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The EAST protein of Drosophila is a component of an expandable extrachromosomal domain of the nucleus. To better
understand its function, we studied the dynamics and localization of GFP-tagged EAST. In live larval salivary glands, EAST-GFP
is highly mobile and localizes to the extrachromosomal nucleoplasm. When these cells are permeabilized, EAST-GFP rapidly
associated with polytene chromosomes. The affinity to chromatin increases and mobility decreases with decreasing salt
concentration. Deleting the C-terminal residues 1535 to 2301 of EAST strongly reduces the affinity to polytene chromosomes.
The bulk of EAST-GFP co-localizes with heterochromatin and is absent from transcriptionally active chromosomal regions. The
predominantly chromosomal localization of EAST-GFP can be detected in non-detergent treated salivary glands of pupae as
they undergo apoptosis, however not in earlier stages of development. Consistent with this chromosomal pattern of
localization, genetic evidence indicates a role for EAST in the repression of gene expression, since a lethal east mutation is
allelic to the viable mutation suppressor of white-spotted. We propose that EAST acts as an ion sensor that modulates gene
expression in response to changing intracellular ion concentrations.
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INTRODUCTION
The nuclear matrix as an internal non-chromosomal scaffold of

the cell nucleus remains a controversial concept in eukaryotic cell

biology [1]. It is poorly defined in terms of composition, function

and subcellular localization. The EAST protein of Drosophila is

a candidate component of an internal nuclear skeleton as it

localizes to non-chromosomal regions and its overexpression can

influence the size of this sub-nuclear domain [2]. A recent study

demonstrated that EAST is found in the same protein complex as

Megator (Mtor), a component of the nuclear pore complex and an

ortholog of the mammalian TPR [3]. EAST and Mtor colocalize

to another controversial structure called the spindle matrix [4].

Assembled from mainly nuclear proteins at prophase, the spindle

matrix resembles a microtubule spindle. However, unlike micro-

tubules, this structure is not destabilized by treatments that

depolymerize microtubules. Hence the spindle matrix has been

proposed to direct the formation of the bipolar mitotic spindle

apparatus. Other potential components of the Drosophila spindle

matrix include the nuclear proteins Chromator (Chro) and

Skeletor that bind to the interbands of polytene chromosomes

[5,6]. Chro, also called Chriz [7], can interact with both Skeletor

and Mtor. Interfering with the function of Chro, Skeletor and east has

been shown to lead to defects in mitosis and meiosis [6,8,9]. The

abundance of these four mentioned spindle matrix proteins in

nuclei of postmitotic cells strongly suggests a vital function in

interphase nuclei. Consistent with this idea, mutations in Chro

affect the structure and organization of larval polytene chromo-

somes [10]. Mtor, Chro and Z4, an interactor of Chro, associate

with a dosage compensation complex, indicating a role in

transcriptional regulation [11].

In this report, we describe that the predominantly extrachro-

mosomal EAST protein has the ability to associate with

chromosomes and that this behavior is linked to a negative role

in gene regulation.

RESULTS

EAST can associate with chromosomes
We previously described EAST as a nuclear protein that localizes

to an extra-chromosomal and extra-nucleolar compartment of the

nucleus that we termed extrachromosomal nuclear domain (END)

[2]. The expansion of the END in response to overexpression of

EAST indicated that EAST might be modulating the extent of an

interior nucleoskeleton. We expressed GFP-tagged EAST in 3rd

instar larval salivary glands and performed fluorescence recovery

after photo bleaching (FRAP). An extremely fast recovery demon-

strated that EAST-GFP is highly mobile, suggesting that EAST

does not associate with a static internal nucleoskeleton (Figure 1A).

For simplicity, we refer to the fusion protein containing the full-

length version of EAST (residues 1-2301) with a C-terminal GFP

tag as EAST-GFP.

To evaluate if EAST might associate with an ‘elusive’ structure

termed the nuclear matrix, salivary glands expressing EAST-GFP

were subjected to the first step of the Nuclear Matrix extraction

protocol whereby cells are treated with detergent buffer. The
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permeabilization using saponin or Triton-X-100 results in a rapid re-

localization of EAST-GFP onto polytene chromosomes (Figure 1C).

An incubation of one minute is sufficient to deplete EAST-GFP from

the END (Figure 1B) and relocate it to chromosomes (Figure 1C).

