Z1.a and Z4.p cells were ablated in

cye-1 mutants, no DTCs were observed (Fig. 1E). In contrast, when

both the Z1.p and Z4.a cells were ablated, extra DTCs were

observed (Fig. 1F), indicating that the extra DTCs were generated

only from the Z1.a and Z4.p cells. We next ablated both of the

original DTCs (Z1.aa/Z4.pp) and found that 4/8 cye-1 mutants

still had DTCs (Fig. 1G), indicating that the extra DTCs were

generated from the sister cells of the DTCs (Z1.ap/Z4.pa). To

confirm these results, we ablated all the granddaughters of the Z

cells except Z1.ap and Z4.pa (Fig. 1H) or except Z1.ap alone

(Fig. 1I). We found that in both cases, cye-1 mutants produced

DTCs, confirming that the extra DTCs are generated from the

sister cells of the DTCs.

We next followed the fate of the Z1.ap and Z4.pa cells in live

wild-type or cye-1 animals expressing lag-2::GFP (Figs. 2A–C, 2D–

F). Just after the Z1.a and Z4.p cells divided, a weak GFP signal

was detected in all of their daughter cells in both cye-1 mutants and

wild-type animals (n = 8, data not shown). In wild-type animals,

after 2 to 3 hours, the GFP signal increased in the DTCs (Z1.aa/

Z4.pp) and decreased in their sister cells (Z1.ap/Z4.pa) (Fig. 2A).

After about 5 hours, when the DTCs started to migrate, lag-2::GFP

was expressed nearly exclusively in the DTCs and not in their

sisters (Fig. 2B). In contrast, in 3/8 cye-1 mutants, the GFP signal

increased in both daughters of Z1.a or Z4.p, 3 hours after they

were born (Fig. 2D). After 5 hours, both daughter cells started to

migrate like wild-type DTCs (Fig. 2E). They continued to migrate

without further cell divisions for at least 8 hours after they were

born (Fig. 2F). We also periodically followed the lag-2::GFP

expression in cye-1 mutants from the L2 to L4 stages and found

that the number of DTCs did not change. These results indicate

that in cye-1 mutants, the Z1.ap/Z4.pa cells became DTCs within

a few hours after they were born at the L1 stage, like the Z1.aa/

Z4.pp cells.

In other organisms, cyclin E functions with CDK2. In C. elegans,

CDK-2/K03E5.3 is the most likely orthologue of CDK2, based on

sequence similarity [14]. Consistent with this possibility, both cye-1

mutants and cdk-2(RNAi) animals show a protruding vulva (Pvl)

and sterility [9,14]. We found that cdk-2(RNAi) animals had the

extra DTC phenotype (Fig. 2I; Table 1). As in cye-1 mutants, the

extra lag-2::GFP-positive cells in cdk-2(RNAi) animals were always

observed at the position of Z1.ap/Z4.pa at the end of the L1 stage,

and these cells migrated distally without further divisions (n = 8),

indicating that the Z1.ap/Z4.pa cells had transformed into DTCs.

Figure 1. Generation of extra DTCs from the sister cells of DTCs in
cye-1 mutants. (A and B) Structure of gonads in a wild-type animal (A)
and cye-1(eh10) mutant (B) at the L3 stage. The DTCs are marked by
arrowheads. The gonad is outlined with dotted lines. Anterior is to the
left; ventral is to the bottom. Anterior gonads were out of focus. Scale
bar, 20 mm. (C) The lineages of the Z1 and Z4 cells during the L1 stage
in wild-type animals are indicated on the left and right sides. A
schematic drawing of the gonad with the positions and division axes of
somatic gonadal cells is shown in the center. The Z2 and Z3 cells are
primordial germ cells. The DTCs are indicated by black circles. (D–I)
Laser ablation experiments in wild-type animals and cye-1(os66)
mutants. Lineage diagrams with the ablated cells marked by an X are
shown in the upper part of each panel. The lower parts of each panel
show the percentages of animals that had the numbers of DTCs
indicated on the left. Panel I includes animals in which Z1.a, Z1.p, Z4.a,
and Z4.pp were ablated.
doi:10.1371/journal.pone.0000407.g001
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Table 1. Production of extra DTCs in mutants of cell-cycle regulators.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

