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ARTICLE

A Simple and Improved Correction for Population Stratification
in Case-Control Studies
Michael P. Epstein,* Andrew S. Allen,* and Glen A. Satten

Population stratification remains an important issue in case-control studies of disease-marker association, even within
populations considered to be genetically homogeneous. Campbell et al. (Nature Genetics 2005;37:868–872) illustrated this
by showing that stratification induced a spurious association between the lactase gene (LCT) and tall/short status in a
European American sample. Furthermore, existing approaches for controlling stratification by use of substructure-infor-
mative loci (e.g., genomic control, structured association, and principal components) could not resolve this confounding.
To address this problem, we propose a simple two-step procedure. In the first step, we model the odds of disease, given
data on substructure-informative loci (excluding the test locus). For each participant, we use this model to calculate a
stratification score, which is that participant’s estimated odds of disease calculated using his or her substructure-infor-
mative–loci data in the disease-odds model. In the second step, we assign subjects to strata defined by stratification score
and then test for association between the disease and the test locus within these strata. The resulting association test is
valid even in the presence of population stratification. Our approach is computationally simple and less model dependent
than are existing approaches for controlling stratification. To illustrate these properties, we apply our approach to the
data from Campbell et al. and find no association between the LCT locus and tall/short status. Using simulated data,
we show that our approach yields a more appropriate correction for stratification than does principal components or
genomic control.
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Case-control studies of disease-marker association are sus-
ceptible to the confounding effects of population strati-
fication, which originate from the coupling of allele-fre-
quency heterogeneity to disease-risk heterogeneity within
a population. To avoid stratification, studies often use data
from individuals from a single race or ethnicity group (or,
at the very least, they analyze data stratified on the basis
of participants’ race or ethnicity) in the hope of achieving
a genetically homogeneous population. Recent results1

disputed this perception by demonstrating the existence
of stratification in a case-control sample of Americans of
European origin who were selected for extreme values of
height; in these data, both tall/short status and allele fre-
quencies at a SNP located within the lactase gene (LCT
[MIM 603202]) (involved in lactase persistence) varied
considerably from northwestern to southeastern Europe.
A naive association analysis between this LCT SNP and
height resulted in a strongly significant finding (P p

). In efforts to determine whether this result was�73.6 # 10
spurious, the association analyses were repeated by con-
ditioning on grandparental ancestry, and a much weaker
signal was observed ( ).1 Furthermore, additionalP p .0074
association analyses in a case-control study from Poland
( ) and a case-parent trio study from ScandinaviaP p .92
( ) failed to confirm the initial significant associa-P p .93

tion. These results led to the conclusion that the initial
association result between the LCT SNP and height within
the European American sample was largely or completely
due to population stratification.1

Although the demonstration of stratification in subjects
of European American ancestry is of concern, conven-
tional wisdom suggests that such stratification can be cor-
rected by applying appropriate statistical methods that use
panels of genetic markers that provide information on
population structure. However, neither genomic control2,3

nor structured association4–6 could properly correct for the
confounding effects of stratification with the use of a col-
lection of 111 missense and noncoding SNPs and 67 an-
cestry-informative SNPs.1 More recently, an approach
based on principal components7–10 also failed to resolve
this stratification.10 These results suggest that improved
statistical methods for correcting population stratification
in genetic association studies of complex disease are
needed.

We describe here a novel statistical approach for con-
trolling population stratification in case-control studies of
disease. Our approach consists of two steps. In the first
step, we model the odds of disease, given data on sub-
structure-informative loci (excluding the test locus). For
each participant, we use this model to calculate a strati-
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fication score, which is that participant’s estimated odds
of disease calculated using his or her substructure-infor-
mative–loci data in the disease-odds model. In the second
step, we assign subjects to strata defined by stratification
score and then test for association between the disease
and the test locus within these strata. The resulting as-
sociation test is valid even in the presence of population
stratification. Our stratification-score approach circum-
vents many of the modeling assumptions and analytical
limitations inherent in existing procedures, such as ge-
nomic control, structured association, and principal com-
ponents. Using the height data described above, as well
as simulated data, we show that subclassification based on
the stratification score provides an appropriate and pow-
erful correction for confounding due to population strat-
ification in situations where other approaches fail.