The staining pattern is almost identical to that of chromosomal

bands labeled by DNA dyes such as TOPRO-3, except in regions of

the centromeric heterochromatin or chromocenter where the

fluorescence intensity is significantly weaker relative to that of the

DNA dye (Figure 1D). To rule out that the DNA binding was due to

the GFP-part of the fusion protein, the protein trap line G180 [12]

that is localized to the nucleoplasm was permeabilized. The G180

fusion protein was removed from the nucleus, demonstrating that the

binding of chromosomes is linked to the EAST portion of the fusion

protein (not shown).

To investigate the relationship between transcription and the

binding of EAST to chromosomes, we performed a run-on

transcription assay by including BrUTP into detergent buffer.

Transcriptionally active regions that incorporate high levels of

BrUTP contain low levels of EAST-GFP (Figure 2A), while DNA

bands showing strong EAST-GFP signals do not coincide with

chromosome regions of high transcriptional activity. This localiza-

tion pattern suggests that EAST preferentially binds to condensed

and silent chromatin. To test if the removal of EAST could lead

to a higher transcriptional activity in chromosome bands we per-

formed a run-on transcription assay in easthop7 mutants (Figure 2B).

Loss of east results in the decrease of contrast in the banding

pattern in polytene chromosomes. Despite the apparent disruption

of chromatin structure, high incorporation of BrUTP is restricted

to a few discrete, weakly condensed DNA regions, indicating that

loss of east function does not result in a general derepression of

transcription in chromosome bands. Furthermore, a subset of cells

in permeabilized tissues incorporated fluorescently labeled

BrdUTP, indicating that the experimental conditions did not

block replication (not shown).

The affinity of EAST-GFP to chromatin depends on the salt

concentration (Na+ or K+ ions) in the detergent buffer. At 100 mM

or lower concentrations, the bulk of EAST-GFP associates with

polytene chromosomes (Figure 3A). Increasing the concentration

of either NaCl or KCl leads to a gradual dissociation from

Figure 1. EAST can associate with Polytene Chromosomes. (A) Live
intact salivary glands expressing EAST-GFP (green) were exposed to
photobleaching. A rapid recovery (see Figure 3E) indicates a high
mobility in the nucleoplasm. (B-D) Larval salivary glands expressing
EAST-GFP (green) were fixed and counterstained with TOPRO3 (white)
to visualize DNA. (B) In untreated cells, EAST-GFP is localized to
extrachromosomal nuclear regions. (C) In larval salivary permeabilized
with a saponin containing detergent buffer, EAST-GFP rapidly relocates
to the polytene chromosomes. (D) In detergent treated and squashed
preparations of polytene chromosomes, EAST-GFP shows a high degree
of co-localization with DNA bands. The chromocenter is indicated
(arrow head). EAST-GFP represents full length EAST with a C-terminal
eGFP tag that was expressed by the GAL4 system using the smid-Gal4
driver. Bars correspond to 10 mm in all panels.
doi:10.1371/journal.pone.0000412.g001

Figure 2. EAST-GFP accumulates in chromosome regions of low
transcriptional activity. (A) EAST-GFP (green) is excluded from highly
transcribed chromosome regions (arrow) in detergent treated larval
salivary glands cells. Run-on transcription was visualized using BrUTP
(red). TOPRO3 (white) was used to label DNA. (B) In easthop7 mutants,
like in wildtype, regions of high BrUTP incorporation (arrow) are found
in interbands. Note that the banding pattern shows less contrast
compared to EAST-GFP overexpressing or wildtype (not shown) cells.
Bars correspond to 10 mm in all panels.
doi:10.1371/journal.pone.0000412.g002

EAST Binds Chromosomes

PLoS ONE | www.plosone.org 2 May 2007 | Issue 5 | e412



chromatin. Above 150 mM, which is the physiological salt

concentration [13] fusion protein is increasingly found in the

nucleoplasm. The dissociation is reversible as cells first incubated

in 200 mM and then shifted to 100 mM salt will show chromo-

somal localization. In FRAP experiments, we observed a 10%

recovery in 50 mM compared to a 40% recovery in 100 mM salt

in the first 50 seconds after bleaching (Figure 3B, 3C and 3E),

suggesting that increasing the salt concentration leads to a higher

mobility of EAST-GFP bound to chromosomes.

FRAP was also used to compare the chromatin affinity of full

length (residues 1-2301) and C-terminally deleted EASTDC-GFP

(residues 1-1520) at 50 mM salt. The truncated version of EAST

was able to associate with polytene chromosomes, yet the banding

patterns was less pronounced (Figure 3D). Moreover, fluorescence

was also seen in the END. The very rapid and almost complete

recovery of fluorescence in less than a minute indicates that the

deletion of C-terminal residues 1520-2301 severely diminishes the

affinity to chromatin (Figure 3E).