genotype % of extra gonad (n) % of extra DTC (n) P-values

wild type 0 (50) 0 (100) –

cye-1(os66) 30 (50) 32 (106) ,0.0001a

cye-1(eh10) 36 (50) 36 (102) ,0.0001a

dpy-5(e61) cye-1(ar95) 21 (50) 56 (74) ,0.0001a

cye-1(RNAi) N. D. 24 (37) ,0.0001a

cye-1(os66); CYE-1::GFP N. D. 0 (20) 0.0009b

cdk-2(RNAi) N. D. 20 (40) ,0.0001a

cye-1(os66); cdk-2(RNAi) N. D. 25 (12) 0.445b

cki-1(RNAi) N. D. 51 (41) ,0.0001a

cye-1(os66); cki-1(RNAi) N. D. 17 (24) 0.1027b

cdk-2(RNAi); cki-1(RNAi) N. D. 4 (84) 0.0049c

wild type with heat shock at middle L1 N. D. 0 (200) –

hs::cki-1 with heat shock at early L1 N. D. 0 (56) –

hs::cki-1 with heat shock at middle L1 N. D. 3 (196) 0.0141d

hs::cki-1 with heat shock at late L1 N. D. 0 (107) –

The extra-gonad phenotype was scored under Nomarski optics. The extra-DTC phonotype was scored in strains carrying lag-2::GFP. In dpy-5 ar95 animals, the extra-
gonad phenotype was observed less frequently than the extra-DTC phenotype, because the shape of the gonads was difficult to observe in the dpy-5 background,
especially for gonads on the far side of the animal from the objective lens. Heat shock was applied at the early (0–5 hrs after hatching), middle (7–11 hrs after hatching),
or late (13–15 hrs after hatching) L1 stage for 2 hrs at 33uC. The percentage of animals with extra gonads or DTCs is shown. n: number of animals scored. N. D.; not
determined. a Compared with wild type. b Compared with cye-1(os66) mutants. c Compared with cdk-2(RNAi) animals. d Compared with wild type with heat shock at
middle L1. See text.
doi:10.1371/journal.pone.0000407.t001..
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Figure 2. Transformation of quiescent cells to DTCs after their divisions in cye-1 mutants. (A–K) Anterior is to the left; ventral is to the bottom.
Merged GFP and Nomarski images. The gonad is outlined with dotted lines. The original DTC (Z1.aa) and its sister cell (Z1.ap) are marked by an
arrowhead and arrow, respectively. The extra lag-2::GFP-positive cells produced from Z1.ap (J) or Z1.p (K) are indicated by asterisks. Scale bar, 10 mm.
(A–H) Real-time analyses of lag-2::GFP expression in wild type (A–C), cye-1(os66) mutants (D–F), and hs::cki-1 animals after heat shock (G and H) from
the late L1 to early L2 stage. Each vertical set of panels represents the same animal over time. The expression about 3 hours (A and D), 5 hours (B, E
and G), and 8 hours (C, F and H) after division of the Z1.a cell is shown. (I–K) lag-2::GFP expression in cdk-2(RNAi) (I) and cki-1(RNAi) animals (J and K).
doi:10.1371/journal.pone.0000407.g002
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Furthermore, this phenotype was not significantly enhanced in cye-

1; cdk-2(RNAi) double mutants (Table 1). These results strongly

suggest that CDK-2 is a partner of CYE-1.

The Wnt/MAPK pathway regulates asymmetric

expression of cye-1 and cki-1
To understand how cye-1 regulates the fates of these cells, we

analyzed the expression of cye-1 and its putative negative-regulator,

cki-1. CKI-1 can bind CYE-1 in vitro and has been suggested to

act downstream of cyd-1/cdk-4 in cell-cycle regulation?[15]. We

generated CYE-1::GFP by inserting the gfp gene at the C-

terminus-encoding end of a cye-1 genomic fragment that included

the promoter region. CYE-1::GFP rescued the extra-DTC

phenotype of cye-1 mutants (Table 1).