Material and Methods
Subclassification Based on the Stratification Score

Assume a retrospective study design that collects marker data
from unrelated case and control subjects. For a given subject, let
D denote a disease indicator ( ; ). Let G denote1 p case 0 p control
the genotype at a SNP of interest. Let Z denote a vector of ge-
notype data for a set of substructure-informative loci. Finally, let

P[D p 1FV]
v pV P[D p 0FV]

denote the odds of disease for a given set of variables V.
We assume that we can account for population stratification

by an unmeasured (possibly vector-valued) variable U. We assume
that U is not an effect modifier, so, if U were observed, we would
have , where and are knownv p exp [a � b(G) � g(U)] b(7) g(7)G,U

functions (up to parameters to be estimated). As a result, strati-
fication on values of yields the true association between Dg(U)
and G. Because U is unmeasured, we instead use the substructure-
informative loci Z as a surrogate for this stratification variable
(note that Z can also be generalized to include additional envi-
ronmental covariates that provide information on U). We assume
that Z provides enough information on substructure that G pro-
vides no additional information on U in the presence of Z within
controls—that is, . In this situa-P[UFG,Z,D p 0] p P[UFZ,D p 0]
tion, we write11 the odds of disease given G and asZ

a�b(G) g(U) a�b(G)�w(Z)v p e e P[UFZ,D p 0] { e .�G,Z
U

As a result, stratification on the unknown function yieldsw(Z)
the true association between D and G.12

The null hypothesis of no association between G and D implies
that , and hence . Thus, under the nullb(G) p 0 w(Z) p ln {v } � aZ

hypothesis, stratification on values of (or ) is equivalentln {v } vZ Z

to stratifying on . This result implies that, when the nullw(Z)
hypothesis is true, stratification on appropriately estimates thevZ

true (null) association between D and G. We conclude that a test
of in strata with constant values of the score isb(G) p 0 ln {v }Z

valid in the presence of population stratification. A more detailed
demonstration of the above result can be found in appendix A.

These results motivate the application of our two-step proce-
dure for controlling population stratification in case-control stud-

ies. In the first step, we compute by applying a user-definedvZ

model that can range from the simple (e.g., logistic regression)
to the complex (e.g., machine-learning algorithms). For all cal-
culations in this article, we compute by first using generalizedvZ

partial least squares13 (PLS) to identify new variables that are linear
combinations of marker genotypes and then using these new
variables in a logistic-regression model for disease. Like principal
components, PLS finds orthogonal linear combinations of the
marker genotypes that explain variability in the data. However,
unlike principal components, PLS attempts to simultaneously ex-
plain variability in both the marker data and the trait data; hence,
the linear combinations found by PLS are always correlated with
the trait. Generalized PLS extends the PLS model, which was orig-
inally formulated for quantitative data, to categorical outcomes.
We chose the number of PLS variables by selecting the model
that minimized the Bayesian information criterion (BIC).14

In the second step of our two-step approach, we use the quar-
tiles of the stratification scores based on to assign each subjectvZ

to one of five strata (of approximately equal size), and then we
test for association between G and D in the stratified data (e.g.,
using stratified logistic regression). Use of five strata is motivated
by studies that show that this choice accounts for at least 90%
of bias when a continuous variable is categorized, for a variety of
distributions.15–17

Application to Height Data from Campbell et al.

Using data from Campbell et al.,1 we compared our stratification-
score approach to genomic control, structured association, prin-
cipal components, and a naive approach that ignores stratifica-
tion. We used data from 192 tall and 176 short participants who
were genotyped at a SNP of interest (rs4988235) in the LCT gene,
as well as at a panel of substructure-informative loci consisting
of 111 missense or noncoding SNPs and 67 ancestry-informative
markers (AIMs).

We first conducted a naive Armitage trend test between the
LCT SNP and height. Using the substructure-informative loci, we
then attempted to resolve the stratification in the sample, using
genomic control and principal components. For genomic control,
we estimated the inflation factor by dividing the median of thel̂

Armitage trend tests for the substructure-informative loci by
the median of the distribution2 and then by taking182 ˆx l p1

. We used this estimate to scale down the naive Armitageˆmax (1,l)
trend test of the LCT SNP. For principal components, we used the
eigenvectors of the variance-covariance matrix of the substruc-
ture-informative loci as covariates in a linear-regression model
that examines the relationship between height and the LCT SNP.
As recently recommended,10 we included 10 covariates corre-
sponding to the first 10 principal components of the variance-
covariance matrix in the model. We used the likelihood-ratio sta-
tistic to test the coefficient of genotype at the test locus (coded
as an additive model); significance was assessed by comparing the
test statistic to the appropriate quantile of the distribution with2x