Genetic evidence linking east to gene expression
We learned that the sequence of east was identical to that of a gene

called suppressor of white-spotted or su(wsp) (M. Belanich, personal

communication). The su(wsp) mutation suppresses the reduction

of eye pigmentation caused by 4 spotted alleles of the white gene

(wsp1-4), which are characterized by lesions in the upstream region

of w [14]. We confirmed that east suppresses the wsp phenotype.

Like the viable mutation su(wsp)1, the pupal lethal allele easthop7

restores eye pigmentation to almost wildtype levels (Figure 4A). The

trans-heterozygous combination of easthop7 and su(wsp)1 is indistin-

guishable from homozygous su(wsp)1 in terms of eye pigmentation

(Figure 4B). Heterozygous su(wsp)1 and easthop7 females show

intermediate levels of eye pigmentation in a wsp1 homozygous

background. Therefore, east and su(wsp) are allelic. To understand

the molecular nature of the su(wsp)1 mutation, we sequenced the

coding region of the genomic DNA of the east locus. At codon 1956,

we found a point mutation that introduces a premature stop codon,

reducing the length of EAST protein from 2301 to 1955 amino

acids. In summary, as has already been inferred from the genetic

interactions between wsp and su(wsp), the product of the east/su(wsp)

gene might act as a negative regulator of gene expression that binds

to the upstream regulatory region of the w gene.

Chromosome association of EAST-GFP in apoptotic

Cells
The intra-nuclear localization of EAST-GFP depends on the

developmental stage. The fusion protein shows a mainly extra-

chromosomal pattern throughout larval and prepupal develop-

ment (Figure 5A). During the early pupal stage at 18-19 hours

after puparium formation (APF), we were able to detect cells

showing a predominantly chromosomal localization (Figure 5B).

This stage coincides with the time when salivary glands normally

undergo apoptosis, which has been reported to be complete at

around 16 hours APF [15,16]. In a parallel study, we found that

overexpression of EAST-GFP attenuates some but not all aspects

of apoptosis (Wasser et al., unpublished). Salivary glands of smid-

GAL4 UAS-eastFL-GFP pupae contained two types of cells: small

cells lacking EAST-GFP with fragmented and condensed

chromosomes and larger cells maintaining high levels of EAST-

GFP expression, in which polytene chromosomes appeared to

have escaped from apoptotic fragmentation. As has been pre-

viously reported, cell death in salivary glands is preceded by

changes in the levels and localization of filamentous actin and

nuclear lamin [17]. Consistent with the initiation of apoptosis in

Figure 3. Characterization of EAST-GFP localization and mobility in
larval salivary glands. (A) Varying the salt concentration can modulate
localization of EAST-GFP. At 100 mM, the distribution is mostly
chromosomal, at 150 mM chromosomal and nucleoplasmic and at
200 mM no chromosomal-like pattern is detectable. (B-D) The mobility
of EAST-GFP was assessed by FRAP. (B, C) Increasing the salt
concentration lowers the affinity to chromatin. An increase in salt from
50 mM (B) to 100 mM (C) leads to a faster recovery of fluorescence after
bleaching chromosome regions bound by EAST-GFP. (D) Removing the
C-terminal residues 1535-2301 of EAST leads to an increase in mobility.
At a salt concentration of 50 mM, the truncated version of EAST
associates with a lower affinity than the full-length version. (E) The
diagram shows the recovery in seconds after bleaching the indicated
nuclear regions for 4 seconds at a laser intensity of 100%. The two
different variants of EAST-GFP were expressed using the ftz-GAL4 driver.
Cells were permeabilized in buffers containing 50 mM NaCl supple-
mented with varying amounts of KCl to reach the indicated salt
concentrations. The recovery of the non detergent treated cell (non-
perm) in Figure 1A is indicated for comparison. The Bar in A represents
10 mm and applies to all panels.
doi:10.1371/journal.pone.0000412.g003
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EAST-GFP expressing cells that contain intact chromosomes, the

nuclear lamina exhibited degradation and filamentous actin

disappeared from the cell cortex. In those cells that showed an

attenuation of apoptosis, EAST-GFP was localized in a predomin-

antly chromosomal pattern (Figure 5B). In summary, chromo-

somal localization of EAST-GFP can be observed in permeabi-

lized larval as well as in untreated pupal salivary gland cells,

suggesting that permeabilization might mimic a physiological

change that occurs during programmed cell death.

