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Recent studies indicate that p21ras proteins mediate
their multiple cell functions through interactions
with multiple effectors and that the number of new
effectors is growing. We recently reported that K-ras2
mutations in human colorectal adenomas were asso-
ciated with chromosome instability and proliferation
changes. In the present study, we extend these pre-
vious observations. Hereditary and multiple (n > 5)
adenomas and adenomas with early cancer were ex-
cluded. Dysplasia was moderate in 91 cases and high
in 25, and the median adenoma size was 1.5 cm. K-ras2
spectrum analysis was done by sequence-specific
oligonucleotide hybridization using nuclear suspen-
sions provided by analysis and sorting of multiparam-
eter flow cytometry. In particular, tissue inflamma-
tory cells were separated for DNA diploid tumors,
whereas DNA aneuploid epithelial subclones were an-
alyzed separately. K-ras2 mutations and DNA aneu-
ploidy were both detected in 29 of 116 (25%) cases.
DNA aneuploid index was in the near-diploid region
in the majority of cases. DNA aneuploidy was strongly
associated with G3C/T transversions. An association
was also found between low S-phase values and G3A
transitions. These findings were confirmed using
multivariate logistic regression analysis to account
for the effects of size, dysplasia, site, type, age, and
sex. These data suggest that specific K-ras2 mutations
in a subgroup of human sporadic colorectal adeno-
mas play a role in chromosome instability and, con-
trary to expectations, are associated with inhibition
of proliferation. (Am J Pathol 1998, 153:1201–1209)

Ras proteins participate at the plasma membrane level in
transduction of diverse extracellular physiological signals

that are thought to induce appropriate gene expression
toward proliferation and differentiation. Ras proteins pos-
sess an intrinsic GTPase activity and alternate between
activated and inactivated forms. The best-known Ras
transduction mechanism is a pathway from receptor ty-
rosine kinases to transcription factors phosphorylated by
mitogen-activated protein kinases. Mutations of the ras
oncogenes result in constitutive signaling to downstream
elements and are detected at high frequency in many
types of human cancer.1–3 Recently, a link of Ras pro-
teins to cell cycle machinery and proliferation via regula-
tion of cyclin D1 and cyclin-dependent kinases was re-
ported.4–6 The existence of other important cell functions
of Ras is supported by a number of reports. For example,
Ras proteins were reported to play a role in apoptosis by
interacting with protein kinase C and Bcl-2 or by leading
to the activation of stress-activating protein kinase
(SAPK, also called jun kinase or JNK) and of the p38
subfamily.7–11 Ras proteins were also reported to regu-
late the formation of stress fibers, focal cell adhesion, and
cytokinesis.12,13 Transfection of human mutated K-ras2 in
mouse NIH-3T3 cells has been shown to induce desta-
bilization of the chromosomes in mitosis14,15 and gener-
ation of DNA aneuploid subclones as detected by flow
cytometry (FCM).15 Chromosome losses and chromatin
textural changes by image cytometry were also shown to
occur in H-ras-transformed human breast epithelial
cells.16 Dependence of aneuploidy from H-ras mutations
was also shown in chemically induced mouse skin pap-
illomas from a very early stage.17,18

All these cell systems clearly lack the complexity of
human systems and, to our knowledge, the role of K-ras2
activation on aneuploidy and proliferation for human spo-
radic colorectal adenomas is not yet well established.
The incidence of K-ras2 mutations, mainly in codons 12
and 13, in human colorectal adenomas was reported to
be up to 60%.19–23 A similar incidence was detected for
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DNA aneuploidy using FCM.24–27 K-ras2 mutations in
colorectal adenomas were detected in both DNA diploid
and aneuploid cells and in some cases in regions of
histologically normal mucosa, suggesting that K-ras2 mu-
tations occur before change in DNA ploidy.22,23 Also,
human colorectal aberrant crypt foci, suggested to be
early precursor lesions of adenomas, were found to be
mutated in K-ras2 up to the 85% level.28–30 The present
study addresses the possible relationship of specific K-
ras2 mutations with DNA aneuploidy and proliferation in
human sporadic colorectal adenomas.