1 df. Results for these data calculated by use of STRUCTURE have
been reported elsewhere.1

Finally, we calculated the stratification score for each partici-
pant, using generalized PLS variables in logistic regression, as de-
scribed above. We then divided the data into five strata that have
equal numbers of observations in each stratum, on the basis of
the quartiles of the stratification scores. Using these strata, we
tested for association between height and the LCT SNP, using
stratified logistic regression.
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Table 1. LCT SNP Genotype Distribution among
Strata

Stratum and
Height Status

No. of Subjects
with LCT
Genotype

Armitage
2x1 PCC CT TT

Stratum 1: .99 .32
Tall 0 2 2
Short 14 31 23

Stratum 2: .06 .80
Tall 3 5 3
Short 17 25 21

Stratum 3: .07 .79
Tall 5 23 13
Short 8 12 13

Stratum 4: 2.37 .12
Tall 5 30 30
Short 3 2 3

Stratum 5: .61 .43
Tall 4 35 32
Short 0 1 2

Strata ignored: 8.43 .0037
Tall 17 95 80
Short 42 71 62

Simulation Design

We conducted additional simulations to compare our proposed
approach for correcting stratification to genomic control and
principal components. We simulated data sets with 500 cases and
500 controls that were sampled retrospectively from a population
consisting of three equally frequent latent subpopulations.
Within the population, we simulated a test SNP, assuming dif-
ferent values for the inbreeding coefficient (0.03 or 0.15, withFST

the latter value corresponding to the estimated inbreeding co-
efficient in the height data1) and the minor-allele frequency
(MAF). For a test SNP with , we considered the mod-F p 0.03ST

els , , andp p (0.159, 0.113, 0.037) p p (0.340, 0.290, 0.125) p p

, where and denote the MAF of(0.50,0.40,0.30) p p (p ,p ,p ) p1 2 3 j

the locus in latent subpopulation j. These values correspond to
pooled population MAFs of ∼0.10, 0.25, and 0.40, respectively.
For a test SNP with , we considered the modelsF p 0.15 p pST

, , and ,(0.28,0.03,0.03) p p (0.52,0.18,0.05) p p (0.70,0.40,0.17)
which again correspond to pooled population MAFs of ∼0.10,
0.25, and 0.40, respectively.

We assumed that control participants have the same allele-
frequency distribution as the overall population (a rare-disease
approximation). Case participants were sampled in different pro-
portions from the three subpopulations. To induce severe strat-
ification, we sampled cases in the proportions 0.45, 0.33, and
0.22 from subpopulations 1, 2, and 3, respectively. To induce
more moderate stratification, we sampled cases in the proportions
0.40, 0.33, and 0.27. In addition, we also considered a situation
of no confounding by sampling cases in the same proportions
(0.33, 0.33, and 0.33) as the controls. We implemented this last
sampling scheme to assess the performance of our stratification-
score approach in situations where it is not actually required for
valid analysis, since there is no difference in baseline disease risk
(a requirement for confounding to occur) when cases and controls
are sampled in the same proportion. Further, the substructure-
informative loci are unrelated to disease risk, resulting in a strat-
ification based entirely on noise.

All simulations assumed Hardy-Weinberg equilibrium (HWE)
within each subpopulation and thus among controls in each sub-
population. We assumed a multiplicative model of allele effect
for the tested locus, such that the case samples in each subpop-
ulation were also in HWE with risk-allele frequency in subpop-
ulation j given by , where b is the log-odds ofb be p /(e p � 1 � p )j j j

disease per copy of the risk allele. We considered simulations
under both a null model ( ) and an alternative modelb p 0
( ). We assumed that the value of b was constant acrossb p ln (1.4)
strata.

We generated panels of 100 substructure-informative markers
under two different scenarios. The first scenario assumed the
marker data consisted of AIMs with large values in the pop-FST

ulation, whereas the second scenario assumed that the marker
data consisted of random SNPs, all with . Under bothF p 0.03ST

scenarios, we generated appropriate SNP data, using a large list19

of candidate-gene SNPs with variable allele-frequency differences
among three subpopulations consisting of East Asians, African
Americans, and European Americans. For sampling AIMs, we
chose the 100 most informative SNPs (i.e., those with the highest

values) from this list that were polymorphic in each subpop-FST

ulation. The values of these candidate-gene SNPs ranged fromFST

0.55 to 0.84. For simulation of random SNPs, we chose 100 mark-
ers from the list with an value of 0.03.FST

