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Transforming growth factor-b (TGF-b) family members are

multifunctional growth factors involved in regulating

diverse biological processes. Despite the critical role for

TGF-b in regulating cell proliferation, differentiation,

migration and development, its role in regulating NF-jB-

dependent inflammatory response still remains unclear.

Here, we show that TGF-b1 induces acetylation of NF-jB

p65 subunit to synergistically enhance bacterium non-

typeable Haemophilus influenzae-induced NF-jB activa-

tion and inflammatory response in vitro and in vivo.

The TGF-b1-induced acetylation of p65 is mediated

via a Smad3/4-PKA-p300-dependent signaling pathway.

Acetylation of p65 at lysine 221 by TGF-b1 is critical for

synergistic enhancement of bacteria-induced DNA-binding

activity, NF-jB activation, NF-jB-dependent transcription

of TNF-a and IL-1b and interstitial polymorphonuclear

neutrophil infiltration in vitro and in vivo. These studies

provide new insights into the novel regulation of NF-jB by

TGF-b signaling.
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Introduction

Transforming growth factor-b (TGF-b) family members are

multifunctional growth factors involved in regulating diverse

biological processes. Despite the critical role for TGF-b in

regulating cell proliferation, differentiation, migration and

development, its role in regulating NF-kB-dependent inflam-

mation still remains elusive (Wahl, 1994; ten Dijke and

Hill, 2004; Feng and Derynck, 2005; Massague et al, 2005).

Targeted disruption of the mouse TGF-b1 gene results

in excessive inflammatory responses (Shull et al, 1992).

Systemic TGF-b administration suppresses inflammation

(Wahl, 1994). Consistent with these in vivo findings, TGF-

b1 inhibits LPS-induced NF-kB activation in both intestinal

epithelial cells and microglial cells (Haller et al, 2003; Le et al,

2004). These data thus suggest that TGF-b acts as a suppres-

sor for NF-kB-dependent inflammatory response. How-

ever, there is now growing evidence that TGF-b induces and

promotes inflammatory response via activation of NF-kB. For

instance, TGF-b1 overexpression in keratinocytes in trans-

genic mice results in inflammatory skin lesions (Li et al,

2004); local TGF-b administration promotes inflammation

(Wahl, 1994). In addition, in vitro studies also indicate

that TGF-b–Smad signaling mediates activation of NF-kB in

human airway epithelial cells (Jono et al, 2002; Mikami et al,

2006). The molecular mechanisms underlying TGF-b-

mediated NF-kB-dependent inflammatory responses remain

totally unknown.

TGF-b initiates signaling through the ligand-dependent

activation of a heteromeric complex of type II and type I

receptors (Feng and Derynck, 2005; Massague et al, 2005).

The type II receptor kinase then phosphorylates the type I

receptor in a conserved glycine-serine domain, resulting in

activation of the type I receptor. The activated type I receptor

subsequently recognizes and phosphorylates the Smad sub-

group known as receptor-activated Smads (R-Smad), includ-

ing Smad 2 and 3. This causes dissociation of R-Smad from

the receptor, stimulates the assembly of a heteromeric com-

plex between the phosphorylated R-Smad and the Co-Smad,

Smad4, and then induces the translocation of the Smad

complex to the nucleus, where the Smad complex regulates

the expression of target genes. In addition to its direct

interaction with Smad DNA-binding element, growing evi-

dence suggests that Smads also regulate gene transcription by

direct interaction and functional cooperation with other

transcription factors, such as NF-kB.

NF-kB is known to be activated via phosphorylation and

degradation of IkB by IkB kinases (IKKs), which in turn leads

to the nuclear translocation of NF-kB and the subsequent

transcription of NF-kB-dependent genes such as TNF-a
(Bonizzi and Karin, 2004; Hayden and Ghosh, 2004).

Recently, interesting studies have suggested that degradation

of IkBa and nuclear translocation of NF-kB are not sufficient

to promote a maximal NF-kB transcriptional activity. Rather,

the NF-kB complex must undergo additional post-transla-

tional modification involving site-specific phosphorylation

and acetylation (Chen et al, 2001, 2002, 2005). The p65

subunit of NF-kB is a principal target of phosphorylation by

various kinases. These kinases function both in the cyto-

plasm and in the nucleus and are differentially induced by
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various stimuli including LPS and TNF-a. Both the Rel-

homology domain and the carboxy-terminal transactivation

domain of p65 contain key phosphoacceptor sites that are

specifically targeted by various kinases. The most physiolo-

gically inducible phosphorylation sites reported for p65

occurs at serine 536, serine 276 and serine 529. Serine 536

is phosphorylated by IKK complex (Sakurai et al, 1999),

whereas Ser 529 was phosphorylated by casein kinase II

(Wang et al, 2000). In addition, phosphorylation of Ser 276

is mediated by catalytic protein kinase A (PKA) subunit or

mitogen- and stress-activated protein kinase 1 (Zhong et al,

1998; Vermeulen et al, 2003). Additional p65 phosphorylation

events have been described. Their functional significance,

however, remains unclear.

Acetylation, like phosphorylation, is also important for

regulation of the nuclear function of NF-kB (Chen et al,

2002, 2005; Kiernan et al, 2003; Hoberg et al, 2006).

Endogenous p65 is acetylated in a stimulus-coupled manner

after activation of cells with TNF-a or other stimuli at multi-

ple sites. The p300 and CBP appear to play a major role in

acetylation of p65. The p300/CBP possesses a histone

acetyltransferase (HAT) enzymatic activity that regulates

gene expression in part through acetylation of the N-terminal

tails of histones (Ogryzko et al, 1996; Chen et al, 2002). In

addition to modifying histones, p300 and CBP also directly

acetylates p65. Acetylation of NF-kB leads to changes in its

biological activity, such as alterations in DNA-binding activity

and transcriptional activity (Ogryzko et al, 1996; Kouzarides,

2000; Chen et al, 2002; Gu et al, 2004). Three main acetyla-

tion sites have been identified within p65—lysines 218, 221

and 310. Site-specific acetylation of p65 regulates discrete

biological action of the NF-kB complex. For example, acetyla-

tion of lysine 221 increases the DNA-binding affinity of p65

for kB site, whereas acetylation of lysine 221 alone or in

combination with lysine 218 impairs the assembly of p65

with IkBa. Acetylation of lysine 310 of p65 is required for

full transactivation by NF-kB complex. The relationship

between p65 phosphorylation and acetylation has been

also explored recently. There is evidence indicating that

the acetylation of p65 is importantly regulated by prior

phosphorylation of serine 276 and 536 (Chen et al, 2005;

Hoberg et al, 2006). Such phosphorylated and acetylated

forms of p65 display enhanced transcriptional activity.

Given that TGF-b plays a critical role in regulating inflamma-

tory response via NF-kB in infectious diseases, it is still

unclear whether TGF-b regulates NF-kB-dependent inflam-

matory response via either phosphorylation or acetylation

of NF-kB.

The Gram-negative bacterium nontypeable Haemophilus

influenzae (NTHi) is an important human pathogen in both

adults and children (Foxwell et al, 1998; Murphy, 2000). In

adults, it exacerbates chronic obstructive pulmonary diseases

(COPD), the fourth leading cause of death in the United States

(Murphy, 2006), whereas in children, it causes otitis media,

the most common childhood infection and the leading cause

of conductive hearing loss (Murphy, 2000). Like most other

bacterial infections, NTHi infections are characterized by

inflammation. We have previously shown that NTHi activates

NF-kB via a Toll-like receptor 2-dependent NIK–IKKa/b–IkBa
signaling pathway (Shuto et al, 2001). Based on the essential

involvement of NF-kB in NTHi-induced inflammatory

responses and TGF-b, an important regulator of inflamma-

tion, is highly upregulated in airways of COPD patients

(de Boer et al, 1998), we hypothesized that TGF-b signaling

may play a critical role in regulating NTHi-induced inflam-

mation via modulation of NF-kB activity. Here, we show that

TGF-b1 induces acetylation of NF-kB p65 subunit at lysine

221 to synergistically enhance NTHi-induced NF-kB activa-

tion and inflammatory response via a Smad3/4-PKA-depen-

dent mechanism in vitro and in vivo. These studies

may provide novel insights into the regulation of NF-kB by

TGF-b signaling.

Results

TGF-b1 synergizes with bacterium NTHi to induce

NF-jB activation and inflammatory response

in vitro and in vivo

To determine whether TGF-b1 regulates NTHi-induced NF-kB

activation and inflammatory response, we first measured

NF-kB-dependent promoter activity by using luciferase

reporter plasmid in a variety of human epithelial cells. As

shown in Figure 1A, TGF-b1 enhanced NTHi-induced NF-kB

activation in a synergistic manner in human epithelial HeLa

cells, airway epithelial A549 cells and middle ear epithelial

HMEEC-1 cells as well as human primary bronchial epithelial

NHBE cells. Because of the important role for NF-kB in

regulating a variety of key inflammatory mediators, we

next determined whether TGF-b1 synergistically enhances

NTHi-induced transcription of TNF-a and IL-1b by perform-

ing real-time quantitative PCR (Q-PCR) analysis. As shown in

Figure 1B, TGF-b1 synergistically enhanced NTHi-induced

expression of TNF-a and IL-1b in HeLa cells. Similar result

was also observed in A549 and primary NHBE cells. We

further confirmed whether TGF-b1 also enhances NTHi-

induced expression of TNF-a and IL-1b in vivo. As shown

in Figure 1C, TGF-b1 synergistically enhanced induction of

TNF-a and IL-1b by NTHi in the lungs of mice. Consistent

with this result, TGF-b1 also synergistically enhanced poly-

morphonuclear neutrophil (PMN) accumulation in broncho-

alveolar lavage (BAL) fluids from the lungs of the NTHi-

inoculated mice (Figure 1D and Supplementary Figure S1).

Collectively, these data demonstrate that TGF-b1 synergisti-

cally enhances bacterium NTHi-induced NF-kB-dependent

inflammatory response in vitro and in vivo.

TGF-b1 synergistically enhances NTHi-induced NF-jB

activation via a mechanism dependent on increased

DNA-binding activity, but independent of p65 nuclear

translocation

Because phosphorylation and degradation of IkBa and nucle-

ar translocation of NF-kB are critical for NF-kB activation, we

next sought to determine whether TGF-b1 synergistically

enhances NTHi-induced NF-kB activation by increasing phos-

phorylation and degradation of IkBa. As shown in Figure 2A,

TGF-b1 did not enhance NTHi-induced IkBa phosphorylation

and degradation. We then determined whether TGF-b1 en-

hances NTHi-induced NF-kB activation by causing delay in

the cytoplasmic reappearance of IkBa. No further delay in

the cytoplasmic reappearance of IkBa was observed

with TGF-b1 treatment (Figure 2B). Therefore, it is clear

that TGF-b1-induced enhancement of NF-kB activation by

NTHi does not occur at the level of IkBa. We next determined

whether TGF-b1 enhances NTHi-induced NF-kB activation by

TGF-b enhances NF-jB activation via p65 acetylation
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inducing its nuclear translocation of p65 by performing

Western blot analysis using nuclear extract. As shown in

Figure 2C, p65 was markedly translocated to the nucleus

when the cells were stimulated with NTHi alone.

Simultaneous treatment with TGF-b1 and NTHi resulted in

no synergistic enhancement of p65 translocation. Likewise,

TGF-b1 also did not prolong nuclear presence of p65

(Figure 2D). These results thus suggest that TGF-b1-induced

synergistic enhancement of NF-kB activation did not occur at

the level of p65 nuclear translocation. Because the DNA-

binding activity of the NF-kB complex is critical for NF-kB

to exert its transcriptional activity, we investigated the effect

of TGF-b1 on NTHi-induced DNA-binding activity of NF-kB

by performing electrophoretic mobility shift assay (EMSA).

As shown in Figure 2E, TGF-b1 treatment resulted in syner-

gistic enhancement of DNA binding of NF-kB in cells treated

with NTHi. Further analysis using supershift assay reveals

that p65 and p50 appear to be the major subunits of the

NF-kB band that was synergistically enhanced by TGF-b1

treatment (Figure 2F). To further confirm whether TGF-b
enhances p65 DNA binding to an NF-kB-dependent gene

promoter such as TNF-a promoter in the context of chroma-

tin, chromatin immunoprecipitation (ChIP) assays were per-

formed. As shown in Figure 2G, TGF-b indeed synergistically

enhanced NTHi-induced DNA binding of p65 to the TNF-a
promoter. Together, these data suggest that TGF-b1 synergis-

tically enhances NTHi-induced NF-kB activation via a

mechanism dependent on increased DNA-binding activity,

but independent of p65 nuclear translocation.

TGF-b1 synergistically enhances NTHi-induced NF-jB

activation via induction of p65 acetylation at

lysine 221

Having identified the synergistic enhancement of TGF-b1 on

NTHi-induced DNA-binding activity of NF-kB, still unknown

is how TGF-b1 enhances NTHi-induced NF-kB activation by

increasing DNA-binding activity. Post-translational modifica-

tions, particularly phosphorylation and acetylation, have

been shown to play a critical role in NF-kB activation by

enhancing the DNA-binding activity of p65 to the kB site

(Chen et al, 2005). Thus, we hypothesized that these mod-

ification of p65 may be involved in mediating the enhance-

ment of NTHi-induced DNA-binding activity of NF-kB by

TGF-b1. We tested our hypothesis by assessing the effect of

TGF-b1 on NTHi-induced p65 phosphorylation and p65 acet-

ylation. As shown in Figure 3A, TGF-b1 enhanced NTHi-

induced p65 acetylation but not phosphorylation. It should be

noted that TGF-b, like NTHi, also induced phosphorylation of

p65 at Ser276 (middle panel). Because trichostatin A (TSA),

an inhibitor of histone deacetylase (HDAC), broadly inhibits

the action of the HDACs function and results in hyperacetyla-

tion of the core histones and nonhistone proteins (Adam et al,

2003; Kiernan et al, 2003), we next evaluated the effect of

TSA on p65 acetylation induced by NTHi and TGF-b1.

As expected, p65 acetylation was enhanced by TSA treatment

(Figure 3B, left panel). Consistent with this result,

TSA treatment further enhanced the synergistic activation

of NF-kB induced by NTHi and TGF-b (Figure 3B, right

panel).
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Figure 1 TGF-b1 synergizes with bacterium NTHi to induce NF-kB activation and inflammatory response in vitro and in vivo. (A) TGF-b1
synergistically enhanced NTHi-induced NF-kB-dependent promoter activity in human HeLa, airway A549, middle ear HMEEC-1 and primary
bronchial epithelial NHBE cells, as assessed by NF-kB-dependent promoter assays. (B) TGF-b1 synergistically enhanced NTHi-induced
expression of TNF-a and IL-1b in HeLa cells, as assessed by real-time Q-PCR analysis. Similar results were also observed in A549 and primary
NHBE cells. (C) TGF-b1 synergistically enhanced NTHi-induced expression of TNF�a and IL-1b in the lung of BALB/c mice in vivo. Values are
means7s.d. (n¼ 5). (D) TGF-b1 synergistically enhanced NTHi-induced PMN infiltration in the lung of BALB/c mice in vivo. Data are
representative of three independent experiments.
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Owing to the important role of lysines 218, 221 and 310 as

major acetylation sites in p65 (Chen et al, 2002), we next

examined whether mutation of all three of these lysine

residues (p65KR (p65K218/221/310R)) alters p65 acetylation,

DNA binding and NF-kB activation by TGF-b1 and NTHi.

As shown in Figure 3C, coexpressing wild-type (WT) p65,

but not p65KR mutant, with WT p300 together with

TGF-b1 treatment markedly induced p65 acetylation.

Consistent with this result, TGF-b1 also enhanced NF-kB

DNA-binding activity and NF-kB-dependent transcriptional

activity in cells transfected with WT p65 but not with

p65-KR mutant (Figure 3D and E). To further confirm the

functional involvement of these three acetylation sites

in synergistic activation of NF-kB by NTHi and TGF-b1,

we assessed the synergistic induction of NF-kB in p65�/�

MEFs that were reconstituted with either WT p65 expression

plasmid or p65-KR mutant. As shown in Figure 3F, synergistic

NF-kB activation was observed in WT p65-reconstituted

MEFs but not in p65-KR-reconstituted MEFs in response to

NTHi and TGF-b1. To confirm whether these three acetylation

sites are also involved in synergistic induction of TNF-a
and IL-1b, we evaluated induction of TNF-a and IL-1b in

cells transfected with either WT p65 or p65-KR mutant

upon TGF-b1 treatment. As shown in Figure 3G, TGF-b1

synergistically enhanced induction of TNF-a and IL-1b in

cells transfected with WT p65 but not with p65-KR

mutant. Taken together, our results suggest that these three

acetylation sites are critical for mediating synergistic

enhancement of p65 acetylation by TGF-b1, which, in

turn, leads to enhancement of DNA-binding activity and

NF-kB-dependent transcription of proinflammatory cytokines

TNF-a and IL-1b.

We next determined which individual lysine residue is

acetylated in response to TGF-b. As shown in Figure 3H,

mutation of lysine 221, but not 218 or 310, markedly

decreased p65 acetylation in response to TGF-b compared

to WT p65. Consistent with this result, TGF-b1 synergistically

enhanced NF-kB activation in cells transfected with WT p65,

p65-K218R and p65-K310R, but not with p65-K221R mutant

(Figure 3I). To further confirm the functional involvement

of lysine 221 in synergistic activation of NF-kB by NTHi and

TGF-b1, we assessed the synergistic induction of NF-kB in

p65�/� MEFs that were reconstituted with either WT p65

expression plasmid or p65-K221R mutant or p65-K310R

mutant. As shown in Figure 3J, synergistic NF-kB activation

was observed in p65-K310R-reconstituted MEFs but not in

p65-K221R-reconstituted MEFs compared to p65�/� MEFs

reconstituted with WT p65. Thus, it is evident that lysine

221 residue is critical for mediating synergistic enhancement

of p65 acetylation by TGF-b1 and the subsequent NF-kB DNA-

binding and transcriptional activity.

p300 is involved in enhancement of p65 acetylation

by TGF-b1

Based on recent studies that p300 acetyltransferase plays a

major role in acetylation of p65 (Chen et al, 2002, 2005;

Kiernan et al, 2003; Hoberg et al, 2006), we next determined

whether p300 is involved in synergistic enhancement of p65
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acetylation by TGF-b1. As shown in Figure 4A, TGF-b1

enhanced p65 acetylation in epithelial cells cotransfected

with WT p65 and WT p300, but not in cells cotransfected

with WT p65 and p300 HAT mutant. This result indicates that

synergistic enhancement of p65 acetylation by TGF-b1 may

involve the HAT activity of p300. To confirm whether p300

HAT activity is also involved in synergistic NF-kB activation

by NTHi and TGF-b1, we evaluated the effect of overexpres-

sing of WT p300 and p300 HAT mutant on NTHi- and TGF-b1-

induced NF-kB activation. As shown in Figure 4B, over-

expression of WT p300 enhanced NTHi- and TGF-b1-induced

NF-kB activation, whereas overexpressing p300 HAT mutant

inhibited synergistic activation of NF-kB by NTHi and

TGF-b1. Thus, these data suggest that p300 is involved in
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synergistic NF-kB activation by NTHi and TGF-b1 via a

mechanism dependent on p65 acetylation.

Smad3 and Smad4 are required for enhanced NF-jB

activation by TGF-b1 via a mechanism independent

of direct interaction with NF-jB

We next sought to determine the involvement of Smad3 and

Smad4 in TGF-b1-induced synergistic enhancement of NF-kB

activation. As shown in Figure 5A, overexpression of a domi-

nant-negative mutant of either Smad3 or Smad4 and Smad3 or

Smad4 knockdown using siRNA inhibited synergistic activa-

tion of NF-kB by NTHi and TGF-b1. It should be noted that

Smad4 DN did not inhibit TNF-a-induced NF-kB activation,

suggesting that the inhibitory effect of Smad4 DN is specific for

NTHi-induced NF-kB activation (Supplementary Figure S2).

Consistent with these results, no synergistic enhancement of

NF-kB activation was observed in Smad3 null cells and Smad4-

deficient MDA-MB-468 cells (Figure 5C and D), whereas

cotransfecting Smad3 null cells with WT Smad3 and cotrans-

fecting MDA-MB-468 cells with WT Smad4 expression plasmid

rescued the responsiveness to TGF-b1. We further investigated

whether Smad3 and Smad4 are also required for the synergis-

tic induction of p65 acetylation by TGF-b and NTHi. As shown

in Figure 5E, Smad3 or Smad4 knockdown inhibited p65

acetylation induced by TGF-b and NTHi. We next determined

whether there is a direct interaction between NF-kB compo-

nents and Smads by performing supershift assay with specific

antibodies. As shown in Figure 5F, no supershifted band was

observed by anti-Smad3 or anti-Smad4. Given that often the

interaction of Smads with other transcription factors on DNA

is DNA context-dependent, we thus used TNF-a promoter

containing an NF-kB-binding site with surrounding sequence

to perform Smad supershift assay. As shown in Figure 5G, no

supershifted band was observed by anti-Smad3 or anti-Smad4

antibodies. Taken together, these results suggest that Smad3

and Smad4 are required for synergistic induction of p65

acetylation and NF-kB activation by TGF-b1 via a mechanism

independent of direct interaction with NF-kB.

Synergistic enhancement of NTHi-induced p65

acetylation by TGF-b1 is mediated by PKA in vitro

and in vivo

Having identified the requirement of Smad3/4 and p300 in

mediating p65 acetylation by TGF-b1, which, in turn, leads to

enhancement of DNA-binding activity and NF-kB-dependent

transcriptional activation, it is still unknown which inter-

mediate signaling molecule links TGF-b–Smad3/4 signaling

to p300-mediated p65 acetylation. Among a variety of signal-

ing transducers, PKA has been shown to promote the recruit-

ment of the coactivator p300 via phosphorylation of CREB

at Ser133 (Johannessen et al, 2004). There are also strong

evidences that PKA enhances acetylation of histone and

nonhistone protein in a p300-dependent manner (Salvador

et al, 2001; Chang et al, 2005; Kim et al, 2005). Moreover,

TGF-b1 can activate PKA without elevating intracellular
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Figure 4 p300 is involved in enhancement of p65 acetylation by
TGF-b1. (A) TGF-b1 enhanced p65 acetylation in HeLa cells co-
transfected with WT p65 and WT p300 but not p300 HAT mutant.
Data are representative of three independent experiments. (B) WT
p300 enhanced NTHi-induced NF-kB activation, whereas p300 HAT
mutant inhibited synergistic NF-kB activation by NTHi and TGF-b1
in HeLa cells. Values are means7s.d. (n¼ 3).

Figure 3 TGF-b1 synergistically enhances NTHi-induced NF-kB activation via induction of p65 acetylation at lysine 221. (A) Synergistic
enhancement of p65 acetylation was observed in HeLa cells treated with both NTHi and TGF-b1 (1 ng/ml; right panel), whereas TGF-b1
induced p65 phosphorylation at Ser276 but not Ser536 (left and middle panels). Acetylation of p65 was detected by immunoblotting (IB) of the
anti-p65 (a-p65) immunoprecipitates (IP) with anti-acetylated lysine antibodies. Levels of p65 present in each of the lysates are shown in the
lower panel. (B) TSA enhanced NTHi-induced p65 acetylation and NF-kB activation. (C) TGF-b1 enhanced p65 acetylation induced by
coexpressing WT p300 with WT p65, but not with p65-KR mutant (lysine 218/lysine 221/lysine 310 acetylation site mutant) in HeLa cells.
(D) TGF-b1 enhanced DNA-binding activity of NF-kB in HeLa cells transfected with WT p65 but not with p65-KR mutant. (E) TGF-b1 enhanced
NF-kB activation in HeLa cells transfected with WT p65 but not with p65-KR mutant. (F) TGF-b1 enhanced NTHi-induced NF-kB activation in
p65�/� MEFs reconstituted with WT p65 but not in p65-KR-reconstituted p65�/� MEFs. (G) TGF-b1 enhanced TNF-a and IL-1b expression
in HeLa cells transfected with WT p65 but not with p65-KR. (H) Mutation of lysine 221, but not 218 or 310, markedly decreased p65 acetylation
in response to TGF-b compared to WT p65. (I) TGF-b1 enhanced NF-kB-dependent transcriptional activity in cells transfected with p65-K218R
and p65-K310R, but not with p65-K221R mutant compared to cells transfected with WT p65. (J) Synergistic NF-kB activation was observed in
p65-K310R-reconstituted MEFs but not in p65-K221R-reconstituted MEFs in response to NTHi and TGF-b1 compared to p65�/� MEFs
reconstituted with WT p65. Values are means7s.d. (n¼ 3). Data are representative of three or more independent experiments.
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cAMP level (Zhang et al, 2004). To determine the possible

involvement of PKA in TGF-b1-induced synergistic enhance-

ment of p65 acetylation, we first determined whether TGF-b1

activates PKA kinase activity by performing PKA kinase

assay. As shown in Figure 6A, TGF-b1 activated PKA activity.

The TGF-b1-induced PKA activity was inhibited by PKI, a

specific PKA inhibitor peptide that contains a PKA pseudo-

substrate sequence and specifically inhibits the catalytic

subunits of PKA by binding to the substrate-binding site

(Figure 6B; Zhang et al, 2004). We further assessed the effect

of TGF-b1 on PKA activation using an siRNA approach. We

first confirmed the efficiency of PKA catalytic unit-a-specific

siRNA (siRNA-PKAc) in reducing endogenous PKAc expres-

sion in HeLa cells transfected with siRNA-PKAc or control
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Figure 5 Smad3 and Smad4 are required for enhanced NF-kB activation by TGF-b via a mechanism independent of direct interaction with NF-
kB. Overexpression of dominant-negative mutant of Smad3 or Smad4 (A) and Smad3 or Smad4 knockdown using siRNA (B) inhibited
synergistic enhancement of NTHi-induced NF-kB activation by TGF-b in HeLa cells. Similar result was also observed in A549 cells. (C, D) TGF-
b1 did not enhance NTHi-induced NF-kB activation in Smad3 null cells (C) and Smad4-deficient MDA-MB 468 cells (D). Transfecting Smad3
null cells with WT Smad3 and MDA-MB 468 cells with WT Smad4 rescued the responsiveness to TGF-b-1. (E) Smad3 or Smad4 knockdown
inhibited p65 acetylation induced by TGF-b and NTHi in HeLa cells. (F) Smad3 and Smad4 does not appear to directly interact with NF-kB
DNA-binding complex as assessed by supershift assay in HeLa cells. (G) No supershifted band was observed by anti-Smad3 or anti-Smad4
antibodies when TNF-a promoter containing an NF-kB-binding site with surrounding sequence was used as a probe to perform Smad supershift
assay. IgG was used as a control in (F) and (G). Values are means7s.d. (n¼ 3 for A–D). Data are representative of three independent
experiments.
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siRNA. As expected, the PKAc protein was markedly reduced

by PKAc knockdown using siRNA-PKAc. (Figure 6C, left

panel). We then assessed the effect of PKAc knockdown on

TGF-b1-induced PKA activation. As shown in Figure 6C (right

panel), TGF-b1-induced PKA was abrogated by siRNA-PKAc.

We next sought to determine whether PKA is involved in

synergistic enhancement of NTHi-induced p65 acetylation by

TGF-b1. Figure 6D shows that induction of p65 acetylation by
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Figure 6 Synergistic enhancement of NTHi-induced p65 acetylation by TGF-b1 is mediated by PKA in vitro and in vivo. (A) TGF-b1 induced
PKA activation in HeLa cells. TGF-b1-induced PKA activation was inhibited by either 1mM PKI (B) or PKAc knockdown using siRNA-PKAc
(C). (D) Synergistic p65 acetylation by NTHi and TGF-b1 was inhibited by PKI in HeLa cells. (E) Coexpression of WT PKA and p300 with WT 65
but not with p65-KR mutant markedly induced p65 acetylation in HeLa cells. (F) PKAc knockdown using siRNA-PKAc inhibited synergistic
enhancement of NTHi-induced DNA-binding activity by TGF-b1 in HeLa cells. (G) WT PKA enhanced DNA-binding activity in HeLa cells
transfected with WT 65 but not with p65-KR mutant. (H) Synergistic NF-kB activation by NTHi and TGF-b1 was inhibited by either PKI (left)
or siRNA-PKAc in HeLa cells (right). (I) WT PKA enhanced NF-kB activation in HeLa cells transfected with WT p65, but not with p65-KR.
(J) Synergistic enhancement of NTHi-induced TNF-a and IL-1b expression by TGF-b1 was inhibited by PKI in HeLa cells. (K) PKI inhibited
synergistic enhancement of NTHi-induced expression of TNF-a in the lungs of mice. (L) PKI markedly inhibited the TGF-b-mediated
enhancement of PMN accumulation in BAL fluids from the lungs of the NTHi-inoculated mice. Values are means7s.d. (n¼ 3 for H–K). Data are
representative of three independent experiments.
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NTHi and TGF-b1 was inhibited by PKI treatment. Consistent

with these data, expressing WT PKA enhanced p65 acetyla-

tion in HeLa cells cotransfected with WT p65, but not with

p65-KR mutant (Figure 6E). Thus, it is evident that TGF-b1

enhances NTHi-induced p65 acetylation through PKA activa-

tion. To further determine whether TGF-b1-induced PKA

activation is also required for synergistic enhancement of

DNA-binding activity by NTHi and TGF-b1, we examined the

effect of siRNA-PKAc on DNA-binding activity. As shown

in Figure 6F, siRNA-PKAc inhibited synergistic enhancement

of NTHi-induced DNA-binding activity by TGF-b1. In accor-

dance with these results, coexpressing WT PKA enhanced

DNA-binding activity of NF-kB in cells co-transfected with

WT p65 but not with p65-KR mutant (Figure 6G). These data

indicate that PKA is involved in synergistic enhancement of

DNA-binding activity of NF-kB by NTHi and TGF-b1 via

induction of p65 acetylation. To further confirm the func-

tional involvement of PKA in synergistic activation of NF-kB

by NTHi and TGF-b1, we evaluated the effect of PKI and

siRNA-PKAc on NF-kB activation. As expected, synergistic

NF-kB activation was inhibited by either PKI or siRNA-PKAc

(Figure 6H). Consistently, coexpressing WT PKA enhanced

NF-kB activation in cells cotransfected with WT p65 but not

with p65-KR mutant (Figure 6I). Finally, PKI also greatly

inhibited synergistic enhancement of NTHi-induced expres-

sion of TNF-a and IL-1b (Figure 6J). To further investigate the

physiological relevance of TGF-b-mediated induction of p65

acetylation by PKA, we assessed the in vivo effect of PKI on

synergistic induction of inflammatory response by TGF-b1

and NTHi. As shown in Figure 6K, PKI inhibited synergistic

enhancement of NTHi-induced expression of TNF-a in the

lungs of mice. Consistent with this result, PKI also markedly

inhibited the TGF-b-mediated enhancement of PMN accumu-

lation in BAL fluids from the lungs of the NTHi-inoculated

mice (Figure 6L and Supplementary Figure S3), thereby

demonstrating the physiological relevance of TGF-b-mediated

induction of p65 acetylation by PKA in vivo. Taken together,

we concluded from these data that PKA is indeed involved in

synergistic enhancement of NTHi-induced NF-kB activation

by TGF-b1 through PKA-mediated p65 acetylation in vitro and

in vivo.

PKA acts downstream of TGF-b–Smad3/4 signaling

pathway in mediating TGF-b1-induced synergistic

enhancement of NF-jB activation

We have shown that PKA is indeed involved in synergistic

enhancement of NF-kB activation by NTHi and TGF-b1.

However, it is still unclear whether PKA acts downstream

of the TGF-b–Smad signaling pathway. As we have already

demonstrated that both Smad3 and Smad4 are required for

synergistic NF-kB activation by NTHi and TGF-b1, we next

directly assessed the effects of overexpression of dominant-

negative mutant of Smad3 or Smad4 and Smad3 or Smad4

knockdown on TGF-b1-induced PKA activation. As shown in

Figure 7A and B, TGF-b1-induced PKA activation was inhib-

ited by both treatments. Consistent with these results,

TGF-b1-induced PKA activation was not observed in Smad4-

deficient MDA-MB-468 cells, whereas overexpression of WT

Smad4 conferred responsiveness to TGF-b1 (Figure 7C). To

further confirm whether PKA acts downstream of Smad3

and Smad4 in mediating NF-kB activation, we evaluated the

effect of PKAc knockdown using siRNA-PKAc on NF-kB

activation induced by overexpression of WT Smad3 or WT

Smad4. As expected, PKAc knockdown inhibited NF-kB

activation induced by overexpression of WT Smad3 or

Smad4 (Figure 7D). Together, our data suggest that PKA

indeed acts downstream of TGF-b–Smad signaling in mediat-

ing activation of NF-kB by TGF-b1.
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Figure 7 PKA acts downstream of TGF-b–Smad3/4 signaling pathway in mediating TGF-b1-induced synergistic enhancement of NF-kB
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Discussion

In the present study, we provided direct evidence that TGF-b1

synergizes with Gram-negative bacterium NTHi to induce

NF-kB activation and NF-kB-dependent transcription of

TNF-a and IL-1b in a variety of human epithelial cells

including the primary bronchial epithelial cells. TGF-b-

mediated enhancement of NTHi-induced inflammatory

responses was also confirmed in the mouse lung in vivo.

Moreover, we found that TGF-b1 synergistically enhanced

NF-kB activation by NTHi via Smad3/4–PKA–p300-depen-

dent p65 acetylation at lysine 221, which, in turn, leads to

enhancement of DNA-binding activity, and NF-kB-dependent

transcription of inflammatory mediators (Figure 8).

Of particular interest in this study is the direct evidence

for TGF-b1 to induce p65 acetylation that in turn leads to

enhancement of bacteria-induced NF-kB activation and in-

flammatory response. Among all known post-translational

modifications of p65, p65 acetylation has been shown to play

a critical role in controlling the duration and strength of

NF-kB and regulating various biological functions of NF-kB

including DNA binding, transactivation and the association

with the inhibitor IkBa (Bonizzi and Karin, 2004; Hayden and

Ghosh, 2004; Chen et al, 2005). Although several studies

suggest that TGF-b induces inflammation through mechan-

isms dependent on NF-kB activation (Wahl et al, 1987),

there has been no report showing that TGF-b signaling

enhances NF-kB-dependent inflammatory response via in-

duction of p65 acetylation. In the present study, we showed

for the first time that TGF-b1 enhances bacteria-induced

NF-kB activation via induction of p65 acetylation through

a Smad3/4–PKA–p300-dependent mechanism. This result,

although rather unexpected, may provide novel insights

into the role of TGF-b in regulating NF-kB and NF-kB-depen-

dent inflammatory response in bacterial infection. It should

be noted that TGF-b1 induces greater p65 acetylation in the

presence of NTHi than in its absence (Figure 3A). Thus it

appears that certain bacteria-induced NF-kB activity, for

example, phosphorylation, may be required for TGF-b-

induced acetylation. Indeed, recent study demonstrated that

phosphorylation of p65 regulates p65 acetylation (Chen et al,

2005). As shown in Figure 3A, bacterium NTHi induced

phosphorylation of p65 at Ser536 and Ser276 sites. In addi-

tion, TGF-b1 alone also induced phosphorylation of p65 at

Ser276 site. Thus, p65 phosphorylation appears to be critical

for TGF-b1 to induce acetylation of p65. Previous studies

have identified three acetylation sites as the main acetylation

sites within p65—lysines 218, 221 and 310 (Chen et al, 2002;

Kiernan et al, 2003). Site-specific acetylation of p65 regulates

discrete biological action of the NF-kB complex. For example,

acetylation of lysine 221 increases the DNA-binding affinity

of p65 for kB enhancer, whereas acetylation of lysine 221

alone or in combination with lysine 218 impairs the assembly

of p65 with IkBa. As evidenced by the data shown in Figure

3C–G, mutation of all three of these lysine residues (p65KR

(p65K218/221/310R)) reduced p65 acetylation, DNA binding

and NF-kB activation by TGF-b1 and NTHi. Given that

TGF-b1 also synergistically enhanced DNA-binding activity

induced by NTHi, it is possible that TGF-b1 may enhance

NTHi-induced DNA-binding activity by inducing acetylation

of p65 at lysine 221. Indeed, further analysis using site-

specific mutant of each of these three lysine residues 218,

221 and 310 and p65�/� MEFs that were reconstituted with

either WT p65 or p65-K310R mutant confirmed that lysine 221

residue is critical for mediating synergistic enhancement of

p65 acetylation by TGF-b1 and NF-kB-dependent transcrip-

tional activity. Also interesting to note is that mutation of

K218 and K310 also appears to partially diminish the acetyla-

tion and transactivation function of p65. Given that lysine 218

is located adjacent to lysine 221, it is possible that mutation

of lysine 218 may interfere with the function of lysine 221

owing to a possible conformational change, thereby resulting

in partial diminishment of acetylation and the synergistic

enhancement of the transcriptional activity of p65 in

response to TGF-b1. Moreover, as acetylation of lysine 310

was previously shown to be required for full transcriptional

activity of p65 (Chen et al, 2002), it is anticipated that

mutation of lysine 310 would affect the transcriptional activ-

ity of p65. This may explain a decrease in both basal activity

and the TGF-b-induced transcriptional activity of p65 in cells

transfected with p65-K310R (Figure 3I) as well as the reduc-

tion of NF-kB activity induced by NTHi alone or in conjunc-

tion with TGF-b in MEF p65-K310R (Figure 3J). However, it

should be noted that fold induction of the TGF-b-induced

synergistic enhancement of transcriptional activity of p65 in

either case still remains unchanged. Similarly, the fold induc-

tion of p65 acetylation in cells transfected with p65-K310R

also remains unchanged (2.1-fold in K310R versus 2.3-fold in

WT-p65) (Figure 3H). Nonetheless, it is evident that lysine

221 is critical for mediating synergistic enhancement of p65

acetylation and NF-kB-dependent transcriptional activity in

response to TGF-b1. Our findings are in line with previous

reports. PKAc is known to directly phosphorylate p65 at S276

(Zhong et al, 1997) and modulate the interaction between

p65 and CBP/p300 (Zhong et al, 1998). Furthermore, phos-

phorylation of p65 at S276 was recently shown to be coupled

to its stimulation-induced acetylation (Chen et al, 2005). In
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Figure 8 Schematic representation of TGF-b1-induced synergistic
NF-kB activation via Smad3/4–PKA–p300-dependent p65 acetyla-
tion in human epithelial cells. As indicated, TGF-b induces p65
acetylation at lysine 221 via a Smad3/4–PKA–p300-dependent
mechanism, which in turn leads to enhancement of DNA-binding
activity, NF-kB activation and NF-kB-dependent inflammatory
response in response to bacterium NTHi.
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the present study, we showed that TGF-b alone also induced

phosphorylation of p65 at S276 and synergized with NTHi to

induce acetylation of p65 at lysine 221 via a Smad3/4–PKA-

dependent mechanism. Taken together, our data reveal a

novel molecular mechanism by which TGF-b–Smad3/4

signaling pathway potentiates NF-kB activation through

induction of p65 acetylation via a PKA-dependent signaling

pathway.

Another important finding in the present study is that

TGF-b enhances bacteria-induced NF-kB-dependent inflam-

matory response in lung bacterial infections in vitro and

in vivo. Despite the critical role for TGF-b in regulating cell

proliferation, differentiation, migration and development, its

role in regulating inflammatory response still remains largely

unknown. Different effects (stimulatory or inhibitory) of TGF-

b have been reported on the regulation of cytokine induction

and inflammatory response. For instance, targeted disruption

of the mouse TGF-b1 gene results in excessive inflammatory

responses (Shull et al, 1992), whereas TGF-b1 overexpression

in keratinocytes in transgenic mice also results in inflamma-

tory skin lesions (Li et al, 2004). The molecular mechanisms

underlying the distinct role of TGF-b in regulating inflamma-

tion still remain elusive. There is accumulating evidence to

suggest that the consequences of regulation of cytokines and

inflammation by TGF-b are likely context-dependent and cell-

type-specific and may also depend on the concentration of

TGF-b itself. Studies from monocytes indicate that during the

early stage of inflammation, TGF-b locally acts as a pro-

inflammatory agent by recruiting and activating resting

monocytes. As the recruited monocytes are activated and

differentiated, they lose responsiveness to TGF-b possibly due

to the decreased expression of TGF-b receptor, and specific

immunosuppressive actions of TGF-b predominate, even-

tually leading to the resolution of inflammation

(McCartney-Francis and Wahl, 1994; Ashcroft, 1999; Li

et al, 2006). Moreover, studies from various cell types

indicate that the role of TGF-b in regulating cytokine and

inflammation is likely also cell-type-dependent. For instance,

TGF-b inhibits the production of and response to cytokines

associated with both Th1 and Th2 cells (Li et al, 2006). There

is also evidence that TGF-b inhibits E-selectin expression to

block adhesion and targeting of leukocytes to the site of

inflammation in endothelial cells (Gamble et al, 1993). In

addition, recent study also suggests that TGF-b may exert a

protective role in CNS diseases characterized by microglial

cell activation by proinflammatory stimulants (Le et al,

2004). Furthermore, the effect of TGF-b on cytokines and

inflammation may also be dose-dependent. Systemic admin-

istration of TGF-b leads to an inhibition of inflammation and

reduced tissue destruction (Wahl, 1994). However, a marked

increase (greater than 6–8-fold) in circulating TGF-b in TGF-b
overexpressing mice leads to renal inflammation (Ashcroft,

1999). Thus, it is evident that the consequence of TGF-b on

cytokines and inflammation depends on multiple factors. In

the present study, we showed that TGF-b alone did not induce

potent NF-kB activation but synergistically enhanced bacter-

ia-induced NF-kB activation and NF-kB-dependent inflamma-

tory response in vitro and in vivo. Given the critical role that

inflammatory responses play in host defense, our findings

may have some important implication in TGF-b-mediated

host defense against bacterial pathogens. The role of TGF-b
signaling in infectious diseases remains controversial (Reed,

1999). Most studies have focused on pathogens that infect

host macrophages such as Trypanosoma cruzi and a variety of

Leishmania species. These studies have demonstrated that

excessively produced TGF-b upon infection inhibits macro-

phage activation, thereby favoring virulence. In certain situa-

tions, however, there are also evidences that TGF-b has been

correlated with enhanced resistance to microbes such as

Candida albicans, thus benefiting the host. Despite these

distinct observations that mainly focused on macrophages,

little is known about how TGF-b regulates host defense and

inflammatory responses in the mucosal epithelial cells of

airway. Therefore, our study may bring new insights into the

novel role of TGF-b signaling in potentiating host defense and

inflammatory response to respiratory bacterial pathogens.

Finally, interesting evidence was also provided for the

involvement of PKA in synergistic NF-kB activation by

NTHi and TGF-b1. Our data showed that TGF-b1-induced

PKA activation, which in turn, leads to enhancement of p65

acetylation, DNA-binding activity and NF-kB activation by

NTHi. Because PKA phosphorylates CREB, which in turn

promotes recruitment of the coactivator p300 and CBP, and

PKA has also been shown to activate acetylation of histone

and nonhistone protein (Salvador et al, 2001; Johannessen

et al, 2004; Chang et al, 2005; Kim et al, 2005), it is logical

that TGF-b1-induced activation of PKA may increase p65

acetylation via p300-mediated mechanism. Our results

shown in Figure 4 indeed demonstrate the involvement of

p300 in enhancement of p65 acetylation by TGF-b. How does

PKA induce p300-mediated p65 acetylation? It is possible that

PKA induces p300-mediated p65 acetylation likely through

phosphorylation of p65 or p300. It has been shown that PKA

induces phosphorylation of p65 on serine 276 (Zhong et al,

1998), and phosphorylation of p65 on serine 276 in turn leads

to increased assembly of phospho-p65 with p300, resulting in

enhanced acetylation of p65 (Chen et al, 2005). Moreover,

there was also evidence that phosphorylation of p300 by PKA

is specifically required for proper activation of its HATactivity

(Brouillard and Cremisi, 2003). Thus, it is likely that PKA-

induced phosphorylation of p300 may also contribute to the

increased acetylation of p65. However, our data do not rule

out the possible involvement of the other mechanism under-

lying PKA-mediated p65 acetylation by TGF-b1, such as

inhibition of HDAC activity. Sequence analysis of HDAC8

revealed consensus phosphorylation sites for PKA, and it

has been shown that HDAC8 is phosphorylated by PKA

both in vitro and in vivo, thereby leading to hyperacetylation

of histone H3 and H4 (Lee et al, 2004). Further experiments

are needed to address this issue.

In conclusion, our present study demonstrated that TGF-b
induces p65 acetylation at lysine 221 via a PKA–p300-depen-

dent mechanism, which in turn leads to enhancement of

DNA-binding activity, NF-kB activation and NF-kB-dependent

inflammatory response in response to bacterium NTHi. This

study provides new insights into the novel role of TGF-b
signaling in regulating NF-kB activation.

Materials and methods

Bacterial strains
NTHi strain 12 was used in our studies and was cultured as
described previously (Shuto et al, 2001) (see Supplementary data
for details).
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Cell culture
HeLa, A549, Smad3�/� cells and MDA-MB468 (ATCC) were
maintained as described (Shuto et al, 2001; Qiu et al, 2003; Mikami
et al, 2006). Cell lines stably expressing WT p65, p65KR, K221R and
K310R were described previously (Chen et al, 2002). HMEEC-1,
NHBE (Cambrex) and mouse embryonic fibroblast (MEF) cells were
maintained as described (Jono et al, 2004).

Real-time quantitative RT–PCR analysis of TNF-a and IL-1b
Real-time Q-PCR was performed using an ABI 7700 sequence
detection system as described (Jono et al, 2004) (see Supplementary
data for details).

Plasmids, transfection and luciferase assay
The reporter construct NF-kB luc was generated as described (Shuto
et al, 2001). Smad3DN and WT, Smad4DN and WT were previously
described (Jono et al, 2002). WT-p65, p65-KR, p65-K218R, p65-
K221R, p65-K310R, WT-p300 and p300 HAT mutant were previously
described (Chen et al, 2002, 2005) (see Supplementary data for
details).

siRNA
PKAc, Smad3 and Smad4 siRNA oligonucleotides were purchased
from Dharmacon. The siRNA was transfected into HeLa cells using
RNAifect transfection reagent (QIAGEN) following the manufac-
turer’s instructions (Mikami et al, 2005).

Western blot analysis and immunoprecipitation
See Supplementary data for details.

PKA kinase assays
PKA activity was measured on HeLa whole-cell extracts by using
a fluorescent kemptide assay (PepTags Assay for Non-Radioactive
Detection of Protein Kinase A; Promega), by following the
supplier’s instructions. The relative PKA activity was quantitated
by densitometry analyses.

Electrophoretic mobility shift assay
See Supplementary data for details.

Chromatin immunoprecipitation assays
ChIP was performed using an EZ ChIP kit (Upstate Biotechnology)
as described (Taggart et al, 2005) (see Supplementary data for
details).

Mouse and animal experiments
Animal studies were performed as described (Mikami et al, 2006)
(see Supplementary data for details).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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