CYE-1::GFP was expressed in the Z1.a/Z4.p cells before their

division (data not shown). Within 2 hrs after their division, the

GFP signal decreased in the Z1.aa/Z4.pp but not in the Z1.ap/

Z4.pa cells (Fig. 3A). Therefore, CYE-1 is expressed asymmetri-

cally between the daughters of the Z1.a/Z4.p cells. Similar

asymmetric expression was also detected using a cye-1 promo-

ter::GFP fusion gene (cye-1p::gfp), which lacks the cye-1 coding

sequence (Fig. 3E), indicating that the asymmetry is regulated at

the transcriptional level. In contrast, cki-1 expression, detected by

a cki-1 promoter::GFP fusion gene [16], was much higher in the

Z1.aa/Z4.pp cells than in the Z1.ap/Z4.pa cells (Fig. 3C). These

results suggest that the asymmetric expression of cki-1 and cye-1

determines the different fates of the DTCs (Z1.aa/Z4.pp) and their

sister cells (Z1.ap/Z4.pa).

In C. elegans, the asymmetry of many cell divisions is regulated

by the Wnt/MAPK pathway [17–19]. Wnt/MAPK signaling also

regulates the asymmetric nuclear localization of POP-1/TCF,

LIT-1/MAP kinase, and WRM-1/ß-catenin between daughter

cells [18–21]. A recent report showed that a mutation of cyd-1/

cyclin D disrupts the polarity of the Z1/Z4 division, resulting in

symmetric POP-1 localization [10]. The effect of this cyd-1

mutation on the Z1.a/Z4.p divisions was not reported. To

investigate the possibility that the cye-1 mutation disrupts the

polarity of Z1.a/Z4.p cells, we examined the localization of

GFP::LIT-1. (We could not examine the expression of GFP::POP-

1 and WRM-1::GFP, because their expression in cye-1 mutants

caused abnormal gonadal cell divisions.) GFP::LIT-1 was higher in

the Z1.aa/Z4.pp than in the Z1.ap/Z4.pa cells in wild type (8/9

animals) and in cye-1 mutants (12/13 animals) (Figs. 3G and H),

suggesting that the cye-1 mutation does not affect the polarity of the

Z1.a/Z4.p cells.

We next examined whether the asymmetric expression levels of

cye-1 and cki-1 were regulated by the Wnt/MAPK pathway, using

a temperature-sensitive wrm-1/ß-catenin mutation (ne1982) [22].

To avoid disrupting the Z1/Z4 polarity in wrm-1 mutants, the

mutants were grown at the permissive temperature (15uC), and

then shifted to the restrictive temperature (25uC) soon after the

division of Z1/Z4. After the temperature shift, CYE-1::GFP was

expressed strongly in both daughters of Z1.a/Z4.p (9/9 animals,

Fig. 3B), and cki-1::GFP was expressed weakly in both daughters

(14/15 animals, Fig. 3D), like the expression patterns in the

Z1.ap/Z4.pa cells in wild-type animals. Consistent with this, the

shifted animals were defective in DTC production (no DTCs in 2/

20 animals and one DTC in 2/20 animals. The P-value was

0.0021 compared with wild type by Fisher’s exact test). These

results indicate that the asymmetric expression of cye-1 and cki-1 is

regulated by the Wnt/MAPK pathway. In cye-1 mutants, the

asymmetric expression of cye-1p::gfp between the Z1.aa/Z4.pp and

Z1.ap/Z4.pa cells was maintained (10/10 animals, Fig. 3F),

suggesting that the cye-1 mutation does not affect the initial

asymmetry between the Z1.aa/Z4.pp and Z1.ap/Z4.pa cells that

is generated by the Wnt/MAPK pathway.

