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Sustained positive BOLD (blood oxygen level-dependent) activity is employed extensively in functional magnetic resonance
imaging (fMRI) studies as evidence for task or stimulus-specific neural responses. However, the presence of sustained negative
BOLD activity (i.e., sustained responses that are lower than the fixation baseline) has remained more difficult to interpret.
Some studies suggest that it results from local ‘‘blood stealing’’ wherein blood is diverted to neurally active regions without
a concomitant change of neural activity in the negative BOLD regions. However, other evidence suggests that negative BOLD
is a result of local neural suppression. In both cases, regions of negative BOLD response are usually interpreted as carrying
relatively little, if any, stimulus-specific information (hence the predominant reliance on positive BOLD activity in fMRI). Here
we show that the negative BOLD response resulting from visual stimulation can carry high information content that is
stimulus-specific. Using a general linear model (GLM), we contrasted standard flickering stimuli to a fixation baseline and
found regions of the visual cortex that displayed a sustained negative BOLD response, consistent with several previous studies.
Within these negative BOLD regions, we compared patterns of fMRI activity generated by flickering Gabors that were
systematically shifted in position. As the Gabors were shifted further from each other, the correlation in the spatial pattern of
activity across a population of voxels (such as the population of V1 voxels that displayed a negative BOLD response) decreased
significantly. Despite the fact that the BOLD signal was significantly negative (lower than fixation baseline), these regions were
able to discriminate objects separated by less than 0.5 deg (at ,10 deg eccentricity). The results suggest that meaningful,
stimulus-specific processing occurs even in regions that display a strong negative BOLD response.
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INTRODUCTION
In functional MRI (fMRI) experiments, the neural response to

visual stimulation is inferred from the change in the BOLD (blood

oxygenation level-dependent) signal. In a typical experiment,

subjects view a stimulus in the test condition and a blank screen in

the control condition. When these two conditions are contrasted in

data analysis, researchers attribute perceptual and cognitive

functions to regions that display a positive BOLD response

compared to baseline, since positive BOLD is closely coupled with

neuronal activity [1,2]. However, researchers routinely discount

regions that display a negative BOLD response (a lower level of

BOLD response for the stimulus than for the blank screen),

because negative BOLD has proven to be much harder to

characterize. In this paper, we show that patterns of negative

BOLD activity carry meaningful information about stimulus-

specific visual processing. Therefore, to understand the neural

correlates of visual perception, fMRI studies should consider the

negative BOLD signal as informative.

Much of the debate over the negative BOLD signal has

centered on whether its source is primarily vascular or neuronal.

However, neither explanation of the origin of negative BOLD

makes strong claims about its meaning. In fact, most research on the

negative BOLD signal downplays its relevance to the task or

stimulus. Numerous studies have characterized the negative

BOLD signal as stimulus-independent, spatially widespread and

diffuse, and varying little in position across a variety of tasks

[3,4,5,6]. Although a few show some change in the pattern of

negative BOLD activity when visual stimulation changes, it is not

clear to what extent these changes are precise [7,8,9]. In this study

we use a novel technique to show that patterns of negative BOLD

responses, far from being unrelated to the stimulus, are highly

informative and stimulus-specific.

Our goal was to determine the spatial selectivity of negative

BOLD responses. To do this, we presented stimuli in slightly

different positions, each of which produced a unique pattern of

positive and negative BOLD activity. Within the regions that

selectively displayed a negative BOLD response, we cross-

correlated patterns of fMRI activity produced by each stimulus.

If the information carried in the negative BOLD response is not

spatially precise, then there should be no difference in the pattern

of negative BOLD activity for objects in slightly different positions.

Our results will show that, on the contrary, as the stimuli were

shifted further from each other, the correlation in the spatial

pattern of activity decreased significantly. The results suggest that

meaningful, stimulus-specific processing occurs even in regions

that display a strong negative BOLD response.

