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REPORT

Identification of a Novel Risk Locus for Progressive
Supranuclear Palsy by a Pooled Genomewide Scan of 500,288
Single-Nucleotide Polymorphisms
Stacey Melquist,* David W. Craig,* Matthew J. Huentelman, Richard Crook, John V. Pearson,
Matt Baker, Victoria L. Zismann, Jennifer Gass, Jennifer Adamson, Szabolcs Szelinger,
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Richard J. Caselli, Neill Graff-Radford, Irene Litvan, Matthew J. Farrer, Dennis W. Dickson,
Mike Hutton, and Dietrich A. Stephan

To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative
disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring
risk of PSP that could be identified through a pooling-based genomewide association study of 1500,000 SNPs. Candidate
SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference
between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on
chromosome 11p12-p11 that showed evidence of association at allelic ( ), genotypic ( ), and haplotypicP ! .001 P ! .001
( ) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2)P ! .001
and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated
in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.
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Progressive supranuclear palsy (PSP [MIM 601104]) is the
second-most-common form of parkinsonism, with a pop-
ulation prevalence rate of 6–6.4 per 100,000.1,2 Clinical
features include vertical-gaze palsy and postural instabil-
ity.3,4 PSP is characterized neuropathologically by neuronal
and glial inclusions composed of aggregated microtubule
associated protein tau (MAPT) in the basal ganglia and
brain stem.5,6 Mutations in the MAPT (MIM 157140) gene
have been identified in patients with a clinical presenta-
tion of PSP.7–14 A recent report also described linkage to
chromosome 1q31.1 in a family with autosomal dominant
PSP.15 However, only the MAPT locus has been consistently
associated with increased risk for idiopathic PSP.16–20 The
MAPT locus exists as two major haplotype groups, termed
“H1” and “H2”16 in European populations, with the H2
haplotype defined by 1100 SNPs that are inherited in
strong linkage disequilibrium (LD) with each other, re-
flecting the total absence of H1-H2 recombination.21 In-
heritance of two copies of the H1 haplotype (H1/H1) is a
major genetic risk factor for PSP.16 A large collection of
pathologically confirmed PSP samples was used recently
to fine map PSP risk on H1 chromosomes in PSP cases and
controls. 22,23 PSP risk was associated with an extended

subhaplotype, and narrowing the region for PSP risk to a
22-kb region in intron 0 of MAPT was accomplished by
examining younger patients with, presumably, a larger ge-
netic component to their disease.22,23 The most likely ex-
planation of the association with the MAPT H1 haplotype
and PSP is that variants in the H1 (and H2) haplotypes
confer risk of (protect against) disease by altering expres-
sion at the locus, with the risky H1 haplotypes expressing
higher levels of MAPT.22–26

Calculations of population-attributable risk suggest that
only ∼68% of the risk of PSP can be accounted for by the
MAPT H1 haplotype, suggesting there may be additional
risk genes involved in PSP. We hypothesized that addi-
tional genetic loci involved in conferring risk of PSP could
be identified through genomewide association (GWA)
methods. The cost of performing an association study that
involved individual genotyping of thousands of SNPs for
a series this size was prohibitive, so, instead, we used a
pooled-DNA approach to identify additional risk factors.
Whereas a pooling-based genomewide scan of thousands
of SNPs has been proposed in principle, in large part, these
studies have not been used for the discovery of genes pre-
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Table 1. Predicted Allelic Frequencies for
the Top 1,000 SNPs

