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ABSTRACT The parameters of the immune response dynamics are usually estimated by the use of deterministic ordinary
differential equations that relate data trends to parameter values. Since the physical basis of the response is stochastic, we are
investigating the intensity of the data fluctuations resulting from the intrinsic response stochasticity, the so-called process noise.
Dealing with the CD81 T-cell responses of virus-infected mice, we find that the process noise influence cannot be neglected
and we propose a parameter estimation approach that includes the process noise stochastic fluctuations. We show that the
variations in data can be explained completely by the process noise. This explanation is an alternative to the one resulting from
standard modeling approaches which say that the difference among individual immune responses is the consequence of the
difference in parameter values.

INTRODUCTION

Mathematical modeling of immunological data is a very

powerful tool for understanding the immune system dynam-

ics. In this article we discuss attempts to understand immune

response dynamics based on deterministic ordinary differential

equation (ODE) models that are widely used in literature (1–4).

The immune response is the result of a large amount of in-

teractions among individual cells. Therefore, there exists a

structural similarity of the immune response models to the

mass-action law model of chemical reactions (5).

The physical basis of chemical reactions is stochastic. The

reaction takes place when randomly moving particles are in

such a close distance that interparticle forces become dom-

inant. It seems reasonable to say that intercellular interac-

tions have the same stochastic nature. In the limiting case of

a large volume containing a large amount of chemical mol-

ecules involved in the interactions, the concentration fluc-

tuations due to the process stochasticity, so-called process

noise (6), can be neglected (7,8). Taking into account the

usual setup for chemical reactions, and the fact that the

amounts have the order of 1023 molecules, the good agree-

ment of ODE models with experiment outcomes is to be ex-

pected. However, molecular amounts are a lot larger than the

amounts of cells observed in immunological data. Hence, we

can expect that the process noise of immunological reactions

is more important (9). This is also the reason for an in-

creasing number of efforts similar to the stochastic simula-

tion of the immune response presented in Chao et al. (10).

The parameter estimation of stochastic immunological

processes is usually based on ODE models that are fitted to

the data. The stochastic fluctuations of the observed data are

treated as the result of measurement errors. The relation of

the fluctuation intensity, and the course of its intensity

change with the process parameters is beyond the scope of

these ODE-based treatments. In other words, the intrinsic

fluctuation due to the process noise, resulting from the sto-

chastic nature of intercellular interactions, is neglected when

deterministic ODE models are fitted to data.

In this article we investigate the influence of the process

noise on data. In the case that the process noise intensity

cannot be neglected, there are at least two important con-

sequences. First, commonly used parameter estimation pro-

cedures, based on ODE models relating only trends to the

parameter estimation, fail to process the information about

observed stochastic data variations, and also fail to incorpo-

rate them into the parameter estimation. Second, the process

noise can be one explanation for the variations in cell amounts,

or viral loads, among infected individuals. This explanation is

an alternative to the explanation originating from ODE

modeling approaches where the difference among immune

responses is explained by differences in the parameters (3).

Here, we deal with the CD81 T-cell response to the

lymphocytic choriomeningitis virus (LCMV) infection, in

sequel text, the LCMV data. In our analysis, we consider a

model in which the expected amount of cells is assumed to

be large and, in which important spatial components of the

cell movement and the cell-cell interaction via chemical

signals (11,12) are neglected. The same simplifications are

used to justify deterministic ODE models. However, the type

of modeling regime (13) we consider here is continuous and

stochastic. From the available data, we intentionally select

the data that seem particularly well fitted by a deterministic

ODE-based model. Regardless of that, our analysis shows

not only that the process noise should not be neglected, but

that it may be considered as the dominant source of sto-

chastic data variations. A detailed discussion about different
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types of modeling regimes for understanding biochemical

reactions is provided in Turner et al.(13).

The ‘‘Dynamical hypothesis of the LCMV CD81 re-

sponse’’ section explains, in short, the source of the data, the

biphasic hypothesis of the CD81 T-cell response after

LCMV infection, its parameters, and the ODE description. In

the ‘‘Measurement Noise’’ section, we discuss the data-

fitting procedure based on the assumption of measurement

error models. We find that the fluctuations in the LCMV data

can be described only if the intensity of the measurement

error is large. Using stochastic simulations, in the ‘‘Process

noise’’ section, we show that the fluctuation intensity can be

partly ascribed to the process noise. The section entitled

‘‘Probability density functions of the cell amounts’’ deals with

an analytical approach to modeling the stochasticity in the

LCMV data. We use the maximum likelihood method to fit the

stochastic biphasic model of the LCMV data in the section

‘‘Parameter estimation based on measurement and process

noise models’’, and the final section provides the conclusions.

DYNAMICAL HYPOTHESIS OF THE LCMV
CD81 RESPONSE

In the experiments (14) a group of mice is simultaneously

infected by the LCMV. In the subsequent time intervals, the

spleens of three to four mice are removed, and the amounts

of different types of CD41 and CD81 cells, specific for the

particular epitopes of the virus, are counted. The averages of

these three to four mice are the data points we are dealing

with. For each data point three to four new mice are used. In

this article, we have decided to model gp33 CD81 data, be-

cause it seems that they are already well described by the

deterministic biphasic ODE model (1). Due to the absence of

an exact number of mice used for each data point, that is

three or four, in the rest of the article we assume that all the

data points are obtained from three mice.