RESULTS
The stimuli were four flickering Gabors arranged in one of five

locations (see Materials and Methods; Fig. 1). The eccentricity of

the peak contrast was identical across all 5 Gabor arrangements

(9.05 degrees), but the standard deviation of the contrast envelope

was skewed either toward or away from the fovea (by 0.38, 0.19, 0,
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20.19, or 20.38 deg relative to the symmetrical Gabor at 9.05

deg; Fig. 1). On each trial, subjects reported the magnitude of the

Gabor skew (5-alternative forced choice classification task, similar

to the method of single stimuli; [10]). Figure 2 shows the psycho-

physical results for each subject. With increasing separation

between the flickering Gabors, subjects were better able to accur-

ately classify the stimuli (e.g., discriminating between Fig. 1A and

1E is relatively easy). The overall ability varied between subjects,

but the trend was consistent across subjects and significant for each

subject (least significant log fit to the data was for subject MC,

F(1,18) = 9.67, P,0.01). Six of the seven subjects were able to

discriminate Gabors separated by 0.19 deg in eccentricity, and all

seven subjects were able to discriminate differences of 0.77 deg

eccentricity (lowest d9 was 1.2 for subject MC). The precision with

which subjects judged Gabor locations is consistent with several

previous studies on acuity in the periphery [11,12,13], even in

absence of references [14]. Further, these psychophysical data

confirm previous reports that the method of single stimuli can be

used to measure acuity even though subjects must rely on an

implicit standard when judging each stimulus [10,15,16].

In the fMRI analysis, we contrasted the flickering Gabors with

the fixation baseline, which produced significant positive and

negative BOLD activity throughout the visual cortex (Fig. 3). Con-

sistent with previous studies [5,7], the negative BOLD response

surrounded the positive BOLD response in a manner reminiscent

of a Mexican-hat or difference-of-Gaussian operator. For each

subject, we selected separate non-overlapping regions of interest

(ROIs) of significant positive and negative BOLD activity in visual

area V1 (blue and orange activity circled with white dashed lines,

respectively, in Fig. 4B–C; see Materials and Methods). The negative

BOLD ROI was defined, for each subject, as the union of all regions

within V1 that displayed a significant negative BOLD response; the

positive BOLD ROI was defined similarly. Figure 4 shows the

corresponding BOLD time courses in the negative and positive

Figure 1. Stimuli used in the experiment. A–E. Four flickering Gabors were presented at one of five eccentricities; the standard deviation of each
Gabor’s contrast envelope was incrementally skewed by ,0.19 deg toward (A–B) or away (D–E) from the fovea. The Gabors in (E) are skewed away
from the Gabors in (A) by 0.77 deg (see Materials and Methods).
doi:10.1371/journal.pone.0000410.g001

Figure 2. Psychophysical results for six subjects. While in the scanner,
subjects reported which condition they were viewing on each trial
(5AFC classification task). The abscissa on the graph shows the
difference in the eccentricity between any two of the five conditions
(e.g., the difference in skew between Fig. 1A and 1B was 0.19 deg, while
the difference between Fig. 1A and 1E was 0.77 deg). The ordinate
shows discrimination (d-prime, calculated from the 5AFC classification
data [54]). When two stimulus conditions were similar (e.g., Fig. 1A and
1B), subjects had difficulty classifying which condition they were
viewing, resulting in a lower d-prime. Conditions that were separated
by greater eccentricities yielded higher discrimination ability. For all
subjects, discrimination improved with an increasing difference in the
skew of the envelope. Overall ability varied between subjects, but the
trend was consistent across subjects, and was significant for each
subject (least significant log fit to the data was for subject MC,
F(1,18) = 9.67, P,0.01).
doi:10.1371/journal.pone.0000410.g002

Figure 3. Cortical surface maps for three representative subjects showing regions of positive (yellow-red) and negative (blue-green) BOLD
activity. The maps were generated by fitting a general linear model to the data and contrasting all of the flickering Gabor stimuli (Fig. 1) to a fixation
baseline; the threshold for these maps was set at t = 5.6, P(Bonf),0.001.
doi:10.1371/journal.pone.0000410.g003
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BOLD ROIs for one representative subject and for the group of

seven subjects. In V1, the peak negative response in the negative

BOLD ROIs was 20.37% (t(6) = 6.0, P = 0.001), and the peak

positive response in the positive BOLD ROIs was +1.1% (t(6) = 13.4,

P,0.001). The results demonstrate that flickering stimuli generate

not only positive responses but significant negative responses as well,

confirming several previous studies [5,6,9,17,18].