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 1. Two loci showing strong support for association by pooled analysis. A, Genomewide plot of the mean rank of five consecutive
SNPs, calculated to identify clusters of high-ranking SNPs. The single best region was on chromosome 17, neighboring MAPT, and the
second best region was on chromosome 11p12. Chromosome 11p12 also harbored the SNP that ranked #1 overall by single-marker
statistics. B, Single-marker rank statistics for SNPs over the MAPT (left) and DDB2/ACP2 (right) loci. SNPs deemed less reliable or showing
high variability among replicates were removed, and the remaining SNPs were ranked in order from 1 (showing the greatest difference
between cases and controls) to 428,867 (showing the least difference between cases and controls) with use of a silhouette-test statistic
in GenePool software (TGen Bioinformatics Research Unit). Rank scores are plotted versus chromosomal position. Genes within the
plotted chromosomal region are shown below. SNPs on the Affymetrix 500K platform are shown above, and SNPs on the Affymetrix
100K platform are shown below. EA p Early Access.

disposing to complex diseases,27,28 likely because of tech-
nical concerns or lack of technology and analysis tools.

The patients used in the initial pooling study, the “orig-
inal” series, were largely derived from pathologically con-
firmed subjects collected by the PSP Society and sent to
D.W.D. for brain autopsy. As described elsewhere, the pa-
tient samples in this brain bank were donated from the
United States and Canada.29 The patient series is similar
to the one that we employed in previous studies to fine
map the H1 genetic risk,22 with 288 subjects with a pri-
mary pathological diagnosis of PSP used to create the
pool of PSP-affected patients. A total of 344 age- and sex-
matched cognitively normal control individuals were ob-
tained through the Normal and Pathological Aging pro-

tocol at the Mayo Clinic (Scottsdale),30,31 to create the pool
of control individuals. All patient and control individuals
were white from the United States and Canada, and in-
stitutional review board (IRB)–approved protocols were
used in the collection of all samples.

Replicate pools of patients with PSP and control indi-
viduals were created as described elsewhere.32 Samples
were genotyped on 20 replicate Affymetrix 500K arrays
and 20 Affymetrix 100K, in accordance with the Affymet-
rix protocols, whereby each of the five replicate pools was
genotyped on two replicate arrays. This design therefore
yielded probe-intensity data for both platforms on 10 rep-
licate arrays per cohort. Data were analyzed using Gene-
Pool software (TGen Bioinformatics Research Unit).32 In
brief, probe-intensity data were directly read from cell-
intensity (CEL) files, and relative allele signal (RAS) values
were calculated for each quartet. These values yield in-
dependent measures of different hybridization events and
are consequently treated as individual data points. We
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Figure 2. Haplotype sliding window–analysis results. The hap-
lotype score–based method of Schaid et al.40 was used to inves-
tigate evidence of association of haplotypes with case-control
status. Only haplotypes with an estimated overall frequency of
�5% were considered for these analyses. Reported P values are
based on asymptotic assumptions but were verified by simulating
P values derived from 1,000 permutations of case and control labels
and were found to be consistent. Global P values for each 4-marker
haplotype are denoted as lines at the �log10P. Only young path-
ologically confirmed PSP cases (death at age !76 years) were used
for the analysis. All individuals in the control group were used in
all analyses, since no single SNP showed significantly different
allelic frequency distribution in controls when stratified by age.
Global is denoted by a dashed line. SNP numbers are asP p .01
noted in table 3.

Table 2. Association Analysis of rs901746 in Original and Replication Series

Population n

No. (%) of

Alleles Genotypes GG versus AG and AA

A G AA AG GG OR 95% CI P

Control combined 735 1,011 (75) 335 (25) 377 (56) 257 (38) 39 (6) … … …
Control original 344 438 (78) 126 (22) 166 (58) 106 (37) 10 (4) … … …
Control replication 391 573 (73) 209 (27) 211 (54) 151 (39) 29 (7) … … …
PSP combined 501 661 (68) 317 (32) 231 (47) 199(41) 59 (12) 2.2 1.5–3.4 .0001
PSP original 288 374 (68) 178 (32) 131 (47) 112 (41) 33 (12) 4.0 1.9–8.3 .0001
PSP replication 213 287 (67) 139 (33) 100 (47) 87 (41) 26 (12) 1.7 1.0–3.0 .05