The hypothesis that is explored in this article is the one

proposed for the T-cell dynamics of LCMV-infected mice

(1). Under this hypothesis, there are two types of T cells, so-

called effector and memory cells. In sequel text, the amount

of effector and memory cells will be denoted by A and M,

respectively. Moreover, this model proposes that the T-cell

exponential proliferation starts with the delay Ton after the

infection (1). Then, the change of T-cell amount can be

divided into two phases.

The first phase is the expansion phase that starts at the time

Ton, during which T-cells proliferate at a rate pA starting from

a small amount of precursor cells A(Ton), and simultaneously

die at a rate dA. This phase is depicted in Fig. 1 a. If the

length of this phase is T � Ton, the corresponding ODE of

this phase is:

dA

dt
¼ ðpA � dAÞAðtÞ5

dA

dt
¼ rAðtÞ; Ton # t , T

MðtÞ ¼ 0: (1)

Obviously, the model assumes that there are no memory cells

in the expansion phase. In these equations, we introduce the

parameter r for the net proliferation rate that is used in the

previous work (1). The net proliferation rate is the difference

between the proliferation pA and the death rate dA, i.e.,

pA ¼ r 1 dA: (2)

The equivalence introduced in Eq. 1 says that the stochastic

process of the simultaneous proliferation (pA) and death (dA)

of the cells has the same ODE description as the stochastic

proliferation process with the net rate r. This does not mean

that these two stochastic processes are equivalent. For exam-

ple, it can be shown that they have different variances (see

Appendix I). However, if the proliferation rate pA is much

higher than dA, then pA� r, and in this extreme case, the two

stochastic processes may be considered equivalent.

The second phase is the contraction phase, during which

the pool of memory cells M is recruited from the pool of

effector cells A at the rate r. During this phase, the effector

and memory cells die at rates dA and dM, respectively. The

stochastic process of the second phase is described in

Fig. 1 b, and the corresponding ODE model is:

dA

dt
¼ �rAðtÞ � dAAðtÞ

dM

dt
¼ rAðtÞ � dMMðtÞ; T # t , N: (3)

Both of the phases are described by the linear differential

equations, i.e., the presented model has a piecewise linear

structure. To obtain the model parameters, the model has

to be fitted to the data. Since in the experiment the amount of

the effector and memory cells cannot be distinguished,

the data fit is based on the total cell amount

ypðtÞ ¼ AðtÞ1 MðtÞ; (4)

where the index p stands for the ODE model prediction given

the parameters.

Due to the deterministic nature of the model in Eqs. 1–3, it

is possible to estimate the proliferation and death rates

without estimating the delay Ton and the cell amount A(Ton).

In the previous work (1), these parameters are incorporated

into a single parameter A(0) assuming that the proliferation

FIGURE 1 Hypothesis of CD81 T-cell response. (a) The expansion phase

and (b) the contraction phase. A, effector cells; M, memory cells; pA,

proliferation rate of effector cells; dA, death rate of effector cells; r,

recruitment rate of effector to memory cells; dM, death rate of memory cells.
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starts without any delay at t¼ 0. This possibility is welcome,

because the first data point is obtained at t1¼ 4 days; i.e., the

T-cell amount dynamics before t1 is not observed. The

parameter A(0) is the result of the mathematical simplification

and it is interpreted as a generalized recruitment parameter (1).

The estimated A(0) values (1) are smaller than directly esti-

mated precursor T-cell amount (15). This indicates that the

T-cell amount dynamics between the antigen injection t ¼ 0

and the first data point collection t ¼ t1 is more complex than

the one described by Eq. 1 and Ton ¼ 0.

Measurement noise

It is a common practice in immunology that the model

parameters are obtained from the successful least-square fit

of the model to the data (LSLIN) or to the log-transformed

data (LSLOG). Here, we discuss widely accepted opinion

that LSLOG data fit is more appropriate for the immuno-

logical data collected from an exponentially proliferating cell

population, such as the one we are dealing with in this article.

However, we will show that the assumption of the optimality

of the LSLOG data fit leads to a large measurement error

estimation.

Fig. 2 shows the LSLIN and the LSLOG fit of the data

using the same deterministic biphasic model given by Eqs.

1 and 3. In both cases, the model prediction (solid line) is

close to the data points after the time T. It seems that the

LSLIN data fit is less precise because of the large residuals

for small values of the cell amount. However, these residuals

are a few orders of magnitude smaller in comparison to the

residuals of the LSLOG fit for large values around the time T.

The quality difference of the two fits is not clear, unless the

model for measurement errors is considered.

Unfortunately, the model for measurement errors is not

provided, and we start our analysis with the hypothesis that the

parameter estimation based on the LSLIN data fit is optimal

in least-square (LS) and maximum-likelihood (ML) sense.

This hypothesis means that the measurement error model is:

yðtÞ ¼ ypðtÞ1 uaðtÞ: (5)

In this model y(t) is the measurement, yp(t) is the ODE model

prediction, which is equal to the expected measurement value

�yðtÞ ¼ ypðtÞ, and ua(t) is the error. This error is a zero-mean,

Gaussian random variable with the constant variance Qa and

uncorrelated in time (white random sequence). In sequel, due

to its form, we will name this measurement error model

‘‘additive’’.