DISCUSSION
In this study we show that the nuclear EAST protein has the

intrinsic ability to associate with chromosomes and that this

behavior is linked to an involvement in gene regulation. A previous

study postulated that the gene product of su(wsp)/east would inhibit

white by interacting with its upstream regulatory sequences [14].

Consistent with this prediction we discovered that the EAST

protein possesses the ability to bind polytene chromosomes. The

accumulation of EAST-GFP in transcriptionally silent heterochro-

matin regions and the absence from chromosome regions with

a high level of transcriptional activity further support a repressive

role in gene expression.

Because the characterization of EAST protein was carried out

in permeabilized cells under non-physiological conditions it might

be argued that the association with polytene chromosomes is an

experimental artifact. However, we were able to observe co-

localization with DNA in untreated cells while they undergo

apoptosis. Moreover, despite permeabilization, cells were still able

to perform transcription and replication, showing that chromatin

binding of EAST did not occur under conditions that caused

a general block of nuclear functions.

The affinity to polytene chromosomes is sensitive to the salt

concentration of the detergent buffer. We observed co-localization

of the bulk of EAST-GFP with polytene chromosomes in perme-

abilized cells at concentrations at and below 100 mM salt, which is

lower than the estimated physiological concentration of 150 mM.

The release of EAST-GFP from chromosomes with increased salt

concentrations (150 mM and above) is consistent with the

observation that the fusion protein does not display a discernible

chromosomal localization pattern in intact cells.

The C-terminal residues 1520 to 2301 promote affinity to

chromatin but are dispensable for nuclear import. This domain is

also involved in tethering EAST to a nuclear remnant during

mitosis [9]. A smaller segment of the C-terminus stretching from

residues 1956 to 2301 is deleted in the su(wsp)1 allele, suggesting

that this region is required to mediate the suppression of pigment-

ation seen in the wsp alleles. The C-terminus therefore might

promote binding to chromatin or recruit other factors involved in

repression. Although the N-terminal residues 1-1955 seem to be

deficient in gene silencing, they are sufficient for viability.

On the molecular level, the exact role of EAST in gene regula-

tion remains a mystery. Two previous studies showed that the

expression levels of white transcripts do not differ between wildtype

and the allele wsp despite the lesions in the promoter regions

[18,19]. In microarray experiments, we did not detect significant

differences in white transcription between su(wsp)1 wsp1 and wsp1

adults, confirming the conclusion of the two earlier studies that

altered white transcription does not appear to be responsible for the

reduction in eye pigmentation (Wasser and Chia, unpublished). To

test if sequence variations in white transcripts might explain the

difference in pigmentation we sequenced cDNAs corresponding

to white transcripts derived from wsp1 and su(wsp) wsp1 adults.

However, we were unable to detect any evidence for genomic

mutations or RNA editing.

Taken together, our results suggest that EAST could act as an

ion sensor that fine-tunes the expression of target genes in response

to fluctuating intra-cellular salt concentrations (Figure 6). Assum-

ing a free nucleoplasmic and a bound chromosomal pool of EAST,

the decrease in salt should shift the equilibrium towards the bound

pool, resulting in down-regulation of target genes. Conversely, an

increase in salt should relieve that repression. Target genes could

Figure 4. east corresponds to suppressor of white-spotted. All flies
shown are homozygous for wsp1. (A) In male pharates dissected out of
pupal cases, the mutations easthop7 and su(wsp)1 suppress the loss of
eye pigmentation resulting from the white mutation wsp1. (B) The
mutations easthop7 and su(wsp)1 show complementation. Like su(wsp)1/
su(wsp)1, the combination easthop7/su(wsp)1 restores eye pigmentation
to almost wildtype levels. Heterozygous flies of each mutation display
intermediate eye pigmentation.
doi:10.1371/journal.pone.0000412.g004

Figure 5. Change of localization of EAST-GFP during apoptosis. (A) In
a 13 h APF old pupa, EAST-GFP (green) shows mainly extrachromo-
somal localization. The nuclear lamina (red) is still intact. DNA (blue) was
labeled with TOPRO-3. (B) Co-localization of EAST-GFP with intact
polytene chromosomes can be observed in a 19 hour APF old pupa.
The destruction of the lamina indicates that part of the apoptotic
program is executed. Note the barely detectable anti-lamin staining in
salivary glands compared to neighboring diploid cells (arrow). The Bar
in A represents 10 mm and also applies to B.
doi:10.1371/journal.pone.0000412.g005
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be involved in maintaining cellular homeostasis, for instance by

restoring physiological ion concentrations. This model would also

predict that changing the protein concentration might mislead

cells into perceiving an incorrect ion concentration. The

inaccurate perception of cellular state could explain the increased

sensory threshold to olfactory and gustatory stimuli that was

observed in hypermorphic east mutants [20].

In a previous study we proposed that the increase in nuclear

volume in response to EAST overexpression was caused by an

expansion of a non-chromosomal nucleoskeleton [2]. An alternative

interpretation might be that an ion influx could lead to hypertonic

conditions of the cellular interior relative to the extra-cellular

environment, resulting in nuclear swelling. On the contrary,

a decrease in the intracellular potassium concentration is an early

event in apoptosis and is required for optimal enzymatic activation of

caspases and nucleases [21]. This decrease might explain the binding

of EAST-GFP to chromosomes observed in cells undergoing

apoptosis. During metamorphosis, the loss of east function leads to

an acceleration of cell death in muscles, while overexpression of

EAST-GFP in salivary glands attenuates apoptosis (Wasser et al.,

unpublished). These two opposite phenotypes could be explained by

EAST counteracting the loss of K+ ions during apoptosis.

MATERIALS AND METHODS

Drosophila Stocks
The east alleles used have been previously described [2,20].

Canton-S (CS) was used as a wildtype strain. The UAS-GAL4

system [22] was used for salivary gland expression of transgenes.

The effector construct lines UAS-eastFL-GFP and UAS-eastDC-GFP

have been described [9]. The salivary gland specific GAL4 driver

lines ftz-GAL4 and smid-GAL4 [23] were provided by C. Doe and

D. Shepherd, respectively. wsp1 and y2 sc1 su(wsp)1 wsp1 were

obtained from the Bloomington Drosophila stock center.

Permeabilization and Imaging of Larval Salivary

Glands
Permeabilization of larval salivary glands was performed using

detergent buffer (0.3 M sucrose, 10 mM HEPES pH 7.3, 50 mM

NaCl, 3 mM MgCl2, 1 mM EGTA, 2 mM DTT, 50 mg/ml

saponin, 20 m/ml of 1 Roche EDTA free protease inhibitor

cocktail dissolved in 1 ml water) that was based on the cytoskeleton

extraction buffer [24]. The salt concentration was increased by

adding KCl to working concentrations of up to150 mM. For

subsequent immunofluorescence staining, permeabilized tissues

were fixed for 15 minutes in detergent buffer containing 4%

formaldehyde (EM grade) without DTT and protease inhibitors

(DB-fixative). To prepare squashes of polytene chromosomes,

larval salivary glands were incubated for 2 minutes in detergent

buffer, fixed for 3 minutes in DB-fixative and 2 minutes in 50%

acetic acid, 4% formaldehyde. Spreading and squashing of

chromosomes was performed as previously described [25].

The labeling of nascent RNA was adapted from a published

protocol [26]. In brief, larval salivary glands were dissected in

Ringer’s solution, incubated for 15 minutes in detergent buffer

supplemented with 0.2 U/ml RNase inhibitor (RNasin, Promega),

2 mM ATP, 1 mM CTP, 1 mM GTP (Roche) and 1 mM BrUTP

(Sigma) and fixed in DB-fixative. BrUTP incorporated into

nascent RNA was detected by indirect immunofluorescence using

a monoclonal anti-BrUTP antibody (MAB3424, Chemicon). The

labeling of run-on transcription sites could be inhibited by adding

a-amanitin (Sigma) at a concentration of 100 mg/ml.

The mobility of GFP tagged proteins was assessed by

fluorescence recovery after photo bleaching (FRAP) [27].

Permeabilized glands were transferred to a drop of detergent

buffer between two 18618 mm coverslips on a glass slide. Imaging

and FRAP was performed by confocal microscopy after covering

the tissues with a 22632 mm coverslip. GFP was bleached for

4 seconds using an argon 488 nm laser light at an intensity of

100%.

Immunocytochemistry
Antibody staining of whole-mount 3rd instar larval salivary glands

was carried out as previously described [2]. DNA was labeled

using TOPRO3 (1:5000, Molecular probes), nuclear lamina using

anti Drosophila lamin Dm0 (1:50, Developmental Studies Hybrid-

oma bank, Paul Fisher). Images of fluorescently labeled samples

were acquired by laser scanning confocal miscroscopy using the

Zeiss LSM 510 Meta or Zeiss LSM 510 upright microscopes.

Image processing was carried out using Adobe Photoshop, Zeiss

LSM 5 image browser and Metamorph (Molecular Devices).
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