used a silhouette statistic to rank all genotyped SNPs,33

because it avoids introducing unnecessary variance by av-
eraging probe-intensity data from probes with different
hybridization properties. Silhouette scores range from 1,
where significant separation between data points has been
achieved and cluster assignment can be made with con-
fidence, to �1, where differences in allelic frequencies are
less reliable. Poorly performing SNPs were identified by
Affymetrix as unreliable in the transition to Mendel3 li-
braries or exhibited high variance between replicate arrays
and were removed from the analysis; 428,867 SNPs re-
mained. SNPs were ranked on the basis of silhouette score,
whereby the SNP with the highest score was ranked 1 and
the SNP with the lowest score was ranked 428,867, with
use of Affymetrix’s Mendel3 libraries for the Affymetrix
500K arrays and HindIII and XbaI libraries for the Affym-
etrix 100K arrays, then were sorted by chromosome and
physical position. With this ranking, it is assumed that
SNPs approaching a rank of 1 will have larger differences
in allelic frequency. With each sample ranked by silhou-
ette score, we calculated a sliding-window statistic of the
mean rank for consecutively neighboring SNPs across a
fixed window size. Window sizes from 2 to 31 were used.

Since the MAPT H1 haplotype is associated with disease
with a haplotypic odds ratio (OR) of ∼3–4,16,22,23,34 it served
as an internal positive control for the study. For analysis,
we used the 500K data to identify chromosomal regions
of interest (i.e., those with small mean-rank scores). The
100K data were then used to confirm that a region iden-
tified in the 500K analysis contained SNPs with large al-
lelic frequency differences. The SNP with the single best
statistical rank on the 500K chip was rs901746 on chro-
mosome 11p12, and the second-best SNP was rs17662235,
near MAPT. The top 1,000 SNPs, based on individual sta-
tistical rank, are given in table 1. Multimarker statistics
also identified both chromosome 11p12 and chromosome
17q21 (MAPT) regions with sliding windows of multiple
sizes. Although we recognize that this type of statistic is
biased because of genomewide LD, it allowed us to identify
clusters of high-ranking SNPs that neighbor one another,
which reduced the possibility of technical errors influ-
encing the results. Shown in figure 1A, the MAPT locus,
labeled as having the #2 SNP overall, showed the greatest
evidence of differences between case and control pools
with use of the sliding-window analysis, largely because

of 38 SNPs within the top 1,000 SNPs overall and a total
of 75 SNPs in the region with a rank score of !10,000 (fig.
1B and table 1). Examination of the individual SNPs with
high rank scores over this locus showed SNPs that were
derived from a region covering the full extent of the MAPT
H1 haplotype, spanning nearly 1 Mb (fig. 1B).36 All of the
75 SNPs with genotype-frequency data in the database
resembled MAPT H2 variants (which differentiate between
H1 and H2 MAPT haplotypes) rather than H1 variants
(which differentiate between H1 subhaplotypes); this is
because, in white populations, the SNP minor-allele fre-
quency was ∼0.2, whereas the minor allele of the SNP was
absent or rare in Asian populations and African popu-
lations.36,37 In addition, two of the SNPs with low rank



Table 3. Single-Marker Analysis of Tag SNPs in the Combined Series and in Both
Young and Old Patient Populations

tagIDa (SNP),
and Allele

No. (%) of
Alleles in
Controls

( )n p 532

All Cases
( )n p 448

Youngb Cases
( )n p 162

Oldb Cases
( )n p 182

No. (%)
of Alleles P

No. (%)
of Alleles P

No. (%)
of Alleles P

1 (rs11039130): .003 .02 .25
C 600 (69) 614 (75) 224 (76) 245 (72)
T 274 (31) 202 (25) 72 (24) 95 (28)

2 (rs4647709): .5 .57 .88
C 806 (91) 787 (90) 292 (90) 331 (91)
T 78 (9) 85 (10) 32 (10) 31 (9)