The variance Qa can be estimated from the LSLIN data fit

as the mean of the square of residuals

Qa �
1

N
+
N

k¼1

ðyðtkÞ � ypðtkÞÞ2 ¼ 1:8 3 10
11
: (6)

Based on the measurement error assumption, 95% of the data

must be in the two standand deviation band of the error around

the model prediction yp(t). The lower yL
a ðtÞ and the upper yH

a ðtÞ
limits of this band are

y
L

a ðtÞ ¼ ypðtÞ � 2
ffiffiffiffiffiffi
Qa

p
; y

H

a ðtÞ ¼ ypðtÞ1 2
ffiffiffiffiffiffi
Qa

p
; (7)

and this band is plotted in Fig. 2 a. Because we have 17 data

points, we expect one data point outside the band (17 3 0.95

� 16). Indeed, by careful inspection, we find one point, the

third from the left, outside the band. This indicates that our

data can be explained by the deterministic model, Eqs. 1–3,

and the additive measurement error model, Eq. 5. However,

the standard deviation of the error is
ffiffiffiffiffiffi
Qa

p
¼ 4:24 3 105, and

we can see from Fig. 2 a that large errors may be expected

even though the expected amount of cells yp(t) is of one order

of magnitude smaller. Thus, unrealistically, the measurement

y(t) given by Eq. 5 may be negative. This is the reason to

discard the LSLIN data fit from our further consideration,

although most of the estimated parameter values (A(0) ¼
119.5, r ¼ 1.55, r ¼ 0.021, dA ¼ 0.38, dM ¼ 0.1 3 10�3,

T ¼ 8.1) are similar to the previous parameter estimates (1).

Naturally, one can propose the additive error model where

the variance of the error scales with yp(t), but then the LSLIN

data fit would not be optimal in LS and ML sense.

FIGURE 2 The least-square (LS) data fit of the ODE biphasic model. (a)

LS fit of data (LSLIN), two standand deviation band for Qa ¼ 1.8 3 1011

(dashed). (b) LS fit of log-transformed data (LSLOG), two standand

deviation band for Qm ¼ 0.064 (dashed).
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Now, we will assume the hypothesis that the LSLOG data

fit parameter estimation is optimal in LS and ML sense. This

hypothesis means that the measurement error model is:

ln yðtÞ ¼ ln ypðtÞ1 umðtÞ5yðtÞ ¼ ypðtÞeumðtÞ: (8)

The error um(t) is again a zero-mean, Gaussian variable

with the constant variance Qm(t) and uncorrelated in the

time. The parameters obtained from the LSLOG data fit are

listed in Table 1 together with the 95% confidence intervals

(C.I.) computed by the bootstrap method (16). The values for

the bootstrap method are generated using the model in Eq. 8;

yp(t) is computed for the estimated parameters (Table 1) and

um(t) is generated from the Gaussian random number gen-

erator with the variance Qm estimated from the data fit as

Qm �
1

N
+
N

k¼1

ðln yðtkÞ � ln ypðtkÞÞ2 ¼ 0:064: (9)

Under hypothesis of Eq. 8, 95% of the data will be in the

band, around the model prediction yp(t), that corresponds to

the two standard deviation range of the error um(t). The lower

yL
mðtÞ and the upper yH

mðtÞ limits of this band are

y
L

mðtÞ ¼ ypðtÞe�2
ffiffiffiffiffi
Qm

p
; y

H

mðtÞ ¼ ypðtÞe2
ffiffiffiffi
Qa

p
: (10)

This band is plotted in Fig. 2 b and we can discover again

the same point, the third from the left, outside the band. This

agrees with our expectation and indicates that the observa-

tion model in Eq. 8 and the LSLOG data fit might be

appropriate for our data. Considering a small value for Qm,

such as one estimated in Eq. 9, and applying the Taylor

expansion, we can find from Eq. 8

yðtÞ � ypðtÞ ¼ ypðtÞðeumðtÞ � 1Þ � ypðtÞumðtÞ; (11)

or, in other words, the observation model in Eq. 8 is

equivalent to the following observation model

yðtÞ ¼ ypðtÞ1 ypðtÞumðtÞ; (12)

in which the intensity of the measurement error scales with

yp(t), and the error variance is y2
pðtÞQm(t). Due to the scaling

form, this measurement error model is, so-called, ‘‘multipli-

cative’’. Moreover, the error um(t) can be considered as the

relative measurement error since

yðtÞ � ypðtÞ
ypðtÞ

¼ umðtÞ: (13)

The estimated variance Qm ¼ 0.064 corresponds to the

relative standard error of 25% (�
ffiffiffiffiffiffiffiffiffiffiffi
0:064
p

). This level of the

error seems acceptable and we confirm that the measurement

model in Eq. 8, i.e., multiplicative model, and the LSLOG

data fit are more adequate to our data than the additive model

of Eq. 5 and the LSLIN data fit.

However, we should bear in mind that the estimated stan-

dard error relates to the error intensity in the measurements

that are the averages of three measurements. To estimate the

variance of the cell amount of an individual measurement, the

variance Qm ¼ 0.064 must be multiplied by three. Then, the

standard error of one measurement is 44% (�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
330:064
p

Þ.
Now, is it possible that during one experiment we lose or

gain nearly half of the cells? The arguments for supporting

this large error lie in the fact that the cells are counted after

an extensive mouse surgery. On the other hand, the organs

are taken from the mouse completely and it is not clear

how nearly 50% of the cells can be gained or lost.

Based on the large intensity of the estimated measurement

errors, we conclude that none of the two presented fits can be

appropriate. The reason for that can be found in the incorrect

error model, as well as in an incorrect biphasic ODE model.

Instead of trying to find and justify refined models, we will

estimate the intensity of the other source of stochastic

fluctuations that interferes with measurement errors in pro-

ducing an erratic behavior of experimental data.