Materials and Methods

Study Population

The study was performed on 116 polyps (size range, 0.3
to 5 cm: 15 were ,1 cm, 77 were 1 to 2 cm, and 24 were
.2 cm; median, 1.5 cm) with a histological diagnosis of
adenomas. Sixty-two polyps were located in the sigmoid,
16 in the rectum, 11 in the ascending colon, 17 in the
descending colon, 5 in the transverse colon, and 5 in the
cecum. Patients (43 females and 60 males) age 33 to 86
years (median, 63 years) did not have history of familial
adenomatous polyposis (FAP) or suspected attenuated
FAP. Controls were taken in the vast majority of cases
during endoscopy from the normal mucosa at the rectal-
sigmoid junction25 and in 19 cases from mucosa of
healthy donors.22

Histological Analysis and Topographic Selection

Histological diagnosis and grading were according to the
World Health Organization criteria.31 Two dysplasia
grades were considered, ie, a low-grade class including
mild and moderate dysplasia (n 5 91) and high-grade
class of severe dysplasia (n 5 25). Adenomas with early
cancer were excluded from this study. Polyps were di-
vided into two specular parts by a central midsaggital
section. One specimen was fixed in 10% buffered forma-
lin for 24 hours, handled according to customary and
histopathological diagnosis protocols, and embedded in
paraffin. The other specimen was immediately frozen in
liquid nitrogen and stored at 280°C for not more than a
week. Using a hematoxylin and eosin-stained cryostatic
section as histotopographic reference, samples were
taken by hand with a scalpel blade from selected prev-
alent areas with homogeneous dysplasia grade. Areas
with prevalent connective tissue and normal epithelial
cells were also partly discarded. Multiple cryostatic sec-
tions were then taken from all of the sides of each sample,
providing roughly cubic blocks with linear size ranging
from about 4 to 10 mm. This procedure was repeated
until the same histological features were observed on the
whole surface of the block.

DNA FCM and Sorting

The specimens for FCM were treated as previously de-
tailed.25 In brief, the tissue fragments were minced with

scalpels for 1 to 2 minutes directly in the staining solution
composed of 10 mmol/L phosphate buffer in isotonic
saline, 1 mmol/L CaCl2, 0.5 mmol/L MgSO4, 0.6% Non-
idet P40 (v/v), 0.2% bovine serum albumin (w/v), and 10
mg/l of 4,6-diamidino-2-phenilindole-2-hydrochloride
(DAPI; Sigma Chemical Co., St. Louis, MO). Nuclear sus-
pensions were syringed, filtered through a 50 mm nylon
filter, and immediately measured. The measurements
were taken with a FACS 440 dual laser flow sorter system
(Becton-Dickinson, Sunnyvale, CA). Three parameters
were simultaneously measured in list mode acquisition
for every individual nucleus, ie, blue emission (from
DAPI), 0° forward scatter, and 90° perpendicular scatter.
Excitation was provided by the ultraviolet 351 to 364-nm
lines (100 mW) of an argon ion laser (model 2025, Spec-
tra Physics, Mountain View, CA). DAPI emission fluores-
cence signals (obtained with suitable filters in the 450 to
490-nm range) and scatter signals were input to signal
processing electronics using 1024 channels for subse-
quent storage, graphics, and analysis on a 486 personal
computer equipped with dedicated software (Phoenix
Flow Systems, San Diego, CA). Mixed samples of tissue
nuclei and individual specific lymphocytes showed that
infiltrating and external lymphocytes superimposed in all
cases. Trout erythrocytes and individual-specific normal
mucosa were also used as reference DNA standards.
The degree of DNA aneuploidy (also known as DNA
index (DI)) was calculated as the ratio of mean channel
number of epithelial aneuploid G0-G1 peak to mean
channel number of peak corresponding to tissue-infiltrat-
ing G0-G1 lymphocytes. DNA aneuploidy was taken only
when lymphocyte and epithelial nuclei showed two clear-
cut separated peaks. One region of abnormal DI values
of special interest was defined as near-diploid aneu-
ploidy (DI Þ 1 and DI # 1.4) in comparison with high
aneuploidy (DI.1.4 and DI Þ 2). DNA tetraploidy (DI 5 2)
was defined at the threshold value of the mean G21M
peak size among the controls after adding to it 3 standard
deviation values. No DNA tetraploidy was detected in the
present series of adenomas. Coefficient of variation val-
ues of the G0-G1 peaks and S-phase fraction values
were evaluated, after gating out the tissue-infiltrating lym-
phocytes, using dedicated software (Phoenix Flow Sys-
tems). The mean coefficient of variation was 3.36 6 0.68.
Specifically selected FCM “sorting windows” were acti-
vated to enrich for the epithelial cell component. In the
case of DNA diploid adenomas, the enrichment of the
epithelial cell component was done by discarding lym-
phocytes. In the case of DNA aneuploid adenomas, the
sorting was performed only for the DNA aneuploid epi-
thelial nuclei.

K-ras2 Analysis

Peripheral blood lymphocytes from healthy donors were
used as wild-type K-ras2 codon 12 GGT-gly and codon
13 GGC-gly controls. Additionally, six cell lines were
used as controls for known K-ras2 mutations, ie, murine
NIH3T3 with a transfected human K-ras2 CGT in codon
12,32 human SW480 cells (American Type Culture Col-
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lection (ATCC), Manassas, VA) that are GTT homozy-
gously mutated in codon 12;33 human DLD-1 cells
(ATCC) heterozygously GAC mutated in codon 13; hu-
man SW837 cells (ATCC) heterozygously TGT mutated in
codon 12; and two human lung cancer cell lines, A549
and SKLU-1, respectively heterozygously AGT and GAT
mutated in codon 12. High molecular weight genomic
DNA was extracted by a standard method.34

FCM-sorted nuclei from both control mucosa and ad-
enomas were stored at 280°C and then treated as fol-
lows: they were first washed 30 minutes at 1500 3 g in
phosphate-buffered saline, then resuspended in 13
polymerase chain reaction (PCR) buffer (Perkin-Elmer
Corp., Norwalk, CT), and finally heated to 100°C for 10
minutes before PCR.35 PCR amplification of the K-ras2
fragment in exon 1-containing codons 12 and 13 was
done in a total volume of 50 ml of PCR reaction mixture
(50 mmol/L KCl; 10 mmol/L Tris-HCl, pH 8.3; 1.5 mmol/L
MgCl2; 0.01% gelatin; 200 mmol/L each dATP, dGTP,
dCTP, and dTTP; and 0.8 to 1.2 mmol/L for each oligo-
nucleotide primer (Beckman, Fullerton, CA)) and 2.0 U of
Taq polymerase (Perkin-Elmer). In each cycle, samples
were denatured for 20 seconds at 98°C, followed by 30
seconds at 53°C (annealing) and 30 seconds at 72°C
(polymerization). Using automatic gene-amplification
PCR (System 9600, Perkin-Elmer), 35 cycles were per-
formed. A PCR product of 69 bp was obtained after
successive amplifications using both outside and inside
(nested) primers flanking codons 12 and 13 of the K-ras2
gene, as follows: outside primers: 59 primer, 59-TAA GGC
CTG CTG AAA ATG ACT GAA T-39, and 39 primer, 59-
CTC TAT TGT TGG ATC ATA TTC GTC-39; inside primers
(nested): 59 primer, 59-ACT GAA TAT AAA CTT GTG GTA
GTT-39, and 39 primer, 59-AAT TAG CTG TAT CGT CAA
GGC-39.

PCR products were routinely checked for amplified
DNA on 1.5% agarose gel containing 0.5 mg/ml ethidium
bromide. The oligonucleotide 20-mer panel (synthesized
by TIB MOL, National Cancer Institute Advanced Bio-
technology Center, Genoa, Italy) included K-ras2 codon
12 and 13 wild-type sequences, all possible mutations of
codon 12, and the AGC and GAC mutations of codon 13.
The probes were 59-end labeled by phosphorylation with
[g-32P]ATP, according to the standard method.34

Dot-blot and sequence-specific oligonucleotide probe
hybridization was done with 10 ml of PCR products de-
natured and spotted onto Hybond-N-nylon filters (Amer-
sham International, Buckinghamshire, United Kingdom)
using a Microfiltration Bio Dot apparatus (Bio-Rad, Rich-
mond, CA). The filters were then prehybridized for 1 hour
at 65°C in 53 sodium saline phosphate ethylenediami-
netetraacetic acid, 53 Denhardt’s solution, 0.5% sodium
dodecyl sulfate, and 100 mg/ml DNA from herring sperm
and hybridized (Hybridiser HB-1D; Techne, Cambridge,
United Kingdom), in the same solution containing each
32P-end-labeled oligonucleotide probe, overnight at
58°C.

Filters were washed briefly twice in 63 standard saline
citrate at room temperature, and, additionally, once un-
der stringent conditions at 60°C for 40 minutes in 3 mol/L
tetramethylammonium chloride, 50 mmol/L Tris-HCl pH

8.0, 2.5 mmol/L ethylenediaminetetraacetic acid, and
0.1% sodium dodecyl sulfate. Autoradiography was per-
formed using Amersham MP-Hyperfilm at 280°C for 2 to
4 hours.

Statistical Analysis

Associations among the variables measured in the study,
ie, DI, S-phase, K-ras2, adenoma size, dysplasia, site
and type, and patient age and sex were investigated by
using the Pearson correlation coefficient and the x2

test.36 To this aim, variables were categorized as follows:
DI (DNA diploid and aneuploid), S-phase (lower than/
equal to and higher than the median value of 7.3%),
K-ras2 (wild type, G3A transitions, and G3C/T trans-
versions), size (lower than/equal to and higher than the
median value of 1.5 cm), dysplasia (low-moderate and
high), site (ascending, descending, or transverse colon
and cecum versus sigmoid colon and versus rectum),
type (tubular versus tubulovillous and villous), age (lower
than/equal to and higher than the median value of 63
years), and sex (females and males). Statistically signif-
icant associations were indicated for P values of 0.05 and
0.01 (two tailed).

The associations of DI and S phase, as dependent
variables, with K-ras2 were also investigated by using
logistic regression analysis37 to account for the effect of
the other variables. The statistical analyses were per-
formed using the SPSS statistical software, version 7.5.38

Results

Figure 1 shows two examples of multiparameter FCM of
DAPI-stained nuclei. Fluorescence emission from DAPI is
proportional to nuclear DNA content, whereas forward
and side scatter signals are associated with nuclear size
and structure. A1 and B1 regions, as shown in the com-
puter drawing (Figure 1), mainly contained epithelial nu-
clei, whereas A2 and B2 regions comprised tissue-infil-
trating inflammatory nuclei. When, in fact, external control
mucosa and lymphocytes obtained from the same pa-
tients were added to these samples, the corresponding
regions were increased by the same proportion of nuclei
(not shown). When the samples contained only DNA dip-
loid nuclei, the GO-G1 peaks corresponding to epithelial
and inflammatory nuclei superimposed (Figure 1, top). In
these cases, the S-phase fraction could be corrected for
the diluting effect of the presence of tissue-infiltrating
inflammatory cells (corresponding to the broken line in
the gated DNA histograms). Figure 1, bottom, shows an
example of a DNA near-diploid aneuploid peak overlap-
ping with a DNA diploid peak that was resolved as a
result of forward-side scatter gating.

DNA aneuploid subpopulations were detected in 29 of
116 adenomas (25%). Figure 2, top, shows that the vast
majority of DI aneuploid values (DI Þ 1) fell in the near-
diploid region within 0.9 and 1.4 (24 out of the 29 cases,
ie, 83%). S-phase fraction values were obtained for 109
adenomas giving a median population value of 7.3% and
range from 2.5 to 31% (Figure 2, center). Figure 2, bot-
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tom, shows all DI values in relationship with S-phase
values. No correlation was present between the two vari-
ables.

K-ras2 analysis was performed using gated sorting of
enriched epithelial nuclei (see also Materials and Meth-
ods).

Figure 3 shows an example of K-ras2 spectrum anal-
ysis. Human lymphocytes from healthy donors were used
as wild-type K-ras2 codon 12 GGT-glycine and codon 13
GGC-glycine controls. Additionally, six cell lines were
used as specific K-ras2-mutated controls (see Materials
and Methods). K-ras2 mutations in codons 12 and 13
were detected in 29 of 116 adenomas (25%). There were
17 G3A transitions, ie, 11 in codon 12 as GAT (corre-
sponding to aspartate), 1 in codon 13 AGC (serine), and

5 in codon 13 GAC (aspartate). G3C/T transversions
were 12, ie, codon 12 CGT in 6 cases (arginine), GTT in
4 (valine), and TGT in 2 (cystein). When considering only
codon 12, 65% of the mutations were at position 2 of the
base triplet.

The associations among the variables evaluated in the
study were investigated by using the Pearson coefficient
of correlation (Table 1). A statistically significant correla-
tion at the 0.01 level was detected between DI and K-
ras2. S phase and type, age and site, and sex and type
were also associated at the 0.05 level.

Table 2 shows the associations between K-ras2 G3A
transitions and G3C/T transversions versus DNA ploidy
(DNA diploidy with DI 5 1 and aneuploidy with DI Þ 1)
and proliferation (low and high S-phase values respec-
tively, below and above the 7.3% median) in addition to
wild-type and mutated K-ras2. A positive association was
found between K-ras2 (wild type, G3C/T transversions)

Figure 1. Examples of multiparameter FCM of DAPI-stained nuclear suspen-
sions obtained from dysplastic areas of human sporadic colorectal adenomas.
Top: Forward and side scatter parameters were used to gate out inflamma-
tory cells (corresponding to A2 and B2 subregions) and correct S-phase
fraction values among DNA diploid cases. Bottom: Detection of a DNA
aneuploid near-diploid peak overlapping with the DNA peak of diploid
inflammatory cells. The FCM sorting of an enriched epithelial cell component
was done to improve the sensitivity of PCR and sequence-specific oligonu-
cleotide analysis of the K-ras2 spectrum.

Figure 2. Top: DI aneuploid values (DI Þ 1) detected by multiparameter
FCM. Center: S-phase fraction values, respectively, below and above the
median value of 7.3%. S-phase values in DNA diploid cases were corrected
by subtracting the inflammatory cell component. Bottom: S-phase values
versus all DIs.
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and DNA ploidy (P 5 0.003). A negative association was
found between K-ras2 (wild type, G3A transitions) and S
phase (P 5 0.02).

The associations of K-ras2 (including G3A transitions
and G3C/T transversions) with DI and S phase as de-
pendent variables were also investigated by logistic re-
gression analysis to take into consideration the effects of
the other covariates investigated, ie, size, dysplasia, site,
type, age, and sex (see also Materials and Methods). The
results obtained for DI and S phase are shown in Tables
3 and 4, respectively. One may notice that the effect of
K-ras2 on DI was dominated by G3C/T transversions
with a positive coefficient of correlation b 5 1.8 and an
odds ratio of 6.1 (ranging from lower and upper 95%
confidence limits of 1.57 and 23.7). Increased adenoma

size showed an association with DI (odds ratio 5 2.7;
95% confidence limits (CL) 5 1.04, 6.99).

S-phase was, instead, found to be inversely associ-
ated with G3A transitions and tubular type. The odds
ratios were, respectively, 0.26 (95% CL 5 0.07, 1.01) and
0.36 (95% CL 5 0.14, 0.93).

Discussion

Functions of the Ras mutated proteins associated with
chromosome instability and proliferation changes have
been suggested using in vitro systems,4–6,14,15 as well as
human colorectal adenomas.22 In the present study, we
extended these last observations. Adenomas investi-

Table 1. Pearson Correlation Coefficients

DI S-phase K-ras2 Size Dysplasia* Site Type Age Sex

DI 1
S-phase 20.158
K-ras2 0.264† 20.114 1
Size 0.164 20.226 0.066 1
Dysplasia 0.036 0.108 0.005 0.066 1
Site 0.076 0.143 0.135 20.072 20.072 1
Type 20.119 20.226‡ 0.103 0.144 20.025 20.010 1
Age 0.090 0.119 0.030 20.049 20.030 0.215‡ 0.158 1
Sex 0.112 0.120 0.043 20.079 0.006 0.029 20.223‡ 20.043 1

*Categorized in low-moderate versus high. See Materials and Methods for other categories.
†Statistically significant at the 0.01 level (two-tailed).
‡Statistically is significant at the 0.05 level (two-tailed).

Figure 3. Examples of K-ras2 mutation spectrum
analysis. K-ras2 mutation analysis was for wild
type in codons 12 and 13 (wild-type codon 12
GGT-gly and codon 13 GGC-gly), six possible
mutations in codon 12 (AGT, TGT, CGT, GAT,
GCT, and GTT), and two mutations in codon 13
(AGC and GAC). K-ras2 wild-type controls were
the following: peripheral blood lymphocytes of
healthy donors (g6), SW837 cell line with het-
erozygous TGT mutation (h2), NIH3T3 cell line
with transfected CGT human mutated K-ras2 (h3),
SW480 cell line with homozygous GTT mutation
(h4), and DLD-1 cell line with heterozygous GAC
mutation (h5). All other spots correspond to dif-
ferent wild-type or mutated adenoma samples. Of
particular interest are adenomas with TGT muta-
tion in both diploid and aneuploid subclones (e2
and e3) and adenomas with GTT (a6 and b1) and
GAT (c2 and c3) mutations in both low-grade and
high-grade dysplasia components.
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gated were overall 116 and were characterized for the
majority by low-moderate dysplasia (78%) with a rela-
tively small size (50% with size #1.5 cm) and absence of
early cancer. FAP patients as well as patients with multi-
ple polyps (suspected attenuated FAP) were excluded.

A method of enrichment of dysplastic epithelial ade-
noma regions was applied by means of cryocutting, mi-
crodissection, and morphological guided criteria using
fresh-frozen material (see details in Materials and Meth-
ods). In addition, enrichment of epithelial cells was ob-
tained by multiparameter DNA FCM. In particular, the use
of nuclear suspensions and two scattering signals (for-
ward and perpendicular to the incident laser beam asso-
ciated, respectively, with area and internal structure of
nuclear chromatin) made it possible to separate the infil-
trating inflammatory cell component. This procedure was
useful for improving detection of DNA aneuploidy in the
near-diploid region and for correcting the S-phase frac-
tion values in about two-thirds of the adenomas charac-
terized by only DNA diploid cells. Moreover, FCM-based
sorting of an enriched epithelial cell component (up to
almost 100% for the DNA aneuploid subclones) was used
for evaluating the K-ras2 mutation spectrum.

In the present study, we found that K-ras2 G3C/T
transversions were strongly associated with DNA near-
diploid aneuploidy. DNA aneuploidy was found, in fact, in
58% of the cases with K-ras2 G3C/T transversions with
respect to 20% with K-ras2 wild type, whereas DNA
diploidy was associated with wild-type K-ras2 in 80% of
the cases (P 5 0.01). This association was confirmed by
logistic regression analysis taking into account the ef-
fects of the other variables investigated in the study. Only

increased adenoma size was found to exert an additional
influence.

This finding, which appears in agreement with other
literature data and hypotheses,14,15,22,27 suggests that
G3C/T transversions disrupt chromosome stability. Al-
though the exact mechanisms are not known, they may
be related to mitotic checkpoints that maintain chromo-
some stability.39 Although it clearly remains to be proven,
we favor the hypothesis that a defect in chromosome
segregation is linked with K-ras2 G3C/T transversions.
The alternative interpretation is that we are in presence of
a carcinogenic process that has produced concomitantly
both K-ras2 G3C/T transversions and DNA aneuploidy.

The first hypothesis appears to be in agreement with
K-ras2 oncogene transfection experiments using NIH3T3
cells, in which an increased rate of abnormal mitoses was
correlated with a high expression of the mutated p21ras
protein14 and, in particular, with the codon 12 G3C
mutation.15 This specific mutation was also associated
with generation of DNA aneuploid subclones.15 That ab-
normal mitoses are massively present in human colorec-
tal adenomas40 and that there is a relatively high inci-
dence of K-ras2 transversions in these lesions19–23 also
constitute indirect evidence of a link of the two variables.

We have previously postulated that K-ras2-activated
proteins may participate in a mechanism of “loss of sym-
metry” in chromosome segregation during cell divi-
sion22,26,27,41 and that it appears important to understand
those regulatory events that integrate chromosome motor
activity into the signal transduction cascades of the cell
cycle.42 Perhaps ras oncogene functions that regulate
the formation of stress fibers, focal cell adhesion, and

Table 2. DNA Ploidy, Proliferation, and K-ras2

K-ras2 classes DI 5 1 DI 5 1* P Low-S High-S† P

1. Wild type 70 (80%) 17 (20%) 36 (44%) 45 (56%)
2. Mutated 17 (59%) 12 (41%) P12 5 0.02‡ 18 (64%) 10 (36%) P12 5 0.07
3. G3A transitions 12 (70%) 5 (30%) 12 (75%) 4 (25%) P13 5 0.02
4. G3C/T tranversions 5 (42%) 7 (58%) P134 5 0.01 6 (50%) 6 (50%) P134 5 0.08

P14 5 0.003

*DI indicates the degree of DNA aneuploidy (DI 5 1 for DNA diploidy) evaluated according to multiparametric flow cytometry. Flow cytometry
sorting was used to separate epithelial nuclei to be submitted to K-ras2 analysis (see Materials and Methods).

†High-S indicates the values of the S-phase fraction above the median value of 7.3% evaluated among 109 adenomas. S-phase values were
corrected by the subtraction of the tissue-infiltrating inflammatory cells (see Materials and Methods). For DNA aneuploid cases, we have evaluated the
S-phase fraction of the aneuploid component that mainly corresponds to the epithelial cell compartment.

‡x2 test-associated probability.

Table 3. Associations between DI and Independent Covariates: Odds Ratios Point Estimates (OR) and Their 95% CL Computed by
Logistic Regression Analysis

Covariates b (SE) OR

95% CL

PLower Upper

K-ras2 (G3A) 0.6288 (0.6483) 1.8753 0.5263 0.6820 0.3321
K-ras2 (G3C/T) 1.8096 (0.6918) 6.1081 1.5742 23.7006 0.0089
Size 0.9938 (0.4854) 2.7014 1.0433 6.9945 0.0406
Dysplasia 0.1346 (0.5619) 1.1440 0.3804 3.4411 0.8107
Site (sigma) 0.3279 (0.5588) 1.3880 0.4642 4.1502 0.5574
Site (rectum) 0.2373 (0.7894) 1.2678 0.2698 5.9569 0.7637
Type 20.9878 (0.5898) 0.3724 0.1172 1.1831 0.0940
Age 0.6079 (0.4904) 1.8365 0.7023 4.8024 0.2152
Sex 0.3999 (0.5073) 1.4916 0.5519 4.0314 0.4305
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cytokinesis12,13 might also play a role in disrupting the
symmetry of cell division.

The concept of “loss of symmetry” in cell division was
also associated with recent results that indicated that
tumor colorectal cell lines without instability at the nucle-
otide level43 were characterized by chromosome gains or
losses in excess of 1022 per chromosome per genera-
tion.44

The second main finding of the present study was that
K-ras2 mutations and, in particular, G3A transitions cor-
related with decreased proliferation. Low S-phase (with
values less than/equal to the median value of 7.3% as
evaluated for the whole population) among G3A-mu-
tated adenomas were found to represent 75% of the
cases, compared with 44% in the K-ras2 wild-type group
(P 5 0.02). Logistic regression has confirmed this asso-
ciation together with an influence of the tubular type. This
finding reinforces our previous observation from a study
of only 54 cases.22

K-ras2 activation (up to 85%) was reported in human
aberrant crypt foci of the colon that may be considered in
some cases to be early precursors of adenomas.28–30

Moreover, K-ras2 mutation incidence in human sporadic
colorectal adenomas (up to 60%) was reported to be
higher than in adenocarcinomas.1,2,20 Thus, K-ras2 mu-
tations appear on one hand to be an initiating event of the
sporadic colorectal aberrant crypt foci-adenoma-carci-
noma sequence and on the other hand, for the specific
G3A transitions, to be linked with a mechanism of re-
gression.

So far, the regulatory events that integrate exit from G1
and entry into the S phase of the cell cycle via the Ras
signal transduction cascades are not well understood.
Recently, Ras proteins were reported to link growth factor
signaling to cell cycle machinery via regulation of cyclin
D1 and cyclin-dependent kinases.4–6 These pathways
might represent possible mechanisms to interpret the
association between G3A transitions and decreased
proliferation. On the other hand, because S-phase frac-
tion and DNA aneuploidy were not correlated in the
present series of cases, a mechanism of inhibition of
proliferation caused by a new abnormal chromosomal
setup was excluded.

We suggest that a specific carcinogenic process in the
colon of human patients might favor specific mutations of
the K-ras2 oncogene in precursor lesions that simulta-

neously may interfere with the cell cycle machinery and
inhibit proliferation.

Overall, we suggest that specific K-ras2 mutations, as
an early genetic event of the colorectal aberrant crypt
foci-adenoma-carcinoma sequence, may potentially be
responsible for aneuploidy and proliferation changes. In
addition, decrease or inhibition of apoptosis caused by
the ras oncogene clearly may play a concomitant impor-
tant role.7–11

K-ras2 mutations are not, however, the only genetic
event potentially involved. A possible role of 1p deletions
in association with chromosome instability in colorectal
adenomas has been recently suggested using inter-
phase cytogenetics.45,46 A more complex situation, in
which other new tumor suppressor genes might be in-
volved, was recently suggested by data obtained by
comparative genomic hybridization in colorectal adeno-
mas.47,48

DNA aneuploidy in colorectal adenomas obtained by
various techniques including DNA FCM, classical cyto-
genetics, and interphase cytogenetics was found to be
approximately as frequent as or higher than in the
present series.24–27,49–52 On the other hand, it is known
that the incidence of DNA aneuploidy for colorectal ad-
enocarcinomas is about three times higher than in ade-
nomas.53 Thus, it appears likely that later genetic alter-
ations of the colorectal tumorigenesis, like the p53 tumor
oncosuppressor gene, may be associated with (or may
possibly cause) aneuploidy and that complex relation-
ships govern the interaction of aneuploidy, proliferation,
and apoptosis.

In other human tumor model systems of tumorigenesis,
specifically the Barrett’s esophagus, p53 mutations were
reported to represent an early event and were associated
with the generation of aneuploidy.54–56 The role of p53 in
causing aneuploidy was shown, in particular, with cul-
tured fibroblasts from p53-deficient mouse embryos.
These experiments have shown, in fact, the formation of
tetraploid and octaploid cells, as predicted by a model of
aneuploidization,57 suggesting that murine p53 inactiva-
tion is a component of a spindle G2 checkpoint that
ensures the maintenance of diploidy.58,59

The fact that we have not observed DNA tetraploidy in
the present series of adenomas but near-diploid aneu-
ploidy in the vast majority of cases (83%) suggests dif-
ferent types and mechanisms of aneuploidization. In this

Table 4. Associations between S-Phase and Independent Covariates: Odds Ratios Point Estimates (OR) and Their 95% CL
Computed by Logistic Regressoin Analysis

Covariates b(SE) OR

95% CL

PLower Upper

K-ras (G-A) 21.3299 (0.6841) 0.2645 0.0692 1.0109 0.0519
K-ras (G-C/T) 20.3540 (0.6659) 0.7019 0.1903 2.5884 0.5949
Size 0.1073 (0.4400) 1.1133 0.4700 2.6374 0.8073
Dysplasia 0.7775 (0.5388) 2.1760 0.7569 6.2554 0.1490
Site (sigma) 0.8045 (0.4741) 2.2355 0.8828 5.6609 0.0897
Site (rectum) 0.8968 (0.7161) 2.4516 0.6025 9.9763 0.2104
Type 21.0170 (0.4822) 0.3617 0.1405 0.9307 0.0349
Age 0.6733 (0.4383) 1.9606 0.8304 4.6290 0.1245
Sex 0.3270 (0.4374) 1.3868 0.5885 3.2682 0.4546

K-ras2 in Colorectal Adenomas 1207
AJP October 1998, Vol. 153, No. 4



respect, we also note that in the present series of colo-
rectal adenomas only a minority of cases is expected to
be p53 mutated, according to literature data, because
the majority of adenomas were characterized by low-
moderate dysplasia.19,20,60 Because DNA aneuploidy in-
cidence was about 70% in adenomas with early can-
cer26,27 and up to 90% in adenocarcinomas,53,41 it
appears that aneuploidy may be associated with p53
mutations in these late lesions and that tetraploidization
of near-diploid aneuploid subclones may be a possible
mechanism.27

Specific mutations of the ras oncogene are known to
induce a change of the three-dimensional structure of the
p21ras protein and an alteration of its functioning in sig-
nal transduction.2,61–63 The exogenous and endogenous
factors that cause ras mutations have been investigated.
Fidelity in DNA replication and repair presents endoge-
nous factors that may be responsible for G3A transitions
and G3T transversions.1,64 Literature data, in addition,
support the hypothesis that G3A transitions and G3C
transversions are due to alkylating agents2,65–67 and that
G3T transversions are ascribed to the presence of poly-
cyclic aromatic hydrocarbons and heterocyclic
amines.68–70

To our knowledge, the correlation of aneuploidy and
proliferation during the human colorectal adenoma-car-
cinoma sequence with mutations of the APC gene and of
the DNA mismatch repair genes71,72 has not yet been
investigated. DNA mismatch repair gene mutations,
known to be infrequent in the sporadic colorectal adeno-
mas, were recently shown to induce instability at DNA
microsatellite levels in hereditary nonpolyposis colorectal
cancer.71 Interestingly, DNA microsatellite instability in
these lesions is not accompanied by instability at chro-
mosome level.71,73

In conclusion, the present study has demonstrated that
human sporadic colorectal adenomas without early can-
cer are characterized by a strong correlation between
specific K-ras2 mutations, DNA near-diploid aneuploidy,
and proliferation inhibition. Further work remains to be
done with use of cell and animal model systems to un-
derstand cause and effect relationships and the relative
importance of these changes for the possible progres-
sion and/or regression of these common human preneo-
plastic lesions. It is likely that this knowledge in conjunc-
tion with specific chemopreventive treatments, which
have already been attempted in FAP patients,74 may be
useful to reduce the incidence of advanced colorectal
cancer.
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