3 (rs2291120): .0004 .003 .006
T 781 (92) 859 (87) 280 (86) 317 (87)
C 67 (8) 115 (13) 44 (14) 47 (13)

4 (rs10742797): .81 .72 .98
A 591 (81) 572 (81) 212 (82) 243 (80)
T 143 (19) 134 (19) 48 (18) 59 (20)

5 (rs1685404): .72 .97 .96
G 598 (68) 560 (67) 213 (68) 237 (68)
C 282 (32) 274 (33) 101 (32) 111 (32)

6 (rs7395581): .03 .02 .07
A 378 (71) 437 (65) 157 (63) 180 (65)
G 152 (29) 233 (35) 93 (37) 96 (35)

7 (rs11039138): .01 .02 .37
G 470 (56) 442 (62) 168 (64) 173 (59)
A 372 (44) 268 (38) 94 (36) 121 (41)

8 (rs2957873): .22 .52 .28
A 728 (83) 679 (81) 257 (81) 281 (80)
G 150 (17) 163 (19) 59 (19) 69 (20)

9 (rs4647736): .03 .04 .12
C 807 (91) 736 (88) 273 (88) 305 (89)
T 75 (9) 98 (12) 39 (13) 39 (11)

10 (rs2013867): .004 .006 .02
T 657 (74) 549 (66) 206 (66) 236 (67)
C 229 (26) 279 (34) 106 (34) 114 (33)

11 (rs901746): !.0001 .003 .004
A 659 (76) 570 (67) 204 (65) 242 (68)
G 213 (24) 282 (33) 110 (35) 116 (32)

12 (rs1050244): .53 .89 .44
C 851 (97) 823 (96) 307 (97) 343 (96)
T 29 (3) 33 (4) 11 (3) 15 (4)

13 (rs11039143): .87 .64 .52
T 830 (98) 782 (98) 293 (98) 319 (98)
G 18 (2) 16 (2) 5 (2) 5 (2)

14 (rs7118396): .16 .27 .13
C 741 (86) 688 (84) 253 (84) 287 (83)
T 117 (14) 132 (16) 49 (16) 59 (17)

15 (rs12577530): .0009 .005 .04
G 784 (88) 701 (82) 260 (82) 296 (84)
C 106 (12) 149 (18) 58 (18) 58 (16)

16 (rs7114704): .01 .3 .0006
C 813 (93) 803 (96) 288 (95) 343 (98)
T 61 (7) 35 (4) 16 (5) 7 (2)

17 (rs10501320): !.0001 .003 .16
G 609 (70) 641 (78) 230 (79) 255 (74)
C 265 (30) 179 (22) 62 (21) 91 (26)

NOTE.—Significant P values are shown in bold.
a Tag SNPs were chosen on the basis of the tagging algorithm in Haploview v3.32 software,39 with

the “Pairwise Tagging Only” option selected and the r2 threshold set at .8.
b Subjects aged !76 years were classified as “young”; subjects aged �76 were classified as “old.”
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Table 4. SNP Discovery Results from Sequencing DDB2 and ACP2 in 18 Subjects with PSP

Sample

Genotype at DDB2
5′r3′

Genotype at ACP2
3′r5′

Intron 8 Intron 9 3′ UTR Intron 6 Exon 5 Intron 3 Exon 1

rs326222 rs901746 rs1050244 rs11039146 rs2242261 rs10838677a ss68362654b rs4752973 rs2167079c