Process noise

Having in mind the stochastic nature of the immune

response, the underlying assumption of the presented data

fits is that the outcome of the stochastic process can be

approximated by ODEs, and that all stochastic fluctuations

can be assigned to measurement errors. However, the ODE

TABLE 1 The parameter estimations: LSLOG, from the LS data fit of the log-transformed data; ML, from the maximum-likelihood

data fit that includes the process noise and the measurement error model; Lit, from the literature (1)

LSLOG ML Lit

Value 95% C.I. Value 95% C.I. Value 95% C.I.

A(0) 7.31 4.9–12.7 – – 12.1 3.3–32.5

pA 2.38* 2.29*–2.46* 2.53 2.23–2.70 2.29* –

r 1.99 1.91–2.06 2.14* 1.96*–2.28* 1.89 1.73–2.08

dA 0.39 0.35–0.43 0.39 0.31–0.49 0.40 0.34–0.47

r 0.020 0.018–0.023 0.018 0.014–0.026 0.018 0.015–0.022

dM(10�3) 0.13 0–0.28 0.09 0–0.53 0 –

T0 7.77 7.69–7.86 7.51 7.32–7.68 7.9 7.8–8.1

The parameters marked with * are computed based on the relation pA ¼ r 1 dA. The 95% confidence intervals (C.I.) are computed using 500 runs for the

bootstrap method (16).
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approximation for the cell amount may be valid only for a

cell amount large enough so that the intensity of intrinsic

process fluctuations, i.e., the process noise, can be neglected.

In this section, we use the stochastic simulations to illustrate

the intensity of the fluctuations, which might be expected due

to the process noise. It is worth mentioning that the process

noise would be responsible for the stochastic outcome of

experimental measurements even if we make error-free

measurements.

The stochastic nature of the biphasic hypothesis for the

CD81 T-cell response can be precisely described using the

master equation (5). In our case, the master equation de-

scribes the time increase of the probability of A number of

effector cells and M number of memory cells, where A and

M are integers.

The master equation for the expansion phase is

@WA

@t
¼ pAðA� 1ÞWA�1ðtÞ1 dAðA 1 1ÞWA11ðtÞ

� ðpA 1 dAÞAWAðtÞ; (14)

where WA(t) is the probability of A effector cells at time t,
and the rates pA and dA are the same as in the ODE

description, Eq. 1. This master equation does not include the

probability of memory cell amount M, because it is a con-

stant value, i.e., M ¼ 0.

At the time T, the second phase takes place and the master

equation for this phase is

@WA;M

@t
¼ rðA 1 1ÞWA11;M�1ðtÞ1 dAðA 1 1ÞWA11;MðtÞ

1 dMðM 1 1ÞWA;M11�ðrA 1 dAA 1 dMMÞWA;MðtÞ;
(15)

where WA,M(t) is the probability of A effector cells and M
memory cells at the time t; the rates of recruitment r, the

death rate of effector cells dA, and the death rate of memory

cells dM are the same as in ODE description, Eq. 3. As we

can see, the master equation describes the changes of the

joint probability WA,M because A and M change simulta-

neously.

To illustrate the process noise influence on the LCMV

data, we use Gillespie’s (17) simulation that produces a result

equivalent to the stochastic processes described by Eqs. 14

and 15. Each run of the simulation predicts the cell amount in

one mouse. These values would be measured in the mouse in

the absence of measurement errors.

Ideally, the simulations should start at the time Ton 6¼ 0, with

the initial value A(Ton) and the corresponding initial variance of

the T-cell amount. However, all these parameters are unknown.

As we use simulations only as an illustration, we run the

simulations with Ton¼ 0 and use the parameters and the initial

condition A(0) estimated by the LSLOG data fit (Table 1). We

also do not assume any uncertainty in the initial condition A(0).

Moreover, in the expansion phase, we considered pA ¼ r

(Table 1) and dA¼ 0. This process has a smaller variance of the

realization than the one resulting from the assumption of Eq. 2,

where dA 6¼ 0, and provides us the minimal process noise

intensity estimation based on the LSLOG data fit estimated

parameters (Table 1).

We find that the original Gillespie’s algorithm appears to

be very slow when the amount of cells reaches the order of

107. Therefore, we use the faster modification of this algo-

rithm, so-called t-leap (18), with the fixed time step t. We

take the time step t ¼ 0.01 so that the following condition

(18) is satisfied (see Appendix II)

t , min
pA 1 dA

ðpA � dAÞ2
;
1

r
;

1

dA

;
r 1 dA

rdM

;
1

dM

� �
:

The result of 500 runs of the simulation is summarized in

Fig. 3 a. This figure shows that even though the same initial

value and parameters are used, the cell amount is different

over the different runs. We can also notice that the trajec-

tories look as if they were the solutions of the deterministic

ODE model with the different parameters or initial condi-

tions. The variance of trajectories JG(t), computed at each

time instant t, is the variance resulting from the process

noise. The LCMV data are the averages of the T-cell amount

observed in the spleen of three mice. Hence, the fluctuations

in the data originating from the process noise will have the

variance J(t), given by

JðtÞ ¼ 1

3
JGðtÞ: (16)

Finally, we can compute the ratio R(t)

RðtÞ ¼ JðtÞ
y

2

pðtÞQm

; (17)

that is the ratio between the estimated variance resulting from

the process noise and the total variance of the data

fluctuations, estimated as the variance of the measurement

errors as y2
pðtÞQm, with Qm ¼ 0.064. The ratio is plotted in

Fig. 3 b and changes in the range between 0 and 0.6. We can

say that, in average, 0.5 of the total variance originates from

the process noise. The variance resulting from the process

noise is not a negligible part of the variance of the data

estimated from the data fit.

