TABLE 2.
Robustness with respect to parameter variations evaluated by Monte Carlo approach (11)
| Cooperative | Inhibitor | Zero-order | |||
|---|---|---|---|---|---|
| n = 1 | 0.00 | kf = 0.1, kb = 10−2 | 0.00 | KM = 10−1 | 0.02 |
| n = 2 | 0.41 | kf = 1, kb = 10−3 | 0.09 | KM = 10−2 | 0.07 |
| n = 3 | 0.37 | kf = 1, kb = 10−4 | 0.13 | KM = 10−3 | 0.16 |
| n = 4 | 0.35 | kf = 10, kb = 10−3 | 0.18 | KM = 10−4 | 0.21 |
| n = 5 | 0.34 | kf = 102, kb = 10−5 | 0.32 | KM = 10−5 | 0.29 |
| n = 10 | 0.29 | kf = 106, kb = 0 | 0.37 | KM = 10−10 | 0.36 |
We generate random parameter sets for k1, k2, and kd (the parameters common to all three models when assuming km to correspond to kd), so that each parameter is uniformly distributed in logarithmic space in the interval from 10−5 to 1. We evaluate 10,000 parameter sets for each model. This provides accurate values whose asymmetric binomial 95% confidence intervals are ∼2% around the values provided.