Within each subject’s negative BOLD ROI in V1, we cross-

correlated the patterns of activity produced by each of the five

different stimulus conditions (see Materials and Methods and

Fig. 1), which produced a total of ten correlation coefficients for

each subject. Each correlation reflects the similarity in the pattern

of activity for a particular pair of conditions (i.e., Gabor positions).

For example, within each subject’s negative BOLD ROI in V1

Figure 4. Surface map for representative subject and time course of BOLD response for all subjects. A. Cortical surface for one subject showing
visual area V1 (outlined), measured in separate retinotopic mapping runs (see Materials and Methods). B. Negative BOLD ROI in V1 for the
representative subject. C. Positive BOLD ROI in V1 for the representative subject. D–E. Event-related average timecourses were measured separately
for positive and negative BOLD ROIs. Positive BOLD ROI (red line, squares) and the negative BOLD ROI (blue line, circles) for a representative subject
(D) and for the group of subjects (E). F–G. Positive and negative BOLD ROI responses averaged across visual areas V1, V2, V3, V3A, VP, and V4 for one
representative subject (F), and for the group of subjects (G). The gray filled region in each graph shows the stimulus presentation (10 s). Error bars,
6s.e.m.
doi:10.1371/journal.pone.0000410.g004
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(Fig. 5a), the correlation between the pattern of activity for Gabor

stimuli that were close to each other (Fig 5b) was much higher than

the correlation between the pattern of activity for two Gabor

locations that were farther apart (Fig 5c). We converted the

correlation coefficients to Fisher z-scores because these are linear

and can be directly compared [19]. If a given population of voxels

(an ROI) is sensitive to object position, we expect that the spatial

correlation in the responses across that ROI will decrease as the

distance between Gabor locations increases.

Figure 6 shows an analysis of the negative BOLD ROI of

a representative subject’s visual area V1. As the positions of the

Gabor stimuli were separated (abscissa), there was a decrease in

the spatial correlation of activity across the ROI (indicated by the

positive slope in the data; note that increasing values along the

ordinate of the graph indicate a decrease in the spatial correlation).

The slope of the linear regression is a measure of the ROI’s

sensitivity to minute shifts in the position of the Gabors; a higher

slope reflects greater selectivity to object position. Notice that if

a region demonstrated no selectivity for stimulus position, the

slope would be zero, because there would be no difference

between the spatial correlation of activity for nearby object

positions and the correlation for more distant positions. However,

if a region is highly selective for object position, there would be

a high correlation for nearby positions but a low correlation for

more distant positions, producing a steep position discrimination

slope. A linear regression of the data in Figure 6 revealed

a significant slope of 2.2 (F(1,8) = 43.6, P,0.001), which indicates

that skewing the positions of the Gabors by 1 deg visual angle

would produce a reduction in the spatial correlation of 2.2 Fisher z

units (0.976 r units).

Figure 7A shows the position discrimination slope in the

negative BOLD V1 ROIs for all seven subjects. A linear regression

revealed a significantly positive slope of 1.34 (F(1,26) = 52.9,

P,0.01). This indicates that shifting the Gabor stimuli by one

degree of visual angle resulted in a decrease in the spatial

correlation across the population of voxels of 1.34 Fisher z units.