Results
Analysis of Height Data

Ignoring stratification, we found a significant association
between the LCT SNP and height, using a naive Armitage
trend test ( ). This P value differs from that re-P p .0038
ported elsewhere1 ( ), because the latter re-�7P p 3.6 # 10
sult is from the analysis of a much larger sample (1,057
short and 1,132 tall subjects, also including participants
who were not genotyped at the AIMs) that further as-
sumed HWE in both case and control participants.20

We found that neither genomic control2,3 nor principal
components7–10 resolved the confounding in the sample.
For genomic control, the scaled-down Armitage trend test
was still significant (e.g., ), regardless of whetherP p .0038
we used the 111 missense and noncoding SNPs alone, the
67 ancestry-informative SNPs alone, or all 178 loci to-
gether, because, in each case, the median trend test for
marker SNPs was less than the median of the distri-2x1

bution. For principal components, we duplicated results
published elsewhere10—that the first 10 principal com-
ponents of the variance-covariance matrix for the sub-
structure-informative loci failed to resolve the confound-
ing between height and the LCT SNP ( ). CampbellP p .003
et al.1 reported that the structured-association package
STRUCTURE6 found only one population in the height
data by use of the entire panel of 178 substructure-infor-
mative loci. Hence, the association test based on struc-
tured association is the naive (unstratified) test, which is
significant ( ).P p .0038

Unlike genomic control, structured association, and
principal components, our stratification score approach
resolved the confounding in the height data from Camp-
bell et al.1 We calculated the stratification score for each
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Table 2. Type I Error Rates under Substantial Stratification

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .121 .055 .043 .054 .017
.25 .195 .057 .048 .062 .026
.40 .132 .058 .051 .064 .022

Random:
.10 .126 .049 .049 .049 .023
.25 .169 .039 .050 .041 .031
.40 .139 .048 .049 .054 .028

NOTE.—Empirical type I error results at nominal for 500 cases and 500 controls under the assumptiona p 0.05
of a test-locus of 0.03. The simulation design is described in the “Material and Methods” section. StratificationFST

score, principal components, and genomic control tests use 100 substructure-informative loci to correct for pop-
ulation stratification.

Table 3. Type I Error Rates under Moderate Stratification

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .084 .054 .045 .056 .038
.25 .094 .055 .054 .062 .038
.40 .082 .056 .057 .068 .038

Random:
.10 .085 .051 .049 .056 .046
.25 .089 .041 .042 .042 .046
.40 .081 .047 .050 .054 .046

NOTE.—Empirical type I error results at nominal for 500 cases and 500 controls under the assumptiona p 0.05
of a test-locus of 0.03. The simulation design is described in the “Material and Methods” section. StratificationFST

score, principal components, and genomic control tests use 100 substructure-informative loci to correct for pop-
ulation stratification.

subject, using the first six PLS components (based on min-
imization of the BIC). We then ranked the stratification
scores of all subjects and used the ranking to divide the
subjects into five strata of approximately equal size. Using
stratified logistic regression, we found no association be-
tween the LCT SNP and tall/short status ( ). TableP p .44
1 shows the genotype counts of tall or short subjects
within each stratum formed using the stratification score,
as well as the accompanying trend test result. Results show
little association between genotype and disease within
each stratum.

To ensure that our null finding was not because of in-
sufficient power resulting from the pattern of tall/short
subjects within each stratum, we conducted additional
simulations of stratified data with the same row marginal
totals as in table 1. Short participants were assumed to be
in HWE and to have T allele frequency , thep p 39/70
observed frequency of the T allele among short partici-
pants. Tall participants were assumed to be in HWE and
have T allele frequency ; in this expression,b be p/(e p � 1 � p)
b is the log relative risk of being tall per copy of the T
allele. We found that this pattern allows an 85% power
to detect a two-fold increase in risk per allele in a multi-
plicative model, which suggests that our null finding is
not because of low power.