cki-1 inhibits cye-1 and cdk-2
In contrast to the Z1.aa/Z4.pp cells, which are terminally

differentiated, their sisters, Z1.ap/Z4.pa, are quiescent in wild

type, because they are born at the L1 stage but do not divide until

the L3 stage [12]. In addition, Z1.ap/Z4.pa and Z1.aa/Z4.pp

undergo extra divisions in cki-1(RNAi) animals (66%; n = 29) [8],

indicating that cki-1 is required for the maintenance of the

quiescent state of these cells. We found that the extra divisions of

these cells in cki-1(RNAi) animals occurred 2-5 hrs after the cells

were born. We analyzed the expression of GFP driven by the rnr

(ribonucleotide reductase) promoter, rnr::GFP, a marker that starts

to be expressed at the S phase (Figs. 3I–L) [16]. In wild-type

animals, the GFP protein remained in the Z1.a/Z4.p cells after

they divided (Fig. 3I). In the Z1.ap/Z4.pa cells, it disappeared

within 2 hrs after the cells were born (Fig. 3K) and reappeared at

the end of the L2 stage (n = 10; data not shown), suggesting that

the S phase starts at the end of the L2 stage. In cki-1(RNAi)

animals, it was continuously expressed in the Z1.ap/Z4.pa cells

Figure 3. Expression of cye-1, cki-1, lit-1 and rnr::GFP in the Z1.a daughters at the late L1 stage. (A–L) Anterior is to the left; ventral is to the
bottom. Merged GFP and Nomarski images. The gonad is outlined with dotted lines. Scale bar, 10 mm. The nucleus (A, B, G, H and I–L) or cell
membrane (C–F) of Z1.aa (arrowhead) and Z1.ap (arrow) is outlined by white and purple lines, respectively. The expression of CYE-1::GFP in wild type
(A) and wrm-1(ne1982) mutants (B). CYE-1::GFP containing the full-length CYE-1 sequence was localized mainly to the nucleus. Expression of cki-1::GFP
in wild type (C) and wrm-1(ne1982) mutants (D). cki-1::GFP does not include the cki-1 coding sequence [16] and was expressed in the cytoplasm and
nucleus. Expression of cye-1 promoter::GFP (cye-1p::gfp) in wild type (E) and cye-1(os66) mutants (F). Expression of GFP::LIT-1 in wild type (G) and cye-
1(os66) mutants (H). Expression of rnr::GFP in wild type (I and K) and cki-1(RNAi) animals (J and L). GFP was detected just after the division of Z1.a (I
and J) and disappeared after 2hr in wild type (K), but not in cki-1(RNAi) animals (L).
doi:10.1371/journal.pone.0000407.g003
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during the L1 stage (63%; n = 24, Fig. 3L). These results suggest

that cki-1 starts functioning to maintain the quiescent state of these

cells within 2 hrs after they are born. In cye-1 mutants, the lag-

2::GFP signal in these cells increased with similar timing (within

about 3 hrs after they were born). Together these findings indicate

that in wild-type animals, cye-1 represses the differentiation of

Z1.ap/Z4.pa cells into DTCs at the same time that cki-1 functions

to block extra cell divisions, and long before cye-1 starts functioning

to promote S-phase entry.

We next examined whether cki-1 acts through cye-1 and cdk-2 to

maintain the quiescent state. We scored the numbers of somatic

gonadal cells derived from either the Z1.a or Z4.p cells, based on

their positions and expression of lag-2::GFP at the early to middle

L2 stage (these non-DTC cells have residual fluorescence detect-

able under the confocal microscope, while the fluorescence in

germ cells is undetectable). At least 7/29 of the cki-1(RNAi) animals

showed extra divisions in the Z1.a/Z4.p lineages. An additional

12/29 of these animals showed extra cell divisions from either the

Z1.a/Z4.p or the Z1.p/Z4.a lineages. In contrast, in cye-1(os66);

cki-1(RNAi) (n = 24) and cdk-2(RNAi); cki-1(RNAi) (n = 15) double

mutants, no extra divisions were observed in the Z1.a/Z4.p

lineages, even when Z1.ap/Z1.pa did not differentiate into DTCs.