This is equivalent to a decrease of 0.87 Pearson r units—a dramatic

decorrelation in the spatial pattern of activity, despite a tiny

change in the position of the objects. An analysis of variance

(ANOVA) confirmed a significant effect of Gabor position

(F(3,24) = 17.9, P,0.01). Finally, the difference in Fisher z-scores

(spatial correlations) between the smallest Gabor separation (0.19

vs. 0.38 deg) was significant (t(6) = 8.0, P,0.01). The fact that the

slope was significantly positive, with very little variation, shows

Figure 5. Measuring position discrimination in the visual cortex. A. A representative subject’s negative BOLD ROI (circled with dashed white line),
composed of 2084 voxels. B. The response of each of the 2084 voxels in the negative BOLD ROI is plotted for two of the conditions (Fig. 1A and 1B).
The abscissa shows the response to the stimulus in Fig. 1A (t score generated by a general linear model contrast relative to fixation baseline, see
Materials and Methods). The ordinate shows the response to the stimulus in Fig. 1B. Across the population of voxels, there was a strong correlation in
the responses to the two stimuli (r = 0.94, P,0.001). This is not surprising, given how similar the two conditions were. C. Within the same ROI, the
response to the stimulus in Fig. 1A was compared to the response to the stimulus in Fig. 1E (a condition in which the Gabors were positionally
skewed by 0.77 deg). Across the population of 2084 voxels, the correlation was r = 0.47. There was a significantly stronger correlation in (B) than in (C)
(Fisher z difference = 1.7520.51 = 1.24, Z = 44.2, P,0.001). That is, the Gabors that were close to each other produced a higher correlation than the
Gabors that were separated by a greater distance.
doi:10.1371/journal.pone.0000410.g005
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that this method is able to reveal position coding on an

extraordinarily precise scale.

Although the regions that display a negative BOLD response

clearly have patterns of activity that are capable of discriminating

object position (Fig. 7A), how does this compare to regions that

display a positive BOLD response? To address this, we repeated

the analysis on the regions of significant positive BOLD in V1. As

expected, subjects’ positive BOLD activity was also highly sensitive

to shifts in stimulus position (Fig. 7B). A linear regression on the

within-subjects averaged z-scores revealed a significantly positive

slope of 2.15 (F(1,26) = 202.1, P,0.001). Position discrimination in

the positive ROIs in V1 was significantly better than in the

negative ROIs (F(1,6) = 49.3, P,0.01).

The results above show that regions of V1 that display a negative

(and a positive) BOLD response to a particular object contain

patterns of responses that are highly selective for the object’s

position; objects in slightly shifted positions produce increasingly

different patterns of activity. To determine if the precise

discrimination of object position was restricted to V1, we repeated

the analysis above separately in visual areas V1 through V4.

Figure 8A shows a representative subject’s positive and negative

BOLD activity on an inflated cortical surface, showing visual areas

V1 through V4. Within each visual area, we selected separate

ROIs of significant positive and negative BOLD and performed

the linear regression analysis (as in Fig. 7). For the representative

subject (Fig. 8B), and for all seven subjects together (Fig. 8C), there

was a significantly positive position discrimination slope across all

visual areas V1–V4 for both positive and negative BOLD ROIs.

The least significant position discrimination was in the negative

BOLD ROI in area V3A (t(5) = 3.2, P,0.05). Interestingly, the

patterns of negative and positive BOLD responses in visual areas

V2, V3, VP, and V4 discriminated minute shifts in object position

about as well as V1 (there was no significant difference in the

position discrimination slope across these visual areas). Overall,

the positive BOLD ROIs were better able to discriminate object

position (F(1,5) = 9.64, P,0.05). Nevertheless, the regions that

displayed a negative BOLD response discriminated object position

with great precision. Therefore, the pattern of negative responses

carries meaningful and precise information about object position.

The position discrimination slopes within both positive and

negative BOLD regions were comparable to the psychophysical

results in Figure 2. Subjects were able to correctly classify objects

separated by greater than 0.19 deg, and the slope of the position

discrimination functions in Figures 7 and 8 indicates that the

pattern of positive and negative BOLD activity was also able to

discriminate objects shifted by this amount. The consistency

between the psychophysical and the BOLD data indicates that our

statistical technique is not limited by fMRI methodology or the

coarse resolution of BOLD sampling. Future studies could extend

this technique to reveal the physiological mechanisms of other fine

scale processes.

Figure 6. Position discrimination within the negative BOLD ROI of
one representative subject’s visual area V1. Within the negative BOLD
ROI (circled in white dashed line), the pattern of responses to each of
the five stimulus conditions (Fig. 1) were cross-correlated (the analysis
from Fig. 5 was repeated for every pair of stimulus conditions). All
correlations were converted to Fisher z scores and normalized to
(subtracted from) the highest correlation (ordinate). Zero on the
ordinate therefore indicates a high spatial correlation. The abscissa
shