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It has been proposed that cell growth and autophagy are
coordinated in response to cellular nutrient status, but the
relationship between them is not fully understood. Here, we have
characterized the fly mutants of Autophagy-specific gene 1
(ATG1), an autophagy-regulating kinase, and found that ATG1
is a negative regulator of the target of rapamycin (TOR)/S6 kinase
(S6K) pathway. Our Drosophila studies have shown that ATG1
inhibits TOR/S6K-dependent cell growth and development by
interfering with S6K activation. Consistently, overexpression of
ATG1 in mammalian cells also markedly inhibits S6K in a kinase
activity-dependent manner, and short interfering RNA-mediated
knockdown of ATG1 induces ectopic activation of S6K and
S6 phosphorylation. Moreover, we demonstrated that ATG1
specifically inhibits S6K activity by blocking phosphorylation of
S6K at Thr 389. Taken together, our genetic and biochemical
results strongly indicate crosstalk between autophagy and cell
growth regulation.
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INTRODUCTION
The nutritional environment is a crucial determinant of important
cellular decisions, such as growth, proliferation and development.
Recently, a series of outstanding studies have demonstrated that
nutrient availability tightly regulates cell growth through an
evolutionarily highly conserved signalling pathway, the target of

rapamycin (TOR)/p70 S6 kinase (S6K) pathway (reviewed in Hay
& Sonenberg, 2004). S6K was originally discovered as a kinase
that phosphorylates 40S ribosomal protein S6 at many sites and its
activity has been considered as a characteristic of cell growth
(Kozma & Thomas, 1994). Studies on the action mechanism of
immunosuppressant rapamycin led to a surprising discovery that
TOR is the upstream activator of S6K in vivo (Chung et al, 1992;
Brown et al, 1994; Sabatini et al, 1994). Recently, studies using
mammalian cell lines (Fingar et al, 2002) and knockout mice
(Shima et al, 1998) clearly showed that the TOR/S6K signalling
pathway controls cell growth in vertebrates. Consistently,
Drosophila S6K (dS6K) and Drosophila TOR (dTOR) mutants
also showed reduced cell and body size compared with the wild-
type (w1118) fly (Montagne et al, 1999; Oldham et al, 2000;
Zhang et al, 2000).

TOR is also involved in the regulation of autophagy. Autophagy
is a process conserved among all eukaryotic cells and is required
for rapid degradation of large portions of the cytoplasm and
organelles in the lysosomal lumen, occurring as a result of
nutrient deprivation or normal developmental processes (Levine
& Klionsky, 2004). Under nutrient-rich conditions, TOR blocks
the initiation step of autophagy by facilitating dissociation of
Autophagy-specific gene (Atg) 13 from Atg1, an essential factor
required for the formation of an autophagic vesicle (autophago-
some) in budding yeast (Kamada et al, 2000). Furthermore, the
crucial roles of TOR and ATG1 in starvation- and development-
dependent autophagy have been discovered in the fat body cells
of Drosophila (Scott et al, 2004).

As cell growth and autophagy are opposite biological processes
both regulated by TOR, we hypothesized that autophagy might
be responsible for inhibiting cell growth under conditions of
suppressed TOR signalling, such as starvation. To investigate the
relationship between autophagy and cell growth regulation, we
examined the interactions between the representative components
of the two pathways, TOR/S6K and ATG1. Using biochemical and
genetic approaches, we demonstrated that ATG1 negatively
regulates S6K and, consequently, inhibits cell growth in both
mammals and Drosophila.
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RESULTS AND DISCUSSION
Drosophila ATG1 and characterization of its mutants
The Drosophila CG10967 gene, which encodes a sole Drosophila
orthologue of ATG1, is known as DmATG1 (supplementary
Figs S1,S2A online). Previous studies demonstrated that homo-
zygous EP3348 flies, in which a single P element is inserted into
the 50 untranslated region of DmATG1 (Fig 1A), show larval/pupal
lethality (Spradling et al, 1999; Scott et al, 2004). However, after

we cleared the genomic background of the EP3348 line by four
backcrosses with w1118 flies, about 30% of homozygous mutants
were found to develop to adults (Fig 2A). To confirm that the
P-element insertion in EP3348 hampers transcription of DmATG1
(Scott et al, 2004), we carried out quantitative real-time reverse
transcriptase–PCR (qRT–PCR), which showed highly reduced
DmATG1 expression in the mutant (Fig 1B). Therefore, we named
this cleared EP3348 allele as DmATG11.
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Fig 1 | Involvement of Drosophila Autophagy-specific gene 1 in Drosophila Target of rapamycin-dependent cell growth and development. (A) Genomic

structure of CG10967. The P-element insertion site of EP3348 (DmATG11) is denoted. (B) The transcriptional levels of DmATG1 in the third instar

larvae were analysed by qRT–PCR. Ribosomal protein 49 (rp49) was used as an internal control; n¼ 3. Bars indicate mean7s.d. (C) Images of the

larvae of denoted genotypes at 3 days (top) and 6 days (middle) after egg-laying (AEL), and quantification of the larvae that developed into the

mid–late third instar stage of each genotype (bottom); n¼ 3. Bars indicate mean7s.d. Fifteen larvae of each genotype were examined in each

experiment. (D) Suppression of lipid vesicle aggregation in the fat body of dTOR mutants by reduced gene dosage of DmATG1. The fat body images of

the second/early third instar larvae of denoted genotypes under fully fed conditions. (E) Images of the larval salivary glands of denoted genotypes.

Hoechst33342 (pseudo-coloured green) and phalloidin-TRITC (red) were used to visualize the nuclei and cell boundary of larval salivary gland cells,

respectively. (F) Quantitative analysis of cell and nuclear sizes in Fig 1E; n¼ 5. Bars indicate mean7s.d. DmATG1, Drosophila Autophagy-specific gene 1;

dTOR, Drosophila TOR; qRT–PCR, quantitative real-time reverse transcriptase–PCR.
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As Bettencourt-Dias et al (2004) have showed previously that
CG10967 RNA intereference (RNAi) can induce mitotic abnorm-
alities in Drosophila S2 cells, we first examined the mitotic
phenotypes in the larval brain and imaginal discs of DmATG1
mutants, DmATG11 and DmATG1D3d (a null allele of DmATG1;
Scott et al, 2004). However, we could not find any notable
mitotic defects in the mutants compared with the wild-type
control (w1118, supplementary Fig S3A,B online). Consistently,
DmATG1 mutants had no gross chromosomal abnormalities in
the neuroblast cells of third instar larval brains (supplementary
Fig S3C online).

Next, we looked for any defects in autophagy in DmATG11

flies using toluidine blue-azure II staining and transmission
electron microscopy (TEM) analyses. As expected, DmATG11

flies showed marked defects in the induction of autophagy under
conditions of starvation (supplementary Fig S2B–D,F–H online),
which is highly consistent with the previous study using
DmATG1D3d (Scott et al, 2004). These results strongly supported
that DmATG11 is a new hypomorphic mutant allele of DmATG1.

Functional interaction between ATG1 and TOR
To understand further the in vivo roles of ATG1 in Drosophila,
we generated double-mutant lines for dTORP1 (a loss-of-function
mutant allele of dTOR; Zhang et al, 2000) and DmATG1 mutants
(DmATG11, DmATG1D3d and EP3348). As reported previously
(Zhang et al, 2000), homozygous dTORP1 mutants showed growth
arrest in the second/early third instar larval stage and markedly
delayed growth. Surprisingly, homozygous dTORP1 larvae with a
heterozygous genetic background of DmATG11 or DmATG1D3d

not only grew faster than homozygous dTORP1, but also extended
their developmental stage to the mid–late third instar larval stage
(Fig 1C). Furthermore, the double-homozygous mutants between
dTORP1 and various DmATG1 mutants survived up to the mid–
late third instar larval stage (data not shown), which is inconsistent
with the previous results (Scott et al, 2004).

In addition, we found that another phenotype of dTORP1

mutants, lipid vesicle aggregation in the fat body (Colombani
et al, 2003), was also suppressed by a reduction of the gene
dosage of DmATG1 (Fig 1D). These results implicated that ATG1
negatively mediates the developmental and physiological roles
of TOR in Drosophila.

As dTOR regulates cell growth in a cell-autonomous manner
(Oldham et al, 2000; Zhang et al, 2000), we decided to examine
whether DmATG1 is also involved in this role of dTOR. Consistent
with the previous report (Zhang et al, 2000), the cell and nuclear
sizes of the salivary gland cells were markedly reduced in dTORP1

larvae (Fig 1E,F). Intriguingly, the heterozygous genetic back-
ground of DmATG11 or DmATG1D3d partly rescued the reduced
cell and nuclear size phenotype of dTORP1 (Fig 1E,F), strongly
implicating that DmATG1 mediates the crucial function of dTOR
in cell growth regulation. This is further supported by recent
results (Scott et al, 2007), that DmATG1-null cells have a relative
growth advantage over wild-type cells when treated with
rapamycin, a specific inhibitor of dTOR.

To examine the possibility that the suppression of dTORP1

phenotypes by DmATG1 mutation resulted from altered auto-
phagic activities, we investigated the genetic interactions between
dTOR and other autophagy-related genes, such as ATG6 (Beclin1)
and UVRAG (UV radiation resistance associated gene), which are
known to form a complex regulating autophagosome formation
(Liang et al, 2006; supplementary Fig S4 online). As a result, ATG6
and UVRAG mutations did not suppress the developmental
delay and cell growth defects of dTOR mutants (supple-
mentary Fig S5 online), showing that the interaction between
dTOR and DmATG1 is not caused indirectly by uncontrolled
regulation of autophagy.

Functional interaction between ATG1 and S6K
To determine the functional interaction between ATG1 and S6K, a
downstream effector of TOR, we generated double-mutant lines
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Fig 2 | Functional interaction between Drosophila Autophagy-specific gene 1

and Drosophila S6 kinase. (A) Quantification of adults that survived after

eclosion for denoted genotypes; n¼ 3. Bars indicate mean7s.d. Fifteen

larvae of each genotype were examined in each experiment.

(B,C) Activation of dS6K in DmATG1 mutants. Phosphorylation of dS6K

was examined by immunoblot analyses using phosphospecific dS6K T398

antibody in the third instar larvae or pupae of denoted genotypes.

Tubulin immunoblot was used as a loading control. Rheb expressing flies

(hs4Rheb) were used as a positive control (C). hs4Rheb larvae were

subjected to heat shock at 37 1C for 1 h and then incubated at 30 1C for

3 h before sample preparation to induce Rheb expression. For

quantification, the levels of dS6K phosphorylation in each genotype were

measured using Adobe Photoshop, and normalized to the tubulin levels.

Results are expressed as a fold change compared with the wild-type

controls (w1118). DmATG1, Drosophila Autophagy-specific gene 1; dS6k,

Drosophila S6 kinase.
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between DmATG11 and dS6K mutants—a hypomorphic allele,
dS6K07084, and a null allele, dS6Kl�1 (Montagne et al, 1999).
Using TEM analyses, we observed that a reduction of dS6K gene
dosage did not rescue the defects in autophagosome formation in
starved DmATG11 homozygous larvae (supplementary Fig S2E,I
online). However, surprisingly, the reduced gene dosage of dS6K
increased the eclosion rate of homozygous DmATG11 in a dS6K
gene dosage-dependent manner (Fig 2A). Although we cannot
completely exclude the possibility that S6K promotes autophagy
as reported previously (Scott et al, 2004), these data indicate
that dS6K has an important role in DmATG1-dependent
developmental processes.

Next, we conducted a biochemical analysis to examine the
effect of loss of DmATG1 on dS6K activation. As a result, we
found that dS6K was markedly activated (Bthreefold increase) in
homozygous DmATG11 larvae and pupae, measured by the
phosphorylation of dS6K at the Thr 398 site, compared with the
wild-type controls (w1118, Fig 2B). Notably, the increased level
of dS6K phosphorylation in DmATG11 mutants was about one-
third of that in flies overexpressing Rheb (Fig 2C). Consistent with
this, DmATG1 overexpression almost completely inhibited dS6K
Thr 398 phosphorylation in Drosophila (Scott et al, 2007). These
results strongly suggest an important role of ATG1 in the
regulation of S6K.

Inhibition of S6K activity by ATG1
To extend our findings to the mammalian system and also to
investigate further the molecular mechanism of the interaction
between ATG1 and TOR/S6K, we examined the effect of ATG1 on
the activity of S6K in mammalian cells. There are two isoforms of
ATG1 in mammals, which are named UNC-51-like kinase (ULK) 1
and 2 (Kuroyanagi et al, 1998; Yan et al, 1998, 1999). However,
according to the agreement on gene nomenclature made by
researchers in the field of autophagy (Klionsky et al, 2003),
we renamed them ATG1a and ATG1b, respectively. Nutrient
deprivation of HEK293T cells abolished the phosphorylation of
S6K at both Thr 229 and Thr 389 sites, which represents the
activation status of S6K (Fig 3A, lanes 1–3). When nutrients
including amino acids and glucose (DMEM) were added back to
the cells, the phosphorylation of both sites in S6K was strongly
induced (Fig 3A, lane 4). However, co-expression of wild-type
mouse ATG1a (ATG1a WT) strongly inhibited S6K activity
induced by DMEM (Fig 3A, lane 5). On the contrary, a kinase-
dead form of ATG1a (ATG1a KI) was not able to block the
nutrient-induced activation of S6K (Fig 3A, lane 6), showing that
ATG1a inhibits S6K in a kinase activity-dependent manner.
Consistently, epidermal growth factor (EGF)-stimulated S6K
activation was also inhibited by ATG1a (Fig 3B). Furthermore,
we showed that ATG1b, another isoform of ATG1, has the same
inhibitory effect on S6K phosphorylation as ATG1a (supple-
mentary Fig S6B online). These data strongly suggest that ATG1
regulates the activities of upstream kinases or phosphatases of
S6K, which affect both Thr 229 and Thr 389 phosphorylation.

As ATG1 is a crucial regulator of autophagy in yeast and
Drosophila (Matsuura et al, 1997; Kamada et al, 2000; Levine
& Klionsky, 2004; Scott et al, 2004), we tested whether
overexpression of ATG1 can induce autophagy in mammalian
cells. Nutrient deprivation was able to induce autophagy in MCF-
7 cells (supplementary Fig S7A,B online), whereas overexpression

of ATG1 did not induce autophagy in MCF-7 (supplementary
Fig S7A,B online) and HEK 293T cells (supplementary Fig S7C
online), indicating that the inhibition of TOR/S6K by ATG1 is not
an indirect consequence of an ectopic induction of autophagy.
This was further supported by the observation that overexpression
of ATG6 and UVRAG did not inhibit the phosphorylation of S6K
(supplementary Fig S7D online), which is also highly consistent
with the above Drosophila data (supplementary Fig S5 online).

Then, we used short interfering RNA (siRNA) targeting for
ATG1a and ATG1b messenger RNA to confirm that ATG1 inhibits
S6K activity. The efficacy of siRNA was verified by qRT–PCR using
ATG1-specific primers (supplementary Fig S8A,B online). Trans-
fection of ATG1a and ATG1b siRNA to HEK 293T cells led
to increased phosphorylation of S6K Thr 389 (Fig 3C, top panel)
and S6 (the only proven in vivo substrate of S6K) Thr 235/
236 (Fig 3C, lower middle panel). This result was further
supported by immunocytochemistry by using phosphospecific S6
antibody; ATG1 siRNA transfection alone induced phospho-
specific immunostaining of S6 in starved cells (Fig 3E). Taken
together, these results clearly demonstrate that ATG1 inhibits
S6K and S6 in vivo.

Notably, the level of S6K activation by ATG1 siRNA was about
5% of that by nutritional stimulation (Fig 3D). We think that this
weak activation of S6K resulted from partial gene knockdown by
RNAi (supplementary Fig S8) and genetic redundancy of ATG1 in
mammals (Fig 3A; supplementary Fig S6B online). Consistent with
this conclusion, we observed more pronounced activation of dS6K
in DmATG1 mutants in Drosophila, which contains only a single
orthologue of ATG1 (DmATG1; Fig 2B,C).

Modulation of S6K Thr 389 phosphorylation by ATG1
S6K is in the AGC kinase family, which also includes Akt and
p90 ribosomal S6 kinase (RSK). These kinases are regulated
by a similar mechanism in which both phosphorylation at their
activation loop and a hydrophobic motif next to the kinase
domain are required for full activation (Mora et al, 2004).
3-Phosphoinositide-dependent kinase 1 (PDK1) is a kinase
responsible for phosphorylation at the activation loop of AGC
kinases (Mora et al, 2004). In the case of S6K, PDK1 directly
phosphorylates the Thr 229 residue at the activation loop of S6K,
which is strictly dependent on the previous phosphorylation of
Thr 389 at the hydrophobic motif (Collins et al, 2003; Mora
et al, 2004). These motifs are well conserved among the family
members in different species. Therefore, we examined whether
ATG1a also affects the phosphorylation of Akt and RSK.
Interestingly, the phosphorylation of Akt and RSK was not
affected by ATG1a, with or without stimulation by insulin and
EGF (Fig 4A, B, respectively). These data indicate that ATG1a
specifically modulates S6K activity.

Next, to understand the molecular mechanism of the specific
regulation of S6K by ATG1, we investigated whether ATG1 affects
the phosphorylation of Thr 229 in S6K by using an S6K mutant that
specifically mimics the phosphorylated form of S6K, Thr 389 Glu.
As a result, Thr 229 phosphorylation of the S6K Thr 389 Glu mutant
was not affected by wild-type ATG1 (Fig 4C). Because Akt was not
inhibited by ATG1 (Fig 4A), it is unlikely that ATG1 regulates
Thr 389 phosphorylation of S6K by inhibiting the PDK1/Akt sig-
nalling module. Therefore, we believe that ATG1 modulates S6K
activity by affecting S6K Thr 389-specific kinases or phosphatases.
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phosphorylation were measured using Adobe Photoshop, and normalized to the S6K protein levels. Results are expressed as a fold change compared

with the first indicated sample. (E) HEK293T cells were transfected with control siRNA or ATG1a siRNA with pEGFP-C1 (a transfection marker,
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In summary, under nutrient-rich conditions, activation of TOR
leads to inhibition of ATG1, which facilitates S6K Thr 389
phosphorylation and the subsequent phosphorylation of Thr 229
by PDK1 to activate S6K fully. Consequently, activated S6K
promotes cell growth. However, under conditions of starvation,
TOR becomes quiescent and ATG1 can inhibit S6K by blocking
Thr 389 phosphorylation. This nutrient-dependent signalling
switch operated by TOR and ATG1 is highly consistent with that
in yeast (Noda & Ohsumi, 1998; Kamada et al, 2000). The
observations described in this study clearly show the presence of
crosstalk between ATG1 and S6K signalling, in which ATG1
specifically inhibits S6K. We also showed that this is evolutiona-
rily conserved between Drosophila and mammals. We believe
that our biochemical data and fly system will be useful in future
studies that address the detailed molecular mechanism of crosstalk
between the two nutrition-dependent physiological processes—
autophagy and cell growth.

METHODS
Drosophila strains. The fly lines for hs-GAL4, dTORP1 and
dS6K07084 were obtained from the Bloomington Stock Center
(Indiana University, Bloomington, IN, USA). EP3348 was obtained
from the Szeged Drosophila melanogaster P Insertion Mutant
Stock Center (University of Szeged, Szeged, Hungary). The dS6Kl-1

fly line was a generous gift from Dr G. Thomas (University of
Cincinnati Genome Research Institute, Cincinnati, OH, USA;
Montagne et al, 1999). The DmATG1D3d fly strain was kindly
provided by Dr T.P. Neufeld (University of Minnesota, Minnea-
polis, MN, USA; Scott et al, 2004). The UAS-Rheb fly line was
provided by Dr F. Tamanoi (University of California, Los Angeles,
USA; Patel et al, 2003).
Antibodies. Phosphospecific dS6K Thr 398, S6K Thr 389, S6 Ser
235/236, Akt Thr 308 and Akt Ser 473 antibodies were purchased
from Cell Signalling Technology (Danvers, MA, USA). Phospho-
(Ser/Thr) PDK1 Docking Motif (pPDM) antibody and S6 antibody
were also purchased from Cell Signalling Technology. Phospho-
specific S6K Thr 229 antibody was obtained from R&D Systems
(Minneapolis, MN, USA). S6K antibody was generated as
described previously (Chung et al, 1992). b-Tubulin mouse
antibody (E7) was purchased from the Developmental Studies
Hybridoma Bank (DSHB).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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