Therefore, cye-1 and cdk-2 are likely to regulate cell division as well

as differentiation in the Z1.ap/Z4.pa cells. In wild-type animals,

cki-1 probably inhibits the proliferation of these cells by repressing

the CYE-1/CDK-2 activities; however, sufficient CYE-1/CDK-2

function remains to repress terminal differentiation.

It was reported that cki-1(RNAi) animals also produce extra

DTCs [8]. The lineage analyses in that report showed that the

extra DTC production in the Z1.a/Z4.p lineages always occurred

after extra divisions. Consistent with this finding, in all cki-1(RNAi)

animals in which we observed lag-2::GFP-strong-positive cells at

the positions of Z1.ap/Z4.pa (n = 5), more than two lag-2::GFP-

strong-positive cells were observed (Fig. 2J). In contrast, in cye-

1(os66) (n = 10), cdk-2(RNAi) (n = 10), cye-1; cki-1(RNAi) (n = 4), or

cdk-2(RNAi); cki-1(RNAi) (n = 3) mutants, only a single lag-2::GFP-

strong-positive cell was observed at each Z1.ap/Z4.pa position

(Figs. 2E and I; data not shown). In addition to the extra DTCs

derived from the Z1.a/Z4.p lineages, cki-1(RNAi) animals also

produce extra DTCs from the Z1.p/Z4.a lineages [8]. Consistent

with this, we observed extra lag-2::GFP-strong-positive cells at the

position of Z1.p/Z4.a-derived cells (the ventral center of the

gonad) in cki-1(RNAi) animals (Fig. 2K). In contrast, extra positive

cells at this position were never observed in cye-1, cdk-2(RNAi), cye-

1; cki-1(RNAi), or cdk-2(RNAi); cki-1(RNAi) animals. These results

indicate that the causes of the extra DTCs in cki-1(RNAi) and cye-

1/cdk-2(RNAi) animals are different and that cye-1 and cdk-2 are

epistatic to cki-1 for these phenotypes.

Our results indicate a model in which high CKI-1 and low

CYE-1 levels in Z1.aa/Z4.pp result in their differentiation into

DTCs, while low CKI-1 and high CYE-1 levels in Z1.ap/Z4.pa

result in the quiescent state (Fig. 4, see Discussion for details). To

confirm this model, we altered the balance between CKI-1 and

CYE-1 by over-expressing CYE-1 using a heat-shock promoter

[23] before the division of Z1.a/Z4.p, and found that the animals

often lacked DTCs (18% one DTC and 27% no DTCs; n = 22).

We also found that over-expression of CKI-1 using a heat-shock

promoter (hs::cki-1) [24] resulted in extra DTCs, albeit at a low

frequency (Table 1). The extra-DTC phenotype was observed only

when heat shock was applied at the middle L1 stage (7 to 13 hours

after hatching), which corresponds to the time just before Z1/Z4

division to soon after Z1.a/Z4.p division. As in cye-1 and cdk-

2(RNAi) animals, in hs::cki-1 animals, a single, extra lag-2::GFP-

positive cell was always observed at the position of either Z1.ap or

Z4.pa at the end of the L1 stage, and this cell migrated distally

during the L2 stage, indicating the transformation of the Z1.ap/

Z4.pa cells into DTCs (Figs. 2G and H). The weak effect of the

over-expressed cki-1 was probably due to the high level of CYE-1

in the Z1.ap/Z4.pa cells. These results suggest that CKI-1 inhibits

the activity of CYE-1/CDK-2 not only in proliferation but also in

the repression of differentiation.

cye-1 represses the syncytial fate in quiescent seam

cells
To investigate whether cye-1 regulates cell fates in other cell

lineages, we analyzed seam cells. In C. elegans, cye-1 adult animals

have fewer seam cells than in wild type, although their

differentiation is normal [9]. Seam cells are specialized hypoder-

mal cells aligned on the lateral sides of the animal. At the end of

the L4 stage, seam cells differentiate by fusing with each other and

producing cuticular structures, termed alae [25]. At the early

larval stages, most seam cells, including T.a, V6.pa, and V6.pp,

undergo asymmetric divisions producing posterior seam cell (Se)

daughters and anterior daughters, which are terminally differen-

tiated cells that fuse with the hypodermal syncytium (Sy) within

a few hours after they are born (Figs. 5A and B) [25]. Seam and

syncytial cells can be distinguished by the adherence junction

marker AJM-1::GFP [26,27], which outlines seam but not

syncytial cells (Figs. 5C and E) [28,29]. We found that, in cye-1

mutants, some of the posterior daughters of the seam cells

abnormally adopted syncytial fates in the early larval stages

(Figs. 5D and F; data not shown), consistent with the observation

that adult cye-1 animals have fewer seam cells than normal [9]. We

scored this defect in the T and V6.p lineages, in which the

penetrance appeared to be higher than for other seam cells. In cye-

1(os66) mutants, the posterior daughters of T.a and V6.pa, which

are seam cells in wild-type animals, often fused to the syncytium

(9/21 for T.ap and 4/10 for V6.pap), like their sisters (T.aa and

V6.paa). Because the defects were observed shortly after these cells

were born, the defects were unlikely to be the indirect

consequences of an abnormal cell cycle. Consistent with this,

blocking the S phase by hydroxyurea soon after the T.ap cell was

born did not transform it into syncytium (n = 8, data not shown).

Figure 4. A model for the function of CKI-1 and CYE-1/CDK-2. In the
Z1.aa/Z4.pp cells, highly expressed cki-1 strongly represses the low CYE-
1/CDK-2 activity, blocking proliferation and permitting differentiation
into DTCs. In the Z1.ap/Z4.pa cells, the low level of CKI-1 blocks cell
division by inhibiting the CYE-1/CDK-2 complex, but sufficient CYE-1/
CDK-2 remains to repress terminal differentiation. In cki-1(RNAi) animals,
a high level of CYE-1 drives the cells towards proliferation.
doi:10.1371/journal.pone.0000407.g004
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Similar to the Z1.ap/Z4.pa cells, both the T.ap and V6.pap cells

appeared to be quiescent, because they did not divide until the

next larval stages, and did not express the S-phase marker (rnr::gfp)

until about 9 hrs for T.ap and 5 hrs for V6.pap after they were

born (see Materials and methods; data not shown). Thus, cye-1

appears to repress terminal differentiation in multiple quiescent

cells in C. elegans. However, cye-1 may not have this function in all

quiescent cells, because the number of anchor cells produced from

Z1.ppp/Z4.aaa after the long quiescent periods was not affected in

cye-1 mutants (n = 31), as judged by the expression of zmp-1::GFP,

which is a marker for the anchor cell [30].

DISCUSSION

Cyclin E and cell proliferation
In many organisms, progression of the cell cycle from the G1 to

the S phase is controlled by the activities of CDKs and their

partners, cyclins. E-type cyclins are G1 cyclins and have been

thought to be required for the transition from the G1 to the S

phase [31]. However, they are dispensable for normal mitotic cell

division in the mouse, given that mice deficient in both cyclin E1

and E2 develop almost normally [32]. Similarly, in C. elegans, cye-1

null homozygotes from heterozygote mothers do not show

embryonic or larval lethality [9]. Even though they have variable

cell-cycle defects in some lineages, like vulval cells [9], the M

lineage [33], and the posterior granddaughters of the T cell

(Fig. 5D), the cell divisions are not completely blocked, even in

those lineages. In contrast, we showed that ectopic cell divisions in

cki-1(RNAi) animals were completely suppressed in cye-1 mutants,

at least in the somatic gonad. Similarly, ectopic cell divisions of

vulval precursor cells induced in mutants deficient in cdc-14,

a putative regulator of cki-1, are also reported to be completely

suppressed in cye-1 mutants [34]. Although it is not clear whether

cye-1 is dispensable for most cell divisions because cye-1-null

mutants may still carry maternally supplied cye-1 products, these

observations suggest that there are fundamental differences

between normal and ectopically induced cell divisions in terms

of their dependence on cye-1. In mouse, even though cyclin E-

deficient cells can proliferate, they are resistant to oncogenic

transformation [32]. Therefore, the roles of cyclin E may be more

important for aberrant cell divisions than for divisions in normal

development in both species.

cye-1 represses terminal differentiation in quiescent

cells
We showed that cye-1 and cdk-2(RNAi) animals have extra DTCs as

a result of the transformation of Z1.ap/Z4.pa into their sister cells,

indicating defects in asymmetric cell division. However, the

polarity of the Z1.a/Z4.p divisions appeared to be normal,

because the expression of GFP::LIT-1 and cye-1p::gfp was

asymmetric between the daughters in cye-1 mutants, as in wild

type. We also showed that the Wnt/MAPK pathway regulates the

asymmetric expression of CKI-1 and CYE-1 between daughter

cells. In contrast, in the division of the Z1/Z4 cells, the cyd-1

mutation affects the Wnt/MAPK pathway, disrupting the

asymmetric localization of POP-1 between the daughter cells

[10]. Therefore, these cell-cycle regulators have distinct roles in

the asymmetric divisions of Z1/Z4 and Z1.a/Z4.p.

Extra DTCs were also reported in cki-1(RNAi) animals [8].

However, the extra DTC phenotype of cki-1 animals is different

from that in cye-1 mutants or cdk-2(RNAi) animals. In cki-1(RNAi)

animals, the extra divisions are always associated with the

production of extra DTCs from the Z1.a/Z4.p lineages [8]. In

Figure 5. cye-1 represses the syncytial fate in seam cells. (A and B) Lineages of the T (A) and V6.p (B) cells in wild-type and cye-1(os66) mutants. Sy:
syncytial cell. Se: seam cells. Dotted lines indicate the time after hatching the phenotype was scored (8 hrs for T and 20 hrs for V6.p). (C–F) Confocal
images of AJM-1::GFP expression. T.ap and V6.pap were outlined by the fluorescence in wild-type animals (C and E) but not in cye-1(os66) mutants (D
and F). The lack of AJM-1::GFP signal indicates that these cells fused with the hypodermal syncytium. In cye-1 mutants, daughters of the T.p cell
(arrows in D) often did not divide further. Scale bar, 10 mm.
doi:10.1371/journal.pone.0000407.g005
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addition, extra DTCs can be produced by cells in the Z1.p/Z4.a

lineages [8]. Such phenotypes (extra divisions and production of

DTC from Z1.a/Z4.p) were not observed in cye-1 mutants or cdk-

2(RNAi) animals, and were suppressed in cye-1; cki-1(RNAi) and cdk-

2(RNAi); cki-1(RNAi) animals. Because cyclin E is usually degraded

after the G1 phase [31], one possible explanation for the extra DTCs

in cki-1(RNAi) animals is that extra divisions of Z1.a/Z4.p progeny

and possibly in Z1.p/Z4.a progeny cause the degradation of CYE-1,

resulting in the derepression of the DTC fate, as occurs in cye-1 loss-

of-function mutants. In fact, in cki-1(RNAi) animals, we observed

a small number of somatic gonadal cells that expressed a much lower

level of CYE-1::GFP compared with other cells that had strong

expression (data not shown). Cells with low CYE-1 activities may

produce extra DTCs in cki-1(RNAi) animals.