1 GG GG CT CT AA AG AG AG AA
2 GG GG CC CC AA GG GG AA AA
3 GG GG CC CC CC GG GG GG AA
4 GG GG CC CC AC GG GG AG AA
5 GG GG CC CC AC GG GG AG AA
6 GG GG CC CC CC GG GG GG AA
7 GG GG CC CC AA GG GG AA AA
8 GG GG CT CT AA AG AG AG AA
9 AG AG CC CC AA GG GG AA AG
10 GG GG CC CC AC GG GG AG AA
11 GG GG CC CC AC GG GG AG AA
12 GG GG CC CC AC GG GG AG AA
13 AG AG CC CC AA GG GG AA AG
14 AG AG CC CC AA GG GG AA GG
15 AG AG CC CC AA GG GG AA AG
16 AG AG CC CC AA GG GG AA AG
17 AA AA CC CC AA GG GG AA GG
18 AA AA CC CC AA GG GG AA GG

a Encodes synonymous change L165L.
b No rs number; submitted to dbSNP.
c Encodes nonsynonymous change R29Q.

Table 5. Association Analysis of
rs2167079 in the Combined Series

SNP and
Allele

No. (%) of Alleles

P

All
Controls

( )n p 735

All
Patients

( )n p 501

rs901746: !.0001
A 1,011 (75) 661 (68)
G 335 (25) 317 (32)

rs2167079: .002
G 918 (73) 598 (67)
A 332 (27) 292 (33)

NOTE.—Results include the additional cases and
controls used in the replication series.

scores (rs12150111 and rs807072) were identified defini-
tively as MAPT H2 variants from prior MAPT genomic se-
quencing efforts.22

The chromosome 11p12 region that showed the highest
rank SNP by single-marker statistics and multimarker slid-
ing-window analysis was a novel locus and therefore was
examined in greater detail (fig. 1B). The top overall ranked
SNP, rs901746, a SNP in intron 9 of the DNA damage-
binding protein 2 (DDB2 [MIM 600811]) gene, was chosen
for follow-up in the individual samples comprising the
pooled DNA. A significant increase of 10% in the G allele
frequency was seen in cases versus controls ( )P p .0002
(table 2). The SNP was then genotyped in a second U.S.
series to confirm the association. This “replication” sam-
ple ( ) was made up of both pathologically con-n p 161
firmed ( ) and clinically defined PSP case individualsn p 97
( ), as described in Rademakers et al.22 A total of 165n p 64
age- and sex-matched cognitively normal control individ-
uals were obtained from the Normal and Pathological Ag-
ing Protocol at the Mayo Clinic (Scottsdale).30,31 In addi-
tion, for the rs901746 and rs2167079 analysis, additional
pathologically confirmed cases ( ) and clinically de-n p 41
fined PSP case indivuals ( ) were genotyped, and 252n p 22
age- and sex-matched cognitively normal control individ-
uals collected at Mayo Clinic Jacksonville were used as a
second source of controls.22 All case and control individ-
uals in this set were white from the United States and
Canada, and IRB-approved protocols were used in the col-
lection of all samples.

When allele frequencies at rs901746 were examined in
the replication sample set, a 6% increase in the frequency
of the G allele in subjects with PSP was observed; however,

because of the smaller sample size, this allele frequency
difference is borderline significant ( ). When geno-P p .05
type distributions were examined in both PSP case-control
series, the frequencies were very similar, with an increase
from 4% to 12% in the GG genotype in the original pop-
ulation and an increase from 7% to 12% in the replication
set. The allelic frequency difference in both series is ex-
plained by an apparent doubling of the GG frequency in
subjects with PSP compared with controls, suggesting that
risk at this locus acts in a recessive manner. We explicitly
tested dominant, recessive, and additive models at this
locus, and the model that best fit the data was a recessive
one ( ). The OR for harboring an rs901746 GGP ! .0001
genotype versus all other genotypes in the original series
was 3.7 (95% CI 1.2–3.9) and was 1.7 (95% CI 1.0–3.0)
for the replication series. When these individuals in both
of these series were combined and analyzed, the combined
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Figure 3. Relative mRNA expression with TATA-binding protein as an endogenous control. Plotted are relative levels of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH); tyrosine 3-monooxygenase/tryptophan 5-mono-oxygenase activation protein, zeta polypeptide
(YWHAZ); ACP2 (assay Hs00155636_m1 [Applied Biosystems]); and DDB2 (assay Hs00172068_m1 [Applied Biosystems]) for 20 carriers
of the rs901746 AA (neutral) genotype and 20 carriers of the rs901746 GG (risky) genotype. SE is denoted by the error bars. None of
the comparisons between AA and GG carriers reach the level of statistical significance (P values noted below each graph). Similar results
are seen when GAPDH or YWHAZ was used as the endogenous control (data not shown). RQ p relative quantity.

OR for the GG genotype compared with all other geno-
types in the series was 2.2 (95% CI 1.4–3.4). To confirm
that the rs901746 association observed is not a control
frequency artifact, we examined allele frequencies for
rs901746 in 250 cognitively normal controls recently pub-
lished in a Parkinson disease (PD [MIM 168600]) GWA
study.38 We found that the frequency of the rs901746 G
allele in this independent control series was 0.27, consis-
tent with our observed control frequencies (0.22 and
0.27).

The genomic context near rs901746 was examined by
downloading the CEPH-from-Utah SNP genotypes for 100
kb around rs901746 from the HapMap genome browser
and by examining the LD patterns and haplotype-block
structure of the region with use of the Haploview soft-
ware.39 rs901746 lies in the middle of a haplotype block
encompassing at least two genes—the DDB2 gene and
the lysosomal acid phosphatase 2 (ACP2 [MIM 171650])
gene—and can extend into the 3′ of another gene, nuclear
receptor subfamily 1, group H, member 3 (NR1H3 [MIM
602423]), depending on the type of haplotype-block def-
inition used.39 Variation in this 100-kb region could be
fully described by 16 additional tag SNPs. These tag SNPs
were genotyped in all PSP series, and both single and mul-

timarker analysis was performed on the combined series
(table 3). Single-marker analysis showed that nine tag SNPs
showed significant allelic association. Of these, five tag
SNP associations were highly significant (P values �.003),
with rs10501320 showing the greatest association after
rs901746 ( ).P ! .0001

We examined the DDB2/ACP2 tag SNP data set in dif-
ferent age groups in our combined series of cases and con-
trols to see whether looking at younger cases might help
further refine the associated region, as it had for the MAPT
locus, where younger cases show a stronger association
with the H1/H1 genotype.22 Pathologically confirmed cases
were divided into “young” and “old” groups on the basis
of median age at death (75 years), and single-marker allelic
association statistics were calculated using contin-2 # 2
gency tables and were examined using x2 tests. On the
whole, all of the SNPs that show significant association in
the combined PSP case set also show significant associa-
tion ( ) with the younger case subset, whereas thereP ! .05
is less-significant association observed for the older cases.

To refine the disease-associated region, we performed
haplotype-inference analysis in the young cases versus all
controls, using a sliding-window approach.40 As described
elsewhere, this type of approach was key in refining the
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associated region on the MAPT H1 haplotype.22 However,
as figure 2 displays, when data from all the tag SNPs were
included in the analysis, there was no obvious resolution
of the associated region when the young cases were con-
sidered separately. This may reflect the fact that the con-
tribution to the overall signal of the association at this
locus was not as great with the younger cases as had been
seen with the MAPT locus; therefore, the sample size and/
or the number of informative SNPs was inadequate to de-
tect a smaller associated region.

Since a haplotype-inference approach was unsuccessful
in narrowing the associated region, we decided to identify
additional novel SNPs that may represent functional var-
iant(s) accounting for increased risk of disease by sequenc-
ing a series of 18 subjects with PSP who had the various
genotypes at rs901746, the majority of whom carried the
risky GG genotype ( GG, AG, and AA)n p 11 n p 5 n p 2
(table 4). Primers were designed to fully sequence coding
exons of both DDB2 and ACP2. Only one SNP, found 63
bp downstream of exon 3 in ACP2, was not already in the
dbSNP database; however, this SNP appeared to be in near-
complete LD with nearby rs10838677 in exon 5 of ACP2,
encoding a silent change (L165L). Interestingly, a number
of SNPs identified through sequencing appeared to be in
near-complete LD with rs901746, including rs2167079, a
coding SNP in ACP2 in which the minor allele changes
the amino acid at position 29 from an arginine to a glu-
tamine (R29Q). This converts the protein sequence to the
mouse amino acid residue at the equivalent position. In-
terestingly, this position in ACP2 is predicted to encode
the signal peptidase cleavage site,41 suggesting that carriers
of the minor allele encoding glutamine at position 29 may
have altered cleavage of the signal peptide compared with
those encoding arginine at that position. Since this SNP
could affect function of the protein, we genotyped it
through the combined series. Results from this analysis
are shown in table 5. Overall, the LD between rs901746
and rs2167079 was high (cases ; controls2 2r p 0.97 r p

). As expected, significant allelic association was ob-0.94
served with rs2167079 ( ); however, this was notP p .002
any greater than the association observed with rs901746,
suggesting that rs2167079 is unlikely to fully explain the
association at the DDB2/ACP2 locus. We tested the R29Q
variant for dominant, recessive, and additive models, and
the additive model best fit the data ( ).P ! .0001

In an alternative method for determining the gene re-
sponsible for disease risk at this locus, expression analysis
was performed on the DDB2 and ACP2 genes. Analysis
was performed, using real-time Taqman expression assays
(Applied Biosystems), on mRNA extracted from the cere-
bella of 20 rs901746 AA and 20 rs901746 GG genotype
carriers, to determine whether risk variants at the DDB2/
ACP2 locus have a direct effect on gene expression. Un-
fortunately, although DDB2 transcript levels are slightly
increased in cases with a GG genotype, no significant dif-
ferences were observed between the cases with AA and

GG genotypes for either DDB2 or ACP2 mRNA levels (for
DDB2, ; for ACP2, ) (fig. 3).P p .29 P p .48

GWA studies are appealing because of their lack of bias,
in that they represent a model-free approach for identi-
fication of new and novel genes that are involved in a
disease process that may never be identified using other
methodologies. However, even now, individually geno-
typing hundreds of individuals to perform a “traditional”
GWA is not feasible for many rarer diseases, including PSP,
because of the lack of available funding. Therefore, this
type of pooled genomewide approach potentially repre-
sents a fast and economical initial solution to this prob-
lem. Pooling methods lack the analytical flexibility inher-
ent in a traditional genomewide study because it is not
possible to reanalyze the data with use of subgroups of
cases or controls or to perform true haplotype-scanning
analyses. However, there is still some uncertainty about
how best to analyze the large amounts of individual ge-
notype data used in GWA studies. An early GWA study of
the PD showed problems in replication of results, poten-
tially because of problems in study design.42–47

Although pooling methods clearly have limitations, the
analysis procedures we used in the GenePool software
(TGen Bioinformatics Research Unit) were developed us-
ing individual genotype data from samples that were also
pooled, thereby allowing the algorithms to be adjusted
until they predicted SNP ranks on the basis of what was
known from the individual genotype data.32 In the present
analysis, we had prior knowledge that the MAPT H1 haplo-
type is associated with disease, so it could serve as a pos-
itive control for the genomewide analysis.

The identification of a new risk locus for PSP on chro-
mosome 11 from the pooled genomewide approach was
confirmed in a second U.S. PSP case-control series, with
similar allele and genotype frequencies. Closer examina-
tion of this locus by dense SNP genotyping suggests that
the association spans the entire haplotype block contain-
ing the DDB2 and ACP2 genes. Examination of potential
functional variants yielded no definitive explanation for
the observed association.

