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ABSTRACT A protein structure is represented as a network of residues whereby edges are determined by intramolecular
contacts. We introduce inhomogeneity into these networks by assigning each edge a weight that is determined by amino acid
pair potentials. Two methodologies are utilized to calculate the average path lengths (APLs) between pairs: to minimize i), the
maximum weight in the strong APL, and ii), the total weight in the weak APL. We systematically screen edges that have higher
than a cutoff potential and calculate the shortest APLs in these reduced networks, while keeping chain connectivity. Therefore,
perturbations introduced at a selected region of the residue network propagate to remote regions only along the nonscreened
edges that retain their ability to disseminate the perturbation. The shortest APLs computed from the reduced homogeneous
networks with only the strongest few nonbonded pairs closely reproduce the strong APLs from the weighted networks. The rate
of change in the APL in the reduced residue network as compared to its randomly connected counterpart remains constant until
a lower bound. Upon further link removal, this property shows an abrupt increase toward a random coil behavior. Under different
perturbation scenarios, diverse optimal paths emerge for robust residue communication.

INTRODUCTION

Interactions, delay, and feedback are the three key charac-

teristics of complex fluids. Using these features, entities at

different time and length scales communicate with great

accuracy, efficiency, and speed (1). Self-assembling molec-

ular systems are complex fluids with robust and adaptable

architectures that incorporate nanoscopic and mesoscopic

length scales decisive on their emergent properties over differ-

ent timescales; proteins, whose internal motions are decisive

on their folding, stability, and function, are exquisite exam-

ples of these (2–4). Proteins regularly experience perturba-

tions in their environment—e.g., in the cell where other

small and large molecules are densely and heterogeneously

distributed—or in the test tube with only water around,

displaying ceaseless fluctuations around their folded struc-

ture. Since proteins function efficiently, accurately, and rapidly

in the crowded environment of the cell, they are expected to

be effective information transmitters by design. Whether the

protein is functional or not depends on the size and location

of these fluctuations, making use of the concerted action of

residues positioned at different regions of the protein (5–8).

It is, therefore, of utmost interest to investigate how proteins

respond to changes in the environment under physiological

or extreme conditions.

The response of any structure to perturbations depends on

its general architecture. For proteins, local, regular packing

geometries (9) cannot provide short distances between highly

separated residues for fast information transmission. In fact,

it has been shown that random packing of hard spheres

similar to soft condensed matter is observed in a set of

representative proteins (10). Consistent with the concurrent

requirement of order and randomness in the protein structure,

we (11) and others (12–14) have recently shown that proteins

are organized within the small-world network topology.

A network is referred to as ‘‘small-world’’ if the average

shortest path between any two vertices scales logarithmically

with the total number of vertices, provided that a high local

clustering is observed (15). Such properties are common in

many real-world complex networks (16,17), and there are ex-

amples from a diverse pool of applications such as the world

wide web (18), the internet (19), math coauthorship (20),

power grid (15), and residue networks (11).

In recent years, we treated proteins as networks of inter-

acting amino acid pairs to determine their network structure

and to identify the adaptive mechanisms in response to

perturbations (11,21,22). In fact, similar network treatments

of proteins predict collective domain motions, hot spots, and

conserved sites (5,23–26). For these networks we used the

term ‘‘residue networks’’ (11) to distinguish them from

‘‘protein networks’’, which are used to describe systems of

interacting proteins (27). We carried out a statistical analysis

to show that proteins may be treated within the small-world

network topology. We analyzed the local and global prop-

erties of these networks with their spatial location in the

three-dimensional structure of the protein. We also showed

that the shortest path lengths in the residue networks and

residue fluctuations are highly correlated. In the past few

years, the network treatment of residues in proteins has been

adopted to study their various features such as conserved

long-range interactions (28), functional residues (29,30),

protein-protein association (31), and detection of structural

elements (32).

In all these treatments, which have been successful in de-

scribing many important properties of proteins and provide
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insight as to how they function, the identities of individual

amino acids are omitted in the calculations. In other words,

specificity is taken into account in an indirect manner by

assuming that the locations of the different amino acid

types along the contour of the polymeric chain have been

operational in determining the particular average three-

dimensional structure. In this viewpoint, the interactions be-

tween different pairs, triplets, etc. of amino acids are assumed

to be smeared out, and the observed behavior once the protein

is folded is driven by the overall structure. In fact, it has been

noted that the residue nonspecific interactions (i.e., those

depending on the relative placement of residue pairs, irrespec-

tive of their identity) contribute more to the overall stability of

proteins by a factor of about five, compared to distinct residue-

residue interactions (33). The question remains, however, as

to the extent to which such a coarsened description of the

folded protein may be used to determine other crucial pro-

perties, especially those pertaining to dynamics.

In this study, we further elaborate on the paths between

residue pairs, which we term ‘‘information pathways’’, to

understand how they relate to dynamic phenomena in pro-

teins. In particular, it is of interest to understand allosteric

interactions mediated through the changes in the dynamic

fluctuations around the average structure, both in the pres-

ence and absence of conformational changes, the latter having

very recently been shown to exist in proteins through a series

of NMR experiments (34). To this end, we attribute weights

to the links between residue pairs using knowledge-based

potentials (35,36) and discuss the relationship between

dynamic phenomena occurring in proteins and the optimal

path lengths obtained from these weighted networks. We

show that it is possible to extract minimal subgraphs from the

fully connected networks of residues, where a few designed

interactions overlaying the backbone are sufficient to display

communication path lengths similar to that of the full residue

network. We also demonstrate an application of these ideas

using a nonredundant data set of interacting proteins and

extract residue pairs on the interface of the receptor/ligand

that frequently appear along information pathways.

METHODS

Spatial residue networks

For the single protein calculations, we utilize 595 single-chain proteins with

sequence homology ,25% (37) and sizes spanning 54–1021 residues. This

protein set is identical to that used in our previous study of residue networks

(11). Forty-five of the proteins in the set have fewer than 100 residues, the

number of proteins in the ranges (101–200), (201–300), (301–400), and

more than 400 residues are 234, 122, 108, and 86, respectively. A list of all

the proteins used, their sizes, and the distribution of the sizes in counting

bins of size 20 are provided as Supplementary Material. For the receptor-

ligand complexes, on the other hand, we use the nonredundant benchmark

set of Weng and collaborators developed for testing docking algorithms that

contains overall 59 pairs of proteins with 22 enzyme-inhibitor complexes, 19

antibody-antigen complexes, 11 other complexes, and 7 difficult test cases

(38). We form spatial residue networks from each of these proteins using

their Cartesian coordinates reported in the Protein Data Bank (PDB) (39). In

these networks, each residue is represented as a single point centered on the

Cb atoms; the Ca atoms are used for glycine residues. Given the Cb

coordinates of a protein with N residues, a contact map can be formed for a

selected cutoff radius, rc, an upper limit for the separation between two

residues in contact. This contact map also describes a network that is

generated such that if two residues are in contact, then there is a connection

(edge) between these two residues (nodes) (11). Thus, the elements of the so-

called adjacency matrix, A, are given by

Aij ¼
Hðrc � rijÞ i 6¼ j
0 i ¼ j

:

�
(1)

Here, rij is the distance between the ith and jth nodes and H(x) is the

Heaviside step function given by H(x)¼ 1 for x . 0 and H(x) ¼ 0 for x # 0.

We adopt the value for the cutoff distance rc ¼ 6.7 Å, which includes all

neighbors within the first coordination shell around a central residue. For

the set of 595 proteins here, the Cb-Cb radial distribution function was

calculated and was displayed as an inset to Fig. 6 of Atilgan et al. (11), where

the first, second, third, and fourth coordination shells were shown to be

located at 6.7, 8.5, 10.5, and 12.0 Å, respectively. The former two show

distinct locations, whereas the latter two are interwoven, in agreement with

the liquid-like free-volume distributions in proteins (40).

In the case of the weighted residue networks, we assign weights to the

edges according to the interresidue interaction ‘‘potentials’’ of Miyazawa

and Jernigan (35) and Thomas and Dill (36). These are statistical potentials

extracted from a protein database. Both potentials have been extensively

tested in threading algorithms (41,42), protein stability, and designability

studies (43), folding and binding energetics, as well as amino acid clas-

sification (44). The Miyazawa-Jernigan (MJ) potential is based on a set of

protein subunit structures exceeding 1600 in number (35). In their treatment

of the problem, the system is taken as an equilibrium mixture of unconnected

residues and effective solvent atoms. The quasichemical (Bethe) approxi-

mation is employed to estimate the contact energies from the numbers of

contacts that arise in the sample (45,46). Excluded volume is taken into

account by the inclusion of a hard-core repulsion between the residues and a

repulsive packing-density-dependent term. The Thomas-Dill (TD) potential,

on the other hand, utilizes a much smaller data set of 37 proteins (36). The

authors use the folded chain conformation as the reference state, instead of a

collection of randomly mixed particles of residues and solvent molecules (in

treatments using the Bethe approximation, the problem of reference states

has been addressed and corrections have been proposed (47)). Thomas and

Dill employ an iterative method that extracts pair potentials that incremen-

tally drive the system toward a lowest energy structure that corresponds to

the native structure. The main discrepancies in the statistical potentials that

result from the approximate treatment or neglect of excluded volume, chain

connectivity, and interdependence of pairing frequencies are therefore

intrinsically taken care of.

In this study, we have repeated all the calculations using both the MJ

and the TD knowledge-based potentials. Despite differences in details, the

main results and conclusions reached do not change with the choice of

potential. In what follows, we therefore report only results from the TD

potentials. We assign eij, the value of the connection between the ith and jth

residue, according to the interresidue interaction potential between the

ith and jth residue types. Thus, the links connecting the residue pairs with

the least favorable interaction energy have the lowest weight, i.e., the highest

value.

Network descriptors

The networks are classified by local and global parameters, all of which can

be derived from the adjacency matrix (Eq. 1). In the absence of edge

weights, the most general descriptors of the network structure are average

connectivity of a node and the average shortest path length through the

network. The connectivity ki of residue i is the number of neighbors of that
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residue, ki ¼ +N

j¼1
Aij. The average connectivity of the network is thus K ¼

Ækiæ, where the brackets denote the average over all nodes. The connectivity

distribution of the residue networks follows the Gaussian distribution (11).

The shortest path length, Lh
ij, of a homogeneous network, where the links

have no weights, is the average over the minimum number of connections

that must be traversed to connect residue pair i and j. In computing the

shortest path between a pair of nodes, we make use of the fact that the

number of different paths connecting a pair of nodes i and j in n steps is

given by (An)ij. Thus, the shortest path between nodes i and j is given by the

minimum power, m, of A for which (Am)ij is nonzero.

In the presence of weights, it is possible to redefine the path lengths to

take into account the skewing effects of the weights. Weights may be

factored into the path lengths using different optimality criteria. We define

two criteria for paths between two residues (48–50): weak disorder and

strong disorder. In the former, the optimal path connecting residues i and j
is the length of the path, Lw

ij , that minimizes the sum of the weights along

the path. We employ the Dijkstra algorithm to compute the optimal paths in

the weak disorder case. In the latter (strong disorder) case, Ls
ij is the length of

the shortest path that minimizes the maximum weight along the path. To

obtain Ls
ij, we sort the links in descending order and sequentially remove the

links beginning with the highest weight (lowest energy). We continue to

remove the links until we find the bottleneck link that will cause the con-

nectivity between vertices i and j to be lost. We then compute the length of

this remaining path in terms of the number of intervening links. Note that

once the optimal path connecting residues i and j is determined, the path

length is simply the sum of the connections along the path; i.e., the step

lengths themselves are not weighted.

The characteristic path length of the network is the average,

L
y ¼ 2

NðN � 1Þ +
N�1

i¼1

+
N

j¼i 1 1

L
y

ij ; (2)

where the dagger symbol, y, represents the homogeneous, weak, or strong

paths, Lh, Lw, and Ls, respectively. Note that Ly is a measure of the global

properties, reflecting the overall efficiency of the network, under the

imposed constraints; i.e., the lower Ly is, the faster information is com-

municated through the network.

RESULTS

Random coils as a basis for comparison

Proteins may be modeled as networks where a special set of

interactions are imposed on chain connectivity, and the

extent to which such interactions are specially designed is of

interest here. In this study, we generate a variety of networks

based on selected proteins. A firm basis for comparing the

various networks that may be formed from a given chain

with a known contact number is a chain of the same length

and the same number of connections for each of its nodes but

a randomized set of links between the nodes. To generate

such networks, we rewire every residue (node) randomly to

another residue chosen from a uniform distribution such that

each residue has the same number of neighbors (contact

number, ki) while the contact order changes; chain connec-

tivity is preserved by keeping the (i, i 1 1) contacts intact.

For this purpose, we manipulate the adjacency matrix (Eq. 1)

so that the block diagonal of three elements remains un-

changed, whereas the rest of the off-diagonal terms are ran-

domly reassigned while maintaining the symmetry of the

matrix. Such a network corresponds to the random coil

conformation of a polymer chain at an arbitrary point in time.

In our previous study, it was established that the proteins

have a Poisson distribution of contacts (11). It is also known

from network theory that a completely random, Poisson

distributed network has the shortest path length (51),

Lrandom ¼
log N

log K
: (3)

As shown in Fig. 1 (bottom curve) it is verified that the

randomized chains behave exactly as expected from a com-

pletely random collection of nodes. Average path lengths on

the residue networks, Lh, on the other hand, are significantly

higher than the randomized networks while still preserving

the approximately logarithmic dependence on number of

residues, as shown with the filled circles in Fig. 1. The loss of

high optimality (i.e., a twofold increase in the shortest path

lengths compared to a random network) must be compensated

for by the emergence of functionality in the self-organized

structure. This exchange is achieved along the scaffold of the

nonrandom networks formed by the residues of the proteins.

Optimal paths in the presence of weights

In the absence of weight information of the links (i.e., for a

homogeneous network), Lh is the only parameter we can use

FIGURE 1 Optimal path lengths, Lh (d), Lw (s), Ls (D), of the protein

networks in comparison to those of the theoretical value of Poisson

distributed random networks of the same size and number of neighbors

(Lrandom, Eq. 3). Results are presented for the nonredundant set of 595

proteins whereby values for proteins of size (m 6 1) 3 10; m ¼ 3,5, . . . are

averaged. Protein path lengths computed with the weak disorder limit are

almost indistinguishable from those of shortest paths on homogeneous

networks; both may be best-fitted by a line of slope 5.2. Optimization with

the strong criterion results in networks with significantly longer path lengths

(best-fitting line through the data has slope of 9.0). For comparison, random

coils have also been generated by random rewiring of the residue networks

while preserving connectivity (see text). These networks provide the same

result as a totally randomized network (no chain connectivity) of the same

size (slope is 1.0). At the other extreme, randomized weights have been

imposed on the original residue networks (dotted line). Ls for these are

longer by a factor of ;1.3, indicating that the weights in a protein are

specifically distributed.
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as a measure of the distance between nodes in the network

with N vertices. In the presence of weights, the heterogeneity

of the medium is taken into account; hence different types of

optimality criteria can be defined. In the case of weak

disorder, the sum of the potentials along the optimal path is

minimized to obtain Lw. This can be interpreted as the path

that causes the minimum possible total disturbance to the

residues along the path. The links with lower potentials are

more likely to tolerate the disturbances. In Fig. 1 we display

a comparison of shortest paths of homogeneous and weak

disordered networks, Lh (shown by a solid circle), and Lw

(shown by an open circle), respectively, with that of the

random coil. The correlation between the two data sets is

excellent, showing that the weighted network in the weak

disorder limit behaves similar to the homogeneous network.

The optimal path in the strong disorder, on the other hand, is

the path that minimizes the maximum of the potentials along

the path, which can be interpreted as the shortest path that

causes minimal maximum disturbance along the path. As

exhibited in Fig. 1 for the strong disorder case (see the data

shown by a triangle), Ls is significantly larger than Lw by an

average factor of 1.3.

Are weights imposed on the links significant
for the protein?

To answer this question, we randomly reassign the potentials

attributed to pairs of residues. This is achieved by redis-

tributing the 210 different types of pair potentials in the TD

potential matrix; e.g., the original Ala-Thr value may now be

assigned to the Val-Glu pairs. As such, the underlying

network structure remains unchanged, whereas the optimal

paths that are preferred will be affected. The results based on

these networks are obtained from five realizations of this

randomization.

Two major observations are made for such networks: In

the weak disorder limit, the optimal path lengths increase

(data not shown), signifying that the residue pairs are spe-

cially distributed in the protein network to have similar allot-

ments of weights around a given node, although the values

themselves have a large span [�1.8 . . . 1.5]. Moreover, the

strong paths in the weight-randomized networks are longer

(shown by the dashed line in Fig. 1), further corroborating

this finding with the more stringent constraint that key links

minimizing the maximum weight along given paths exist in

the folded protein.

Identifying redundancies in the protein
communication pathways by
extracting subnetworks

We deduce subnetworks from the original residue networks

of each of the 595 proteins utilized in this work by sys-

tematically removing links that have values higher than a

given cutoff value, ecut. Chain connectivity is preserved

regardless of the residue types flanking a given bond. We

rely on the fact that a protein under external disturbance will

have a higher tendency to lose communication through high-

energy contacts, whereas the low energy ones will be more

cohesive. Thus, although the protein loses the ability to use

some paths, it is intrinsically assumed that additional and/or

alternate paths do not arise from such disturbances. The

shortest path lengths of each of the remaining networks are

subsequently computed. Several important cases are pre-

sented in Fig. 2 as a function of the random coil of the same

size, N, and the same original number of neighbors, K
(Eq. 3). The distribution of the links is shown in the inset

to this figure, and the chosen cutoff values are marked on

the distribution.

The redundancy in the proteins is such that when

approximately half of the nonbonded contacts are disre-

garded, ecut ¼ 0, the system still has the same shortest path

length as the full protein that preserves all of its contacts.

Upon further removal of links, the paths get longer, and they

overlap with Ls at ecut¼�0.6 kBT. At this point, only ;20%

of the long-range contacts remain in the subnetworks.

Further removal of contacts results in a sudden increase in

the shortest path lengths, exemplified by the case of ecut ¼
�1.0 kBT. In Fig. 2, this data set is shown, along with the

FIGURE 2 Optimal path lengths of the protein networks constructed with

various schemes as a function of the randomized counterparts of the original

networks (Eq. 4). Subnetworks from the original residue networks are

deduced using the edge values, whose distribution for the 210 possible

residue pair interactions are shown in the inset. Edges with values higher

than a given cutoff, ecut, are removed and the new shortest path lengths of

these subnetworks are computed; connectivity is preserved. The redundancy

in the proteins is such that, when approximately half of the long-range

contacts are removed (ecut¼�0.0 kBT, shown by the symbol d), the system

still has the same path length (Lw, solid line). Upon further removal of

contacts, the paths get longer and they overlap with Ls (dashed line) at ecut¼
�0.6 kBT, shown by the symbol s (only ;20% of the long-range contacts

remaining). Further removal of contacts results in a sudden increase in the

shortest path lengths, exemplified by the case of ecut ¼ �1.0 kBT shown by

e symbol (best-fitting line is shown dotted; slope ¼ 22.6).
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best-fitting line (slope ¼ 22.6, in comparison to the random

networks where the slope is 1). Note also that the scatter in

the data is extreme, signifying that the logarithmic depen-

dence of path lengths on number of residues is lost.

Another way to observe these data is by plotting the

shortest path lengths of the subnetworks as a function of the

random coil of the same size, N, and the modified (reduced)

number of neighbors, K9 (Fig. 3). Although the path length

increases as networks with fewer contacts are formed, as

expected, the slope of the best-fitting line remains constant

until ecut ¼ �0.6 kBT, i.e., coincides with the original, fully

connected network that utilizes the strong paths as was

shown in Fig. 2. Further removal of links results in a

dramatic increase in the shortest paths, as exemplified by the

ecut¼ �1.0 kBT case (shown by the e symbol; values on the

right y axis). Again, it is observed that the scatter in the data

increases as the subnetworks approach a linear chain (ecut ¼
�1.8 kBT, i.e., only connectivity remains).

DISCUSSION

A folded protein needs to perform its function under the

constraints that the overall shape is suitable for the task it

undertakes while it is not energetically penalized. As a

molecular machine, it needs to optimize the time it takes to

communicate the incoming information, which, to a first

approximation, may be assumed to be linearly dependent on

the shortest path length in its residue network. Excluded

volume imposes another limit on the size of the molecule. As

incoming information, we refer to perturbations that are

imparted on one or several of the residues. Changes in the

environmental conditions that are reflected on thermody-

namic parameters, such as the temperature, will affect the

whole system. The latter are not of concern in this study,

since these may potentially change the overall network

structure.

In the previous section we displayed results that introduce

several different perspectives to evaluate how folded

proteins are organized to manage their redundancies under

suboptimal conditions. Our basis for comparison is the

random coil, whereby a Poisson distributed arrangement of

residues will always lead to the most optimal path length,

given by the analytical relationship of Eq. 3. The random

networks constructed for Fig. 1 have the same average

number of neighbors as their folded network counterparts

(K ¼ 6.9, as shown in Atilgan et al. (11)). They may be

thought of as compact chains that constantly change their

partners at different points in time. They, therefore, rep-

resent an average over many significantly different config-

urations, in direct opposition to the case of a folded

protein, where residues always keep the same neighbors

while they fluctuate in space. For a given amount of

excluded volume, decided upon by chain connectivity and

the number of long-range contacts, the random coils give a

limiting value for how fast information may be spread

through the system.

On the other hand, information spreading will take on

different forms in a protein depending on the type of local

perturbation that is received. Two limiting situations may be

distinguished: i), Proteins experience constant random fluc-

tuations from the environment under the usual conditions in

which they function; e.g. random collisions with solvent

molecules, formation of local hot spots, etc. We classify

these perturbations, extensive in number but small in the size

of fluctuation they invoke, as ‘‘everyday events’’. ii), At

other times, there will be large perturbations that will be

targeted on specific regions, such as those occurring during

binding, or approach of a large cellular body to unspecified

regions of the protein. We classify these perturbations as

‘‘extreme events’’. The modes of response from the protein

are expected to be different for the two types of events. In

other biological systems, such modified reactions to different

types of input (global versus pathway-specific noise) were

also observed and quantified, e.g., for the variation in the

behavior of genetically identical cells (52,53).

In folded proteins, the network structure, equivalent to a

coarse graining obtained from the average conformation of

the folded structure, is expected to remain nearly the same

under both conditions. However, the way the energy will be

transmitted throughout the network will differ according to

the type of perturbation. Noting that the network is mostly

made up of residues held together by nonbonded interac-

tions, the proximity of pairs of residues will not differ; e.g.,

in many cases, the structure of the bound and unbound forms

of a ligand protein to its receptor is less than the experimental

FIGURE 3 Optimal path lengths of the protein networks constructed with

various schemes as a function of the randomized counterparts of the newly

constructed networks, L9random ¼ log N/log K9. Subnetworks are formed as

described in the caption to Fig. 2. Although the path length increases as

networks with fewer contacts are formed, the slope of the best-fitting line

remains constant until ecut¼�0.6 kBT, i.e., coincides with the original, fully

connected network that utilizes the strong paths. Further removal of links

results in a dramatic increase in the shortest paths, as exemplified by the

ecut ¼ �1.0 kBT case (shown by e; values on the right y axis). Also notice

that the scatter in the data increases as the subnetworks approach a linear

chain (ecut ¼ �1.8 kBT, i.e., only connectivity remains).
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uncertainty, as in the case of chymotrypsin inhibitor II (5).

However, the transfer of information (energy) along the

residue network will only occur if the fluctuations in neigh-

boring residues are correlated along any chosen pathway (as

conformational variability increases, the communication of

a signal in a molecule, e.g., conductance, occurs with less

strength and over a broader range of values, as was recently

demonstrated through unique experiments in a series of

diphenyl-containing small molecule systems (54)). For small

perturbations caused by random fluctuations, the correlations

between neighboring residues are expected not to be affected,

and the most probable pathway for information transmission

is the lowest energy one — i.e., Lw. For large impacts

(extreme events), although the overall network structure will

be preserved due to the pressure exerted by the compact

structure of the molecule, the correlations between pairs of

residues that are weakly connected to each other will be lost.

For the purpose of information propagation, those pathways

may be assumed to be nonexistent; i.e., those network con-

nections will be lost.

Usually, the impacts imparted on the protein in its usual

environment will be intermediate between the two extremes

of small perturbations and large impacts. Our analysis in Fig.

3 shows the operational limits of these molecular machines:

We may classify those perturbations that delete nearly half

the nonbonded contacts from being functional (i.e., ecut ¼
0.0 kBT) as everyday events. The change in the average path

length of the protein relative to the change in that of the

randomly rewired counterpart (@L9/@L9random, where L9 refers

to path length on the subnetworks with the lower average

connectivity, K9) remains fixed for that range (Fig. 3). The

latter quantity is shown for the whole range of values of ecut

in Fig. 4 a. In the same range of values, the average shortest

path length, a size-dependent quantity, is also constant (Fig.

4 b). The change in the average number of neighbors of a

node is also relatively small, decreasing from 6.2 to 5 (Fig. 4

c). Noting that two of these neighbors are located along the

chain, at ecut ¼ 0.0 kBT an average node has lost one of its

four nonbonded neighbors.

Further removal of the links signifies even larger pertur-

bations to the protein. Up to ;ecut ¼ �0.6 kBT, where the

shortest path lengths on the subnetworks coincide with the

strong paths of the original weighted residue networks

(marked by the dashed lines in Fig. 4, a–c), the quantity @L9/

@L9random shows a decreasing trend (inset to Fig. 4 a). In

the range of ecut ¼ �0.6–0.0 kBT, the increase in L is less

than a factor of two for all sizes of proteins, whereas its value

increases logarithmically beyond that cutoff (ecut , �0.7

kBT; see Fig. 4 b). The logarithmic dependence of the path

length on chain size is also preserved in this range (see

Figs. 2 and 3). Note that at this critical value of the cutoff,

only about one nonbonded contact per average node remains

(Fig. 4 c).

Representative proteins of a, b, and a/b types are shown

in Fig. 5; ribbon diagrams of the structures deposited in the

PDB are shown in the first column. All nonbonded contacts

(thin lines) superimposed on the backbone (thick lines) are

shown in the second column. The strongest links that form

the underlying structure and that give the polymeric chain its

FIGURE 4 Change in network parameters of the subnetworks formed as

described in the caption to Fig. 2, with cutoff imposed on the link values,

ecut, to include the screening effect: (a) For a wide range of ecut, the slopes of

the curves of Fig. 3, @L9/@L9random, remain nearly constant. Once ;85% of

the nonbonded contacts are removed, there is a sudden increase in the slopes.

A close-up look at this range in the inset shows that there is a dip in the

slopes before this departure from protein-like behavior. (b) Change in

subnetwork shortest path lengths with ecut for different protein sizes. The

differences between the logarithms of the path lengths for different network

sizes remain constant until the transition region of ecut. (c) Dependence of

chain connectivity on ecut, which is commensurate with the distribution of

the link values (inset to Fig. 2).
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protein-like path lengths are shown in the third column. Any

other interactions added to these create redundancies that

contribute to the robustness of the structure so that the

protein is able to function under the harsh conditions of

the cell. In reality, depending on the size and direction of the

impact, some of the weaker links that are located far from

that site may be preserved; i.e., we do not expect the links to

be lost hierarchically. Nevertheless, the protein’s reaction to

the perturbation, as measured by the average path lengths of

the effectively remaining contacts, is relatively insensitive to

size and direction, as long as the most cohesive of the

interactions remains intact.

Illustrative examples supplementıng
biophysical knowledge

Comparison with evolutionarily conserved networks of
residues that regulate allostery

To understand allosteric communication in proteins and how

signals that originate in one part of the protein propagate to

remote regions, a sequence-based statistical approach was

proposed (55,56) and further developed (57). Based on the

assumption that residues that are functionally and/or struc-

turally coupled to each other should coevolve, these authors

predicted a set of residues that communicate signals through

FIGURE 5 Example networks from

proteins with common folds. The re-

spective columns represent the ribbon

structure, total networks, and ‘‘strong’’

networks. In the network representa-

tions, the backbone traces are shown by

the thicker lines, and the nonbonded

contacts are shown by the thin gray

lines. 14%, 21%, 13%, 18%, 23%, and

17% of the nonbonded contacts remain

in these proteins, PDB codes 1cgn, 1i1b,

1igd, 1tim, 1byb, and 1bgl, respectively.
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the protein core in a chain-like manner for several protein

families. They showed that the predictions were confirmed

by mutagenesis studies.

We have studied one of the poxvirus and zinc finger

domain representatives (PDB code 1a68) with our structural

methodology. We find that the residues that were identified in

the sterically connected path as (77/118/149/148) in

the statistical study (55) lie on one of the two alternative

shortest paths connecting residues 77 and 148 (these are

PHE-77/LEU-122/ILE-121/THR-149/PHE-148 and

PHE-77/PHE-118/ILE-121/THR-149/PHE-148).

The former is slightly more favorable in the weak path due to

the lower contact potential between LEU-ILE compared to

that of PHE-ILE; the two paths are equivalent in terms of

strong path length since the bottleneck contact is brought

about by the THR-PHE pair in the last step. Similarly, for the

PDZ domain representative, we find that all the optimal paths

connecting HIS-76 and ALA-51 go through ILE-31 and

PHE-29, where the latter was found to be strongly coupled to

perturbations at position 76 (our calculations are based on the

structure with PDB code 1bfe, but we use the numbering

scheme in Lockless and Ranganathan (55)).

In the case of the GPCR family, we study the paths

between LYS-296, which was perturbed in the statistical

analyses (56,57), and TYR-136, which participates in one of

the regions that undergoes a structural change upon light

activation in rhodopsin. An allosteric communication exists

between them since the two residues are located ;30 Å apart

from each other. The weak path connecting the two is five-

steps long (LYS-296/SER-298/ALA-124/LEU-128/
ALA-132/TYR-136) and mainly utilizes a direct passage

from helix 7 to helix 3 that leads to residue 136 on its edge,

as a highway. The strong path, on the other hand, is nine-

steps long (LYS-296/PHE-293/PHE-294/THR-297/
TYR-301/ILE-305/TYR-136/LEU-128/ALA-132/
TYR-136) and initially utilizes helix 7, containing the epi-

center as a highway, including residue 294, which was iden-

tified as functionally important by Suel et al. (56). It then

passes on to helix 3 through the single residue MET-257 in

helix 6. This residue is known to participate in constitutive

activity of the molecule, possibly through interactions with

the conserved motif involving residues 302–306 on helix 7

(58). As this latter example clearly shows, strong pathways

are more descriptive of locating the important residues that

participate in allosteric communication.

Optimal paths identify key interactions that moderate
binding affinity

We postulate that residues, frequently found along the paths

connecting a receptor-ligand pair, control the communica-

tion between the two proteins. Since binding is an event that

requires exchange of large amounts of energy, in this treat-

ment, we use the optimal paths with strong disorder, which

emphasize the largest barriers to be crossed along the way.

Using the benchmark set of 59 receptor-ligand complexes

(38) described in the Methods, we seek the pairs of residues

that are most significant in determining key interactions.

In the data set, there are ;2 3 106 such pathways, giving

a statistically significant number for our analysis.

We first record the pairs that form bridges between recep-

tor and ligand for every path that originates in the receptor

and ends in the ligand; i.e., residue i is located on the receptor

and residue j is located on the ligand and they are connected

within the network formed by the protein-protein complex.

We then take into account the fact that the propensity of a

selected amino acid type being located along the interaction

surface significantly varies, as reported by Ma et al. (59);

e.g., TRP, ARG, and GLN are the residues that are found

most frequently on the interface. Therefore, we normalize the

probability of finding a residue pair along the strong path-

ways, pi$j. Thus, the conditional probability, p(i$jji, j), can

be computed by relating the probability that the pair actually

appears along the selected paths to the probability of each of

the residues in the pair being located on the interface, qi

and qj:

pði$ j j i; jÞ ¼ pi$j=ðqiqjÞ
+pi$j=ðqiqjÞ

; (4)

where pi$j is assumed to be proportional to the frequencies

that these pairs are observed in the interface along the strong

paths determined in this study. qi and qj are taken to be

proportional to the propensity of the residue to be found in

the interface of either the ligand or the receptor, as reported

in the literature (59). The resulting conditional probabilities

of the most significant pairs are listed in Table 1, along with

the value of the TD contact potential.

Note that the pairs that are used in the paths consist mostly

of the hydrophobic-hydrophobic interaction types, though

not necessarily appearing in the order of cohesive energy. In

fact, if all amino acids are grouped in the broadest sense of

hydrophobic, polar, charged, and GLY, over 42% of all pairs

that appear along the interface and that are on the strong

paths make hydrophobic-hydrophobic contacts. Further-

more, the interactions need not be symmetric; in fact, the

most significant pairs have ILE on the receptor and VAL

on the ligand (normalized probability is 0.13). The reverse

TABLE 1 Residue pairs that appear in the interface with

significantly enhanced probabilities

Residue pair

(receptor / ligand)

Propensity-normalized

probability, p(i$jji, j)
Contact potential

(units of kBT)

ILE-VAL 0.13 �0.98

ALA-ILE 0.041 �0.64

ILE-ILE 0.039 �0.71

ILE-LEU 0.036 �1.04

GLU-LYS 0.032 �0.09

LEU-ILE 0.030 �1.04

VAL-VAL 0.027 �1.15
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arrangement does not appear to be significant. A similar ob-

servation is also made for the ALA-ILE pair. In contrast, ILE

and LEU pairs appear to be involved in specific interactions,

though not with a significant preference for the ligand or the

receptor.

Although tens of residues appear on the protein-protein

interfaces, in general, only a small set of mainly hydrophobic

contacts dominate the affinity, as verified by mutagenesis

studies (see Atwell et al. (60), and references sited therein).

One example ligand-receptor system of a-chymotrypsin in

complex with eglin c is shown in Fig. 6. Residue pairs that

are on the largest number of pathways between the smaller

and the larger polypeptide chains are shown in purple and

pink (out of the total of 14,868), respectively. Note that in the

large interaction surface of the protein pairs, it is possible to

identify four key interactions utilizing three residues on the

ligand and four on the substrate. Of these, those involving

LEU-45 on eglin c is on two of the most frequently utilized

paths connecting the two proteins, participating in 54% of

the strong paths connecting the two proteins. This residue

is the primary specificity residue of eglin c, whose nature

greatly affects the strength and specificity of the association

between the inhibitor and the enzyme, as shown by the

equilibrium constants determined for the interaction between

chymotrypsin and the inhibitors expressed with variants of

LEU-45 (61). TYR-49, on the other hand, participates in

43% of the strong paths. In fact, in another innovative study,

libraries of randomly constructed variants of eglin c at posi-

tions 33, 35, 37, 39, 40, 47, 49, 50, 65, and 68 were con-

structed and screened for activity (62). Therein, position 49

solely emerged as having a significant effect on the binding

affinity of eglin c to various substrates.