Simulations Results: Type I Error

Table 2 provides type I error results for simulated data sets
that assume a test locus with a moderate of 0.03 underFST

substantial stratification (see the “Simulation Design” sec-
tion). We show empirical type I error rates for five statistics
that test for association between the genotype at a SNP of
interest and disease: a naive association test that ignores2x1

stratification, a association test stratified by the true yet2x1

unknown subpopulation status (the gold standard when
stratification exists), a association test based on our pro-2x1

posed stratification-score approach, a association test2x1

based on principal components, and a association test2x1

based on genomic control.
Table 2 shows that, as anticipated, naive association

tests that ignore stratification have inflated type I error
(∼0.12–0.20 when the nominal significance is ,a p 0.05
depending on the MAF of the test locus), whereas asso-
ciation tests stratified by known subpopulation have ap-
propriate type I error. We found that both our proposed
stratification-score procedure and principal components
yielded appropriate type I error regardless of the control
MAF and the nature of the substructure-informative loci
used (AIMs with large values or random markers withFST

the same as the locus of interest). On the otherF p 0.03ST
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Table 4. Type I Error Rates under Substantial Stratification

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

Random:
.10 .380 .052 .052 .076 .121
.25 .661 .057 .050 .091 .332
.40 .641 .058 .054 .090 .350

NOTE.—Empirical type I error results at nominal for 500 cases and 500 controls under the assumptiona p 0.05
of a test-locus of 0.15. The simulation design is described in the “Material and Methods” section. StratificationFST

score, principal components, and genomic control tests use 100 substructure-informative loci to correct for pop-
ulation stratification.

Table 5. Type I Error Rates under Moderate Stratification

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

Random:
.10 .160 .053 .043 .070 .110
.25 .240 .050 .047 .059 .167
.40 .253 .047 .046 .070 .175

NOTE.—Empirical type I error results at nominal for 500 cases and 500 controls under the assumptiona p 0.05
of a test-locus of 0.15. The simulation design is described in the “Material and Methods” section. StratificationFST

score, principal components, and genomic control tests use 100 substructure-informative loci to correct for pop-
ulation stratification.

hand, we observed that genomic control can overcorrect
for stratification, particularly when AIMs are used. This
result is anticipated, because genomic control implicitly
assumes that the value (or l) of the substructure-FST

informative loci is the same as the value (or l) of theFST

tested locus. The use of AIMs would lead to an estimate
of l that is much larger than the inherent l of the tested
SNP (unless the SNP is an AIM itself), thereby leading to
an overcorrection in the test of genomic control. We ob-
served similar trends for more moderate levels of strati-
fication as well (table 3).

Table 4 shows simulation results under substantial strat-
ification when the test locus is under stronger selective
pressure ( ) and, hence, shows larger variationF p 0.15ST

across subpopulations than do the substructure-informa-
tive loci ( ). We investigated this simulation de-F p 0.03ST

sign in part because it mimics the height data from Camp-
bell et al.1 In this situation, both principal components
and genomic control failed to preserve the nominal size,
with principal components yielding empirical type I error
rates between 0.076 and 0.091 at (depending ona p 0.05
MAF) and genomic control yielding empirical type I error
rates up to seven times the nominal rate. In contrast, our
stratification-score approach had appropriate type I error
in these situations. We also observed similar trends under
more modest levels of stratification (table 5). These results
suggest that our two-step approach provides a more ap-
propriate correction for population stratification when the
test locus demonstrates more variation across subpopu-
lations than do the substructure-informative loci. Such a
scenario can easily arise in the study of candidate genes
or other regions that are under strong selective pressure.

Finally, table 6 shows simulations results when no con-
founding actually exists in the sample. Across all models
considered, we found that our stratification-score ap-
proach and principal components both had appropriate
type I error rates that were similar to that of the naive (yet
valid) association test. Genomic control, on the other
hand, appeared to yield conservative inference across
these simulations, with empirical type I error rates ranging
between 0.022 and 0.036 at nominal .a p 0.05

Simulations Results: Power

Table 7 shows power results at nominal significance a p
for simulated data sets under an alternative model0.05

of true disease-marker association, under the assumption
of a test locus with a moderate of 0.03 under substantialFST

stratification. We show empirical power for four associa-
tion statistics: a association test stratified by the true2x1

yet unknown subpopulation status that serves as a gold
standard, a association test based on our proposed strat-2x1

ification-score approach, a association test based on2x1

principal components, and a association test based on2x1

genomic control. For AIMs, table 7 demonstrates that our
proposed stratification-score procedure and principal
components had comparable power and both procedures
consistently had improved power relative to genomic con-
trol for detecting the disease-marker association. For ran-
dom markers, table 7 shows that all three methods have
comparable power. We also observed similar trends for
more moderate levels of stratification (table 8).

We also conducted power calculations under substantial
stratification when the test locus showed more variation
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Table 6. Type I Error Rates under No Confounding

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .054 .044 .048 .055 .036
.25 .047 .045 .043 .053 .034
.40 .045 .043 .041 .046 .027

Random:
.10 .048 .051 .044 .047 .025
.25 .050 .047 .045 .042 .022
.40 .053 .053 .044 .047 .029

NOTE.—Empirical type I error results at nominal for 500 cases and 500 controls under the assumptiona p 0.05
of a test-locus of 0.03. The simulation design is described in the “Material and Methods” section. StratificationFST

score, principal components, and genomic control tests use 100 substructure-informative loci to correct for pop-
ulation stratification.

Table 7. Power under Substantial Stratification

Marker Type
and Test
Locus MAF

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .679 .667 .687 .422
.25 .903 .905 .920 .668
.40 .958 .951 .960 .695

Random:
.10 .690 .732 .751 .702
.25 .918 .923 .940 .934
.40 .957 .962 .970 .951

NOTE.—Empirical power results at nominal for 500 cases and 500 controls under thea p 0.05
assumption of a test-locus of 0.03. The simulation design is described in the “Material andFST

Methods” section. Stratification score, principal components, and genomic control tests use 100
substructure-informative loci to correct for population stratification.

across subpopulations ( ) than did the substruc-F p 0.15ST

ture-informative loci ( ). We found that our pro-F p 0.03ST

posed approach maintained good power in these situa-
tions, with results quite similar to those shown in table 7
for random markers. We did not make power comparisons
with principal components and genomic control because
of their inappropriate size in this situation.

Finally, table 9 shows power results under no confound-
ing in the sample. In this situation, we find that both our
stratification-score approach and principal components
have power similar to that of the (valid) naive test and
the known-subpopulation test, regardless of the MAF of
the test locus and the nature of the substructure-infor-
mative loci. Genomic control had power similar to that
of these approaches when the substructure-informative
loci were random markers but had less power when the
substructure-informative loci were AIMs. These simula-
tions demonstrate that the use of our stratification-score
approach appears to have negligible effect on power when
there is no confounding within the sample.

Discussion

We have proposed a powerful new approach for control-
ling population stratification in case-control studies of dis-

ease: subclassification based on the stratification score. We
showed that our proposed approach corrected for popu-
lation stratification in a case-control data set of extreme
height,1 using a panel of 101 AIMs and 67 missense or
noncoding SNPs. This is in contrast to the methods of
genomic control, structured association, and principal
components, all of which failed to control for stratifica-
tion in these data. This example, together with our sim-
ulation results, shows that our procedure provides an im-
proved correction for population stratification, compared
with existing approaches. Our approach can be easily im-
plemented using existing software, such as SAS or R. We
have provided samples of such code for implementing our
approach on our Web site (Epstein software).

Our approach is based on a flexible modeling framework
that requires fewer assumptions than do existing methods
used for valid inference in the presence of stratification.
Unlike principal components, our approach properly con-
trols for stratification when the test locus exhibits more
variation among subpopulations than do the substructure-
informative loci used to correct the confounding, as
for the LCT locus in the height data. Unlike genomic
control2,3 and similar methods,21 our approach is appli-
cable to situations in which the tested locus and the sub-
structure-informative loci have different values. Fur-FST
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Table 8. Power under Moderate Stratification

Marker Type
and Test
Locus MAF

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .701 .680 .708 .538
.25 .890 .863 .900 .744
.40 .963 .952 .967 .813

Random:
.10 .670 .690 .707 .703
.25 .897 .870 .912 .933
.40 .956 .940 .961 .962

NOTE.—Empirical power results at nominal for 500 cases and 500 controls under thea p 0.05
assumption of a test-locus of 0.03. The simulation design is described in the “Material andFST

Methods” section. Stratification score, principal components, and genomic control tests use 100
substructure-informative loci to correct for population stratification.

Table 9. Power under No Confounding

Marker Type
and Test
Locus MAF

No
Adjustment

Known
Strata

Stratification
Score

Principal
Components

Genomic
Control

AIM:
.10 .597 .635 .593 .648 .472
.25 .862 .900 .871 .903 .742
.40 .951 .961 .936 .948 .856

Random:
.10 .622 .634 .617 .657 .578
.25 .866 .890 .851 .906 .846
.40 .949 .936 .946 .966 .931

NOTE.—Empirical power results at nominal for 500 cases and 500 controls under the assumption of aa p 0.05
test-locus of 0.03. The simulation design is described in the “Material and Methods” section. Stratification score,FST

principal components, and genomic control tests use 100 substructure-informative loci to correct for population
stratification.

thermore, our approach can accommodate multiallelic
test and substructure-informative loci and can be further
extended to adjust for population stratification in multi-
locus genotype or haplotype association analysis. Unlike
structured-association methods,5,6,22,23 our approach does
not require that we assume a population composed of
discrete subpopulations. This is important because the
concept of discrete subpopulations in a population-based
study is probably an oversimplification, since the popu-
lation itself likely consists of a continuous mixture of an-
cestral subgroups. Finally, unlike structured-association
approaches that are typically computationally intensive,
our approach is computationally simple to implement.

In this article, we have advocated subclassification of
data into five strata based on the stratification score. We
stress that this choice does not correspond to a belief that
there are five subpopulations, but instead is based on stud-
ies that show that this choice removes 90% of bias when
a continuous variable is categorized.15 This strategy is also
analogous to that used in observational studies that sub-
classify data into five propensity-score–based strata.16,17 If
this seems arbitrary, one could treat the stratification score
as a continuous covariate in a logistic-regression model
when testing for association between D and G. This choice
avoids the arbitrary selection of five strata but requires

that the stratification score be correctly estimated; sub-
classification requires only that the ordering of stratifi-
cation scores be correct. However, use of the stratification
score as a quantitative variable is especially appealing for
small studies, where subclassification into five strata may
result in many empty cells.

For some of our simulations, we assumed a test locus
with . Both allele frequencies and disease riskF p 0.15ST

must covary before population stratification can produce
a spurious association. Because a small implies ho-FST

mogeneous allele frequencies at that locus even if the pop-
ulation is structured, associations involving loci with large

are more likely be spurious. A value of mayF F p 0.15ST ST

seem unlikely, considering that within-continent average
values are !0.01 for most populations.24 However, al-FST

though average values are small, locus-specific val-F FST ST

ues vary widely. Empirical studies19,25 have identified many
marker loci with estimated , suggesting that sub-F 1 0.15ST

stantial variation across subpopulations can regularly oc-
cur in large-scale or genomewide association studies. In
fact, calculated among short subjects from the heightFST

study of Campbell et al.1 is ∼0.15.
For proper inference, both genomic control and struc-

tured association require “null” substructure-informative
loci that are not associated with disease. For genomic con-
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trol, the inclusion of a null marker that is truly associated
with disease within the method will overestimate the in-
flation factor and will lead to an overcorrection of the test
statistic. For structured association, inclusion of null mark-
ers truly associated with disease will distort the HWE
among case and control populations. Since structured-
association methods allocate subpopulation status on the
basis of minimizing the deviation of HWE, this inclusion
can result in inappropriate subpopulation assignment. On
the other hand, our proposed approach, as well as prin-
cipal components, can handle substructure-informative
loci that are truly associated with disease (with the as-
sumption that they do not interact with the test locus of
interest). This is appealing since, with an increasing num-
ber of substructure-informative loci used for correcting of
stratification, there is an increase in the probability of a
substructure-informative locus being truly associated with
disease.

Bayesian or stepwise logistic regression has been pro-
posed to assess association between disease and a test lo-
cus, with adjustment for the confounding effects of pop-
ulation stratification by use of substructure-informative
loci.18 We feel that our proposed approach is preferred over
these logistic-regression procedures. Unlike our approach,
stepwise logistic-regression procedures often fail to pre-
serve a nominal type I error rate for testing association.
Of course, stepwise logistic regression could be recali-
brated to give the proper size, but this would require ex-
tensive permutation analysis to select an appropriate cut-
off value to use when significance is assessed. Bayesian
logistic regression is computationally intensive, and, fur-
thermore, it failed to properly correct for population strat-
ification under extreme sampling of cases from a particular
subpopulation.18 We found that our proposed approach
properly corrected for stratification in such a situation
(data not shown). Thus, given the nontrivial computa-
tional effort required for these logistic-regression pro-
cedures, our approach will be far more efficient com-
putationally than either the stepwise or Bayesian
logistic-regression proposals of Setakis et al.18

Our stratification-score approach for controlling strati-
fication has a parallel in the propensity-score approach for
controlling confounding in prospective studies.16,17 Strat-
ification on the propensity score, which is defined as the
probability of exposure given potential confounders, re-
moves confounding from the relationship between disease
and a binary exposure. It is noteworthy that stratification
on the estimated propensity score does not affect the size
of the second-step test statistic.26–28 We observed a similar
phenomenon in our approach. This is important, as it
allows great flexibility in the choice of the first-step model
for the disease odds conditional on the substructure-
informative loci. We can choose first-step models that

range from the traditional (e.g., logistic regression) to the
complex (e.g., high-dimensional procedures, such as gen-
eralized PLS or support-vector machines29). In particular,
we can apply first-step models, like PLS, that do not pro-
vide standard inference (e.g., they fail to produce P values
without extensive permutation testing) and yet can still
use the second-step model to calculate an appropriate P
value for testing association between the test locus and
disease. This is appealing because we can then apply our
procedure to data sets consisting of large numbers of cor-
related substructure-informative loci (with varying allele
number, allele frequency, and values), such as thoseFST

available in whole-genome association studies.
Our approach is also related to the confounder score:

the odds of disease given covariates among persons with
the same exposure level. Poststratification on the con-
founder score removes the effects of confounding within
case-control studies.12 In the genetic context, implemen-
tation of the confounder score consists of stratifying on
the disease odds given the substructure-informative loci
among subjects with the same genotype at the tested locus
of interest. The confounder-score approach leads to an
unbiased estimator of the true association between disease
and genotype but can lead to inflated type I error30 due
to colinearity between the test locus and the substructure-
informative loci in the presence of population stratifica-
tion. Our proposed approach avoids this colinearity issue
by stratifying on the disease odds among all subjects, re-
gardless of the test-locus genotype. Using simulated data,
we showed that our proposed approach has appropriate
type I error in the presence of population stratification.

Our stratification-score approach can be extended to
more general settings in genetic association studies. For
example, within the first step of our procedure, we model
and calculate the odds of disease conditional on substruc-
ture-informative loci. However, we can also incorporate
additional (environmental) covariates that provide infor-
mation on population substructure within this model, as-
suming that such covariates do not interact with the test-
locus genotype. Also, in the second step of our two-step
procedure, we can accommodate multilocus genotype or
haplotype data. We will explore these extensions, as well
as methods for detecting gene-gene and gene-environ-
ment interaction effects, in a subsequent paper.
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Appendix A

Removing the Effects of Confounding by Stratifying on vZ

We define strata in such a way that we assume is constant (i.e., ) for each subject in a given stratum. As av v p kZ Z

result, for a given stratum S, we can write

P[DFZ,S]
P[GFD,S] p P[GFD,S,Z]P[ZFD,S]dZ p P[GFD,S,Z] P[ZFS]dZ� � P[DFS]

c
p P[GFD,S,Z]P[ZFS]dZ , (A1)�P[DFS]

where c denotes the constant , which is a function of .P[DFZ,S] vZ

If we consider the odds ratio that compares the odds of G to some reference genotype within stratum S, we(S) ′W G′G,G

can use equation (A1) to write

′ ′P[D p 1FG,S] # P[D p 0FG ,S] P[GFD p 1,S] # P[GFD p 0,S](S)W p p′G,G ′ ′P[D p 0FG,S] # P[D p 1FG ,S] P[GFD p 0,S] # P[GFD p 1,S]

c c1 0 ′P[GFD p 1,S,Z]P[ZFS]dZ # P[GFD p 0,S,Z]P[ZFS]dZ∫ ∫
P[D p 1FS] P[D p 0FS]

p
c c0 1 ′P[GFD p 0,S,Z]P[ZFS]dZ # P[GFD p 1,S,Z]P[ZFS]dZ∫ ∫

P[D p 0FS] P[D p 1FS]

′P[GFD p 1,S,Z]P[ZFS]dZ # P[GFD p 0,S,Z]P[ZFS]dZ∫ ∫
p .′P[GFD p 0,S,Z]P[ZFS]dZ # P[GFD p 1,S,Z]P[ZFS]dZ∫ ∫

Note that, if , then we have and immediately. To show(S)b(G) p 0 P[GFD p 1,S,Z] p P[GFD p 0,S,Z] p P[GFS,Z] W p 1′G,G

the converse, if there is no association between G and D in each stratum, then ; ifP[GFD p 1,S,Z] p P[GFD p 0,S,Z]
this is the case, then in a model in which we stratify on S. Therefore, we conclude that stratifying on ab(G) p 0
confounder score defined by leads to a valid association test of D and G, even when population stratification exists.vZ

Web Resources

The URLs for data presented herein are as follows:

Epstein software, http://www.genetics.emory.edu/labs/epstein/
software

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for LCT)
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