Both ACP2 and DDB2 are reasonable candidate genes
that highlight previously implicated pathways for neuro-
degenerative disease. There are many lines of evidence
suggesting a role for lysosomes and autophagic processes
in neurodegeneration. Autophagy has been implicated in
the clearance of protein aggregates, a common feature of
many neurodegenerative disorders.48,49 Interestingly, pa-
tients with lysosomal-storage disorders often exhibit neu-
rological phenotypes with pathology similar to that seen
in PSP.50–52 Two lines of evidence implicate ACP2 in neu-
rodegeneration. First, it has been reported that, in brains
of subjects with Alzheimer disease (AD [MIM 104300]),
microglia surrounding the amyloid plaques stain strongly
for ACP2.53 In addition, cerebrospinal fluid from half of
the examined subjects with AD showed evidence of ACP2
activity, whereas patients not affected with AD showed no
activity.53 These results leave open the question of whether
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ACP2 in AD is just a secondary marker of neurodegener-
ation or perhaps plays a more active role in the neuro-
degenerative process. Second, knockouts and mutations
of Acp2 in mice have neurological phenotypes.54,55 Neu-
ropathology of Acp2�/� tissue showed increased lysosomal
staining (as detected by lamp-1 and cathepsin D immu-
noreactivity), primarily in glial cells. Interestingly, ∼7% of
these Acp2�/� mice presented with generalized seizures af-
ter age 8 wk, and it has been suggested that this phenotype
may be correlated with the defective lysosomal storage
observed in glial cells.54 The observation that loss of Acp2
causes deficits in glial lysosomal storage in the Acp2�/�

mice may also be significant, given that, in PSP, there is
abundant MAPT-inclusion pathology within glia (astro-
cytes and olgodendroglia), as well as in neurons.56

Mutations in the DDB2 gene are responsible for xero-
derma pigmentosum (XP) complementation group E (XPE
[MIM 278740]). Interestingly, some mutations in the nu-
cleotide excision–repair pathway that cause the diseases
XP and Cockayne syndrome (MIM 216400) present with
neurological phenotypes; however, XPE does not seem to
be one of them.57,58 DDB2 forms a ubiquitin E3-ligase com-
plex, with DNA damage-binding protein 1 (DDB1 [MIM
600045]) and Cullin 4a (CUL4A [MIM 603137]), that binds
damaged DNA. Both histone H2A (H2AA [MIM 603137])
and XP complementation group C (XPC [MIM 278720])
proteins have been implicated as substrates for the DDB1/
DDB2/CUL4A complex upon activation.59,60 Ubiquitina-
tion of histone H2A may change local chromatin con-
figuration at the damage site, thereby allowing access to
other DNA-repair proteins farther down the pathway.60

The accumulation of damaged DNA in aging brain sug-
gests that DNA-repair capacity is reduced as we age and
appears to be selective to genes important in learning and
memory. Interestingly, there is evidence of brain-specific
alternatively spliced forms of DDB2 that splice out either
exons 4–7 or exons 4 and 6 alone.61 The proteins encoded
by these alternatively spliced transcripts act as dominant
negative inhibitors of DNA repair, when tested in an in
vitro system.61 It will be interesting to tease apart which
gene or genes at this locus are involved in conferring risk
of PSP, but functional studies, rather than genetic ones,
will probably be required to address these issues.

Given the size of the association seen at the DDB2/ACP2
locus, the fact that the described PSP series represents the
largest collection of PSP-affected subjects worldwide, and
the fact that our U.S. replication series is underpowered
to detect changes with an OR !2.0, we may be at the limit
of what can be consistently detected and confirmed us-
ing the case-control populations available. Six additional
weaker loci were identified in the genomewide screen that
still need to be analyzed in detail, and it will be interesting
to examine this potential power issue in closer detail. This
genomewide analysis has identified a novel second locus
implicated in PSP risk, accelerating research and the hope
of identifying effective therapeutics for this devastating
disease.
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