Another example presented in Fig. 6 is between the chemo-

kine, interleukin 8 (IL-8), and a fragment from its receptor

CXCR1 whose structure was determined by NMR (63)

and on which we previously conducted an analysis of the

structure/function relationships (64). The generally accepted

scheme for the binding mode between CXC chemokines that

contain an ELR motif and their receptors is that the N-loop

residues of the chemokine interact with the N-terminal

domain residues of the receptor (site I), and the N-terminal

residues of the chemokine interact with the receptor exoloops

and transmembrane residues (site II) (65). The structure we

study here corresponds to site I, and therein, interactions

between the fragment-chemokine residues MET-8-PHE-17,

TYR-15-ILE-10, TYR-15-CYS-50 emerge as key bridging

pairs on the strong pathways. MET-8 and TYR-15 residues

are utilized nearly equally between the two proteins. On the

other hand, since TYR-15 is toward the C-terminus of the

peptide that leads to the seven transmembrane helices, it is

expected that if this study were to be conducted on the full

CXCR1, there would be a predominant shift of the distri-

bution toward the contacts made by this residue. In fact,

TYR-15 is known from studies on alanine analogs of the

fragment to be important for affinity, whereas truncation of

residues up to and including MET-8 does not affect binding

affinity (63). Thus, this analysis, which emphasizes the

strong paths in the case of large perturbations (i.e., binding)

experienced by a protein, is successful in identifying the key

interactions on the binding surface.

CONCLUSION

In this study, we have taken a network perspective of

analyzing proteins and have shown that residue specificity

plays an important role in protein functioning. A statistical

analysis on nearly 600 nonhomolog proteins has led us to

define key quantities for discriminating the underlying

structure that make the protein robust in the environment

where it is functional. In particular, the quantity @L9/

@L9random (Figs. 3 and 4 a) has been uniquely defined for

finding a critical threshold value to determine the key

interactions in the protein, if it is to survive extreme events

and to continue carrying out its function. Our results also

support the finding that optimized protein sequences can

tolerate relatively large random errors in pair potentials

obtained using a variety of methodologies (47,66). In fact,

none of our conclusions change when the work here is re-

peated with the pair potentials of Miyazawa and Jernigan

(35), rather than that of Thomas and Dill (36), although there

are differences in the details of, e.g., Fig. 4.

In this work, we propose that in events involving small

perturbations, the total energy to traverse that path will be

important and information will flow through the optimal

paths with weak disorder, similar to that in the homogeneous

network. On the other hand, when large perturbations are

involved, such events require surpassing the largest energy

FIGURE 6 Example systems for bridging residues between interacting

proteins; pairs that are on the largest number of pathways between the

smaller and the larger polypeptide chains are shown in purple and pink,

respectively: (left) Eglin c (white) in complex with a-chymotrypsin (cyan);

PDB code: 1acb. The interacting pairs are (inhibitor-enzyme): LEU-45-

VAL-213, LEU-45-TRP-215, TRP-215-PHE-41, TYR-49-PHE-39; note

that LEU-45 on eglin c interacts with two residues and is on 54% of the

strong paths. TRP-215-PHE-41 occurring in only 3% of the pathways is

shown in a slightly lighter shade. (Right) CXCR1 fragment (white) in

complex with the chemokine il8 (cyan); PDB code: 1ilq. The interacting

pairs are (fragment-chemokine): MET-8-PHE-17, TYR-15-ILE-10, TYR-

15-CYS-50.
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barriers along the paths. In this approach, the same pair

potentials are used as thermodynamic measures in the former

case and as kinetic measures in the latter. If a pair of residues

has high contact energy, it may be assumed that the energy

that must be used to separate them will be commensurate

with its value to a first approximation. Due to other effects

such as the size and the shape of the residues, slight modifi-

cations may be included. We feel that the network approach

used here—involving many approximations as well as a

large amount of coarse graining overlaying the atomic

structure—has firm grounds. The strong paths, therefore, set

a limit on the protein whereby the robust structure resists

large amounts of external perturbations and preserves its

protein-like communication pathways. Furthermore, using

this approach, we have been able to define key contacts that

form bridges between interacting proteins (Table 1). Note

that nearly half the surface area of the total protein, and

therefore an overwhelming number of residue pairs, is in-

volved in protein-protein interactions. As a possible practical

application of this approach, the few key contact pairs iden-

tified may be used as primary links in recognizing the

interaction geometry, overlaid by the energy lowering con-

tributions from the rest of the pairs in solving protein-protein

interaction problems.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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