The simulation runs with Ton ¼ 0 possibly lead to overes-

timated influence of the process noise on the data. However,

despite this possibility, the results of this section illustrate

that the variance resulting from the process noise cannot be a

priori neglected. In other words, the process noise intensity

analysis must be included in data-based parameter estimation.

Probability density functions of the cell amounts

When including the process noise into data fitting, we face the

problem of estimating the distribution of effector and memory

cell amounts in the absence of the measurement errors. A large

number of the Gillespie’s simulations, explained in the

3362 Milutinović and De Boer
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previous section, is certainly one way to do that, but the

number of runs and the amount of computations for estimat-

ing the distributions make this approach unfeasible for the use

in iterative optimization numerical schemes for optimal data

fits, i.e., parameter estimations. In this section, we will show

approximations that can be used to estimate the distribution

of the data resulting exclusively from the process noise of

the biphasic immune response hypothesis.

We already explain in the previous section that the

beginning of the proliferation phase is possibly governed by

a more complex mechanism than the one described by Eq. 14.

We include this in our analysis assuming that the proliferation

phase is described by Eq. 14, but only after the time point

when the first data point is sampled (t1¼ 4 days). As a result,

we will estimate from the data both the expected cell amount

and its variance at the time t1. Naturally, in any further attempt

to reveal the complex dynamics of the early moments of

the proliferation phase before t1, the result of that dynamics

must agree with the estimates of the cell amount and the

corresponding variance at the time t1.

The starting point for the approximation are the master

equations, Eqs. 14 and 15. In the rest of this article, A(t) and

M(t) will be reserved for the cell amounts resulting from

stochastic processes. Using the system size expansion (8) (see

Appendix I), we can derive the following Langevin equation

for the first phase:

dA ¼ ðpA � dAÞAðtÞdt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpA 1 dAÞ �AðtÞ

q
djA; (18)

where �AðtÞ is the solution of the deterministic ODE, Eq. 1,

given the initial condition �Aðt1Þ ¼ A1, and jA is the Wiener

process. Similarly, the Langevin equation for the second

phase is given by

dAðtÞ ¼ �ðr 1 dAÞAðtÞdt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr 1 dAÞ �AðtÞ

q
djA

dMðtÞ ¼ rAðtÞdt � dMMðtÞdt 1

ffiffiffiffiffiffiffiffiffiffi
r �AðtÞ

q
djA

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM

�MðtÞ
q

djM; (19)

where �AðtÞ and �MðtÞ are the solutions of deterministic ODEs

in Eq. 3 for the initial conditions �AðTÞ, computed at the last

point of the first phase, and �MðTÞ ¼ 0. The jA and jM are the

independent Wiener processes. Equations 18 and 19 are, so-

called, linear Îto stochastic differential equations and their

solutions are Gaussian random variables (6). The distribution

of the cell amounts in the first phase is

PðA; tÞ ¼ N ð �AðtÞ;JAAðtÞÞ; t1 # t , T; (20)

where JAA(t) is the variance of A(t). Naturally, in the expansion

phase, the cell distribution is given only by P(A, t), since M¼ 0.

In the contraction phase, the cell distribution is given by

Gaussian joint probability density function of A and M

PðA;M; tÞ ¼ N ð½ �AðtÞ �MðtÞ�9;JðtÞÞ;JðtÞ

¼
JAAðtÞ JAMðtÞ
JAMðtÞ JMMðtÞ

� �
232

; T , t; (21)

where 9 denotes the vector transposition, and J(t) is the

2 3 2 covariance matrix.

We should notice that the second-order moments in the

probability density functions P(A, t) and P(A, M, t) are

dependent on time. The application of the Îto calculus (6) to

Eqs. 18 and 19 leads to the following set of ordinary dif-

ferential equations for t1 # t , T

dJAA

dt
¼ 2ðpA � dAÞJAAðtÞ1 ðpA 1 dAÞ �AðtÞ;

JAAðt1Þ ¼ s
2

Aðt1Þ (22)

and for T , t, using JMM(T) ¼ JAM(T) ¼ 0,

dJAA

dt
¼ �2ðr 1 dAÞJAAðtÞ1 ðr 1 dAÞ �AðtÞ;

dJMM

dt
¼ �2dMJMMðtÞ1 2rJAMðtÞ1 r �AðtÞ1 dM

�MðtÞ;

dJAM

dt
¼ �ðr1dA1dMÞJAMðtÞ1rJAAðtÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr 1 dAÞ

p
�AðtÞ:

(23)

Naturally, the initial condition JAA(t1) has to be specified

and it is the variance of the initial condition A(t1) denoted as

FIGURE 3 Stochastic simulations of the acute response. (a) Ten simu-

lation runs, each corresponding to the amount of CD81 T cells in the spleen

of one mouse (solid), 95% interval for the cell amount resulting from the 500

simulation runs (dashed). (b) R(t) is the ratio between the variance estimated

from the 500 simulation runs and the variance estimated from the data.
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s2
Aðt1Þ. There is no need to specify the initial condition

JAA(T), since it results from the solution of Eq. 22.

Similarly, due to the zero memory cells all along the time

from 0 until T, we have JMM(T) ¼ JAM(T) ¼ 0.

The Langevin Eqs. 18 and 19 have the same structure as

would be obtained in the corresponding chemical Langevin

equation (19) resulting from the second-order truncated

Kramer-Moyal equation (5). The only difference is that the

random process intensities depend on the expected values
�AðtÞ and �MðtÞ, whereas in the chemical Langevin equation

they would depend on the stochastically fluctuating A(t) and

M(t).
The validity and the precision of the approximation types,

Eqs. 18 and 19, are limited and their comparison with the

chemical Langevin equation is discussed in Gillespie (19).

Some of the basic requirements are that the expected amount

of cells has to be large, and multiple steady states are not

allowed. In our case, the first requirement is fulfilled only

approximately, whereas the second is fulfilled completely.

This is because immediately after the time T, the expected

amount of the memory cells �MðtÞ is small. However, the

small value of M(t) can hardly influence the Gaussian

distribution of the total cell amount A(t) 1 M(t), since A(t) is

large. Moreover, due to the large A(T), shortly after the time

T, the amount of the memory cells M(t) quickly increases and

has a Gaussian distribution. Similarly, all the effector cells

are ultimately recruited to the memory stage, or they die, and

just before this happens to the last cells, the expected amount
�AðtÞ is small. Simultaneously, �AðtÞ is small in comparison to

the amount of the memory cells M(t), hence A(t) can hardly

influence the Gaussian distribution of the total cell amount.

Based on this reasoning, the previous LSLOG fit and

Gillespie’s simulation, we are expecting Gaussian distribu-

tion of the total cell amount. Thus, in our case, we consider

the Langevin equation approximations, introduced in this

section, as acceptable for computing the mean value and the

variance of the total cell amount.

Parameter estimation based on measurement
and process noise models

In this section, we will exploit the ability to predict the

probability density functions (PDFs) of effector and memory

cells to estimate the parameters of the model introduced in

Section 2. Of course, to do the parameter estimation we

should also have a model of the measurement error. Only in

that case, can we match the predicted PDFs resulting from

the process noise to the measured data.

Let us assume that the measurement error is also Gaussian.

Because the predicted PDFs from the previous section are

Gaussian, the PDF of a single measurement will also be

Gaussian. In the LCMV infection data each data point is an

average of three individual independent samples. Therefore,

the probability, or likelihood, of observing the sequence of

fy(t1), y(t2), . . .y(tK)g data is

Lðyðt1Þ; yðt2Þ; . . . yðtKÞjpÞ ¼
YK

k¼1

Nð�yðtkÞ;s2

yðtkÞÞ; (24)

where p denotes the vector of the parameters that appear in

the expressions for expected value of the measurement at the

time tk, �yðtkÞ, and for the variance at the same time s2
yðtkÞ.

For the lack of the measurement error model, we con-

sider the multiplicative measurement error model with the

constant variance Qm, as it is described in the section

‘‘Measurement noise’’, Eq. 12. However, here we consider

the stochastic model prediction yp(t) ¼ A(t) 1 M(t), where

A(t) and M(t) are described by the master equations (Eqs. 14

and 15) and are approximated by the Langevin equations

(Eqs. 18 and 19). In this way, the variance Qm corresponds to

a single measurement error. Due to the Gaussian assumption,

the expected value of the measurement at the time tk is

�yðtkÞ ¼ �AðtkÞ1 �MðtkÞ; (25)

and the variance is s2
yðtkÞ ¼ s2

TðtkÞ=mk. The factor 1/mk

results from the fact that we are predicting the variance of the

data samples, which are the averages of mk independent mea-

surements, in our case, mk ¼ 3. The total variance of a mea-

surement from a single mouse s2
TðtkÞ; based on Eqs. 22 and

23 and the multiplicative measurement error model, is

s
2

TðtkÞ¼ JAAðtkÞ1�yðtkÞ2Qm; t1 # t , T
JAAðtkÞ1JMMðtkÞ12JAMðtkÞ1�yðtkÞ2Qm; T # t

:

�
(26)

We should notice that the expected values �yðtkÞ and the

variances s2
yðtk) depend on the rates and T introduced in the

section entitled ‘‘Dynamical hypothesis of the LCMV CD81

response’’, as well as on the initial condition for the expected

cell amount �yðt1Þ ¼ A1, the variance of the cell amount

s2
Aðt1Þ, and the measurement noise variance Qm. In the ab-

sence of any other constraints, all these values must be esti-

mated from the data.

We perform a maximum-likelihood parameter estimation,

after applying the logarithm to Eq. 24 and under the Gauss-

ian measurement error assumption, equivalent to

p̂ ¼ arg minp +
K

k¼1

ðyðtkÞ � �yðtkÞÞ2

s
2

yðtkÞ
1 ln s

2

yðtkÞ
( )

: (27)

In all the parameter estimations discussed below, we ex-

ploit the parameter values obtained from the LSLOG data

fit (see Table 1) to set the initial values for the cost function

minimization of Eq. 27. The initial values of the parameters

r, dA, dM, T are the same as those obtained from the LSLOG

data fit. The initial value for the parameter pA is pA¼ r� dA,

where r is also the result of the estimation based on the

LSLOG data fit. Moreover, we assume that the relative error

of a single measurement with the variance QLSLOG
m ¼ 3 3

0.064, estimated from the LSLOG data fit, is a good initial
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estimation for the total variance observed in the data. Along

this reasoning, instead of having to deal with s2
A(t1) and Qm,

we use R(t1) and RT resulting from the parameterization

s
2

Aðt1Þ ¼ Rðt1Þs2

Tðt1Þ ¼ Rðt1ÞA2

1RT: (28)

The parameter R(t1) denotes the fraction of the total variance

s2
T(t1) at the time t1, and the parameter RT defines the

intensity of the total variance s2
T(t1) relative to A2

1, square of the

expected amount of the cells at t1. Naturally, the rest of the

total variance is assigned to the multiplicative measurement

error, i.e.,

�yðt1Þ2Qm ¼ ð1� Rðt1ÞÞs2

Tðt1Þ: (29)

In the case of the negligible process noise R(t1) ¼ 0, it is

obvious that RT ¼ Qm. This parameterization is useful,

because it provides the initial guess s2
T(t1) ¼ A2

1 QLSLOG
m

in the minimization of Eq. 27. Consequently, the values

we estimate are R(t1) (0 # R(t1) # 1) and the total vari-

ance parameter RT. Thus, the parameter vector in Eq. 27 is

p ¼ [pA rdA dM T A1 R(t1) RT].

In this work we use the MATLAB function fmincon and

ode45 (MathWorks, Natick, MA) for the minimization in

Eq. 27 and for carrying out the solutions of ODEs,

respectively. The parameters A1 and R(t1) are the only

parameters for which we do not use the results of the

previous LSLOG data fit to set initial guesses. We try the

different values and find that the optimal parameter vector p̂
always has A1 and R(t1) close to the values initially guessed.

Therefore, we search for the global minimum using the initial

guesses in which A1 and R(t1) are gradually changing in the

range [15 3 103, 30 3 103] and [0, 1], respectively. Based on

this, we can identify the series of local minimums with A�1 ¼
21,400, R�T ¼ 0.176, and R(t1) 2 [0, 1]. The values of R(t1)

resulting from the optimization are always close to the initial

guess of this parameter. The results for all other parameters

are always quite the same and they are listed in Table 1.

Among the minimums, we find one global minimum with

R*(t1) ¼ 0.45. The ratio between the variance resulting from

the process noise and the total variance s2
TðtÞ is

RðtÞ ¼ s
2

TðtÞ � �yðtÞ2Qm

s
2

TðtÞ
� 0:45; (30)

where the process noise variance is expressed as the dif-

ference of the total variance s2
TðtÞ and the multiplicative mea-

surement error variance, �yðtÞ2Qm. The ratio R(t) remains quite

constant for all t 2 [0, T]. Therefore, we find that the standard

deviation of the relative error of a single measurement is

approximately ffiffiffiffiffiffiffi
Qm

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R

�ðt1ÞÞR�T
q

� 0:31; (31)

that is ;31%. The mean values and two standard deviation

band, resulting from the parameter estimation (Table 1), are

presented in Fig. 4. By careful inspection, we can conclude

that, like in the previous LSLIN and LSLOG cases, one point

is outside the two standard deviation band. Because 95% of

the data is inside the band, we can confirm that the data fit

and the parameter estimates are consistent with the experi-

mental data. The confidence intervals presented in Table 1 are

in this case (ML) also computed by the bootstrap method

(16). However, the data for the bootstrap are generated based

on Gillespie’s simulations, Eqs. 14 and 15, and the multipli-

cative measurement error assumption. The Gillespies simu-

lations are started at the time t1, with the initial value A�1 and

the corresponding variance s2
Aðt1Þ.

To test the robustness of the measurement error intensity

estimation, we compare the value of the cost function in the

global minimum with the values obtained for the minimums

with R(t1) 2 [0, 1]. The difference is in the range of 10�4

order of magnitude, which results in the ratio of likelihood

approximately equal to 1. This suggests that our data can be

equally well described with the parameters obtained in the

global minimum independently of the measurement error

intensity. In other words, our parameter estimation is robust

to a different assumption of the measurement error intensity.

This also suggests that the data can be explained solely by

the process noise, R(t1) ¼ 1, which means that the influence

of measurement noise on our data can be neglected and that

the observation model for the cell amount in one mouse is

yðtÞ ¼ ypðtÞ ¼ AðtÞ1 MðtÞ: (32)

We should underline that this possibility is based exclusively

on the consistent treatment of the underlying stochastic

processes. In this treatment we do not neglect the intensity of

measurement error. The zero intensity of measurement error

is a possibility resulting from the data-based parameter

estimation.

CONCLUSION

This study presents an effort to understand better the sto-

chastic fluctuations of the immune response data. In parameter

FIGURE 4 The maximum-likelihood (ML) data fit of the stochastic

Langevin approximations: ML expected values of data, two standard devi-

ation band resulting from the process noise (dashed), the experimental data

(circles).
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estimations these fluctuations are usually considered as a re-

sult of measurement errors or parameter variations among the

individuals. Interestingly enough, the process noise, which is

actually an intrinsic property of the immune response, has not

been considered at all in parameter estimation.

The process noise is tightly connected with the immune

response dynamics. Consequently, it should be taken into

account before any parameter variation is considered. In our

study, we try to understand how much of the data fluctuations

result from the process noise and how much from the

measurement errors. First, using Gillespie’s simulations, we

show that the intensity of the process noise should not be a

priori neglected. Second, we propose a maximum-likelihood

parameter estimation based on data PDF predictions. These

PDFs include the process noise, as well as the measurement

error model.