Our results indicate that the balance between the levels of CYE-

1 and CKI-1 determines three distinct cell states: terminal

differentiation, quiescent and uncommitted, and proliferation, at

least in the Z1.ap/Z4.pa cells (Fig. 4). In those cells, highly

expressed cki-1 strongly represses the low CYE-1/CDK-2 activity,

blocking proliferation and permitting differentiation into DTCs. In

the Z1.ap/Z4.pa cells, the low level of CKI-1 nonetheless blocks

cell division by inhibiting the CYE-1/CDK-2 complex, but CYE-

1/CDK-2 still represses terminal differentiation. In cki-1(RNAi)

animals, high CYE-1/CDK-2 activities drive the cells towards

proliferation. Although it remains to be determined how general

this mechanism is even in C. elegans, our results imply that similar

mechanisms may be employed in mammals to maintain cells such

as stem cells in a quiescent and uncommitted state.

MATERIALS AND METHODS

Genetic analysis
Methods for C. elegans culture and genetics were as described

previously [35]. The cye-1(os66) mutants were identified in a screen

for animals that lack phasmid socket cells [36]. The os66 mutants

had a nonsense mutation in the cyclin-box (W234 to stop), like the

ar95 cyclin E mutants [9]. eh10 is a deletion mutant that lacks most

of the cye-1 coding sequence [15,33]. cye-1 mutants were

maintained as heterozygotes over the hT2[qIs48] balancer. We

used qIs56 for lag-2::GFP [8], maIs113 for cki-1::GFP [16], maIs103

for rnr::GFP [16], kuIs46 for AJM-1::GFP [27], gvEx35 for heat-

shock CYE-1 (a gift from M. Krause, NIH, Bethesda, MD) [23],

syIs49 for zmp-1::GFP [30], and neEx1 for GFP::LIT-1 [18,37]. To

analyze the T-cell lineage, we observed the AJM-1::GFP

expression 8 hrs after hatching, which is about 2 hours after the

T.a cell division. To analyze the V6.p lineage, we observed the

AJM-1::GFP expression 20 hrs after hatching. At this time, some

V6.paa or V6.ppa cells (syncytial cells) had not yet fused to the

syncytium (in 3/16 wild-type and 4/10 cye-1 animals), indicating

that we observed the phenotype shortly after these cells were

generated.

Analyses of CYE-1 expression
To generate the cye-1::gfp plasmid (pMF101), the cye-1 genomic

sequence spanning from the promoter to the region encoding the

C-terminus was amplified by PCR from wild-type genomic DNA

using the primers: 59- CAGTAACCTCAAGAGTCATC-39 and

59-TAGGATCCGAAAAGTCGTTGCGGATG-39. The ampli-

fied fragment was digested with BamHI and ligated into the

pPD95.77 vector (A gift from A. Fire), which had been digested

with BamHI. pMF101 was injected with pUnc76(+) into the unc-

76(e911) strain as described previously [38]. The expression of

GFP-fusion proteins was analyzed by confocal microscopy

(LSM510 Zeiss) and fluorescence microscopy (Axioplan 2 Zeiss).

The DTCs were counted after they were identified by their

expression of lag-2::GFP and their position at the distal ends of the

gonadal arms.

Laser ablation experiments and analyses of lineages

and expression
The cell ablation experiments were performed using a laser

microbeam (The MicroPoint Laser System, Photonic Instru-

ments). After ablation, the animals were recovered and grown

under standard conditions. The number of DTCs was determined

at the L4 or adult stage. Lineage analyses were performed

according to standard methods [25].

RNAi experiments
Fragments of exons (exon 7 for cye-1, exons 1 and 2 for cki-1, and

exons 2–4 for cdk-2) were amplified from genomic DNA by PCR

and subcloned into pGEM-T Easy (Promega). The double-

stranded RNAs were then produced from the subclones by in

vitro transcription with the T7 and SP6 RNA polymerases. The

animals were given a dsRNA injection and grown for 12–18 hrs.

Their progeny were then collected for analyses. It is reported that

cye-1(RNAi) results in nearly complete embryonic lethality [9,33].

However, under our conditions, the embryonic lethality was only

40% (n = 62), which allowed us to analyze the postembryonic

phenotypes.
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