Using the data from the LCMV-infected mice experiment,

we find that the parameter estimations are robust to the intensity

of the relative measurement error. This opens the possibility,

contrary to the usual assumption, that stochastic data fluctu-

ations are completely explained by the process noise. The

estimated intensity of measurement error would be negligible,

and no further parameter variations would be necessary to

explain stochastic data fluctuations. It is worth mentioning that

in our experiment the order of magnitude for the cell amount

is 107. This amount of cells is considered to be large for

immunological data. In experiments with smaller amount of

cells, the process noise will have even larger influence.

Our point is that the parameter estimation should be based on

the solid measurement error model. Observed trends and

fluctuations in the immune response data can be explained by

the stochastic dynamical model. But only if we take into

account the measurement error model, do we know how much

of the data trends and data fluctuations must be explained by the

stochastic dynamical model and its parameters. Parameter vari-

ations should be included in the analysis only after the mea-

surement error and process noise intensities are constrained.

Most of the theoretical immunology developments and

discussions are related to dynamical hypotheses that can be

different with a reason from experiment to experiment.

Simultaneously, the limited set of measurement methods is

in use, even in different experiments. Therefore, we believe

that enough data can be provided and that there should be

given more attention to the calibration of measurement

methods, i.e., to the modeling of measurement errors of each

particular method. The solid measurement error model will

not only define the limitation for dynamical hypothesis, but

also should be an essential part of the parameter estimation

and hypothesis test procedures.

APPENDIX I: THE PROLIFERATION PHASE

First, we will consider the process with the simultaneous proliferation (pA)

and the death (dA). The master equation for this process is given by Eq. 14.

According to the van Kampen system size expansion (8)

AðtÞ ¼ V�aðtÞ1 V
1=2

vA; (33)

where �aðtÞ is expected value of a(t) ¼ A(t)/V and V is so-called system size.

When a(t) has a dimension of concentration, as in chemistry, V is the

volume that is large enough and contains enough molecules, so that the

variation of 61 molecule can be considered as a continuous change.

Consequently, a(t) and A(t) can take all values on the real axis and not just

specific values and integers, respectively. Because we are not dealing with

the concentrations, we define the system size V as the maximal expected

amount of cells. From the system size expansion we obtain an ODE for the

expected value

d�aðtÞ ¼ ðpA � dAÞ�aðtÞdt; (34)

and the second-order PDE for WvA
, which is the PDF of vA, is

@WvA

@t
¼ �ðpA�dAÞ

@ðvAWvA
Þ

@vA

1
1

2
ðpA1dAÞ�a

@
2
WvA

@v
2

A

1 OðV�1=2Þ:
(35)

Neglecting the terms of the order V�1/2, we can conclude that vA(t) is

described by the following Langevin equation

dvAðtÞ ¼ ðpA � dAÞvAðtÞdt 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpA 1 dAÞ�aðtÞ

p
djAðtÞ:

(36)

The cancellation of O(V�1/2) is justified if V is large.

Going back to Eq. 33, we find that

dAðtÞ ¼ ðpA � dAÞAðtÞdt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpA 1 dAÞ �AðtÞ

q
djAðtÞ: (37)

If we consider the proliferation process with the rate r, using the similar

derivation as above, we obtain

dAðtÞ ¼ rAðtÞdt 1

ffiffiffiffiffiffiffiffiffiffiffi
r �AðtÞ

q
djAðtÞ: (38)

When r ¼ pA � dA, the expected values of Eq. 37 and 38 are equal.

However, the variances are different because of the difference in the Wiener

process terms. Consequently, the process with the proliferation (pA) and

the death (dA) simultaneously present is not equivalent to the process with

the proliferation rate r ¼ pA � dA.

APPENDIX II: THE TIME STEP t-SELECTION

Using the expression (Eq. 26a) from Gillespie (18), the time step t for the

first phase should satisfy

t ,
pA 1 dA

ðpA � dAÞ2
; (39)

and in the second phase should satisfy

t,min
ðr1dAÞA1dMM

ðr 1 dAÞAr
;
ðr1dAÞA1dMM

ðr 1 dAÞAdA

;
ðr1dAÞA1dMM

jrA� dMMjdM

� �
:

(40)

The condition of the second phase depends on A and M. However, we can

find that the first two expressions are bounded from below, i.e.,

1

r
,
ðr 1 dAÞA 1 dMM

ðr 1 dAÞAr
;

1

dA

,
ðr 1 dAÞA 1 dMM

ðr 1 dAÞAdA

;

3366 Milutinović and De Boer
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that is obtained by the substitution M ¼ 0. Moreover, for the third

expression we can consider the equivalent one, which results from the

division of nominator and dominator by A, and its limits M=A/0 and

M=A/N that are

lim
M=A/0

r 1 dA 1 dMM=A

jr � dMM=AjdM

¼ r 1 dA

rdM

;

and

lim
M=A/N

r 1 dA 1 dMM=A

jr � dMM=AjdM

¼ 1

dM

;

respectively. Actually, they are the candidates for the lower bounds of the

third expression in Eq. 40. Because we do not know which the lower one is,

we can say that the condition Eq. 40 is satisfied if

t , min
1

r
;

1

dA

;
r 1 dA

rdM

;
1

dM

� �
:

Finally, the single t-value that will simultaneously satisfy the conditions

Eqs. 39 and 40 can be chosen using the following criterion

t , min
pA 1 dA

ðpA � dAÞ2
;
1

r
;

1

dA

;
r 1 dA

rdM

;
1

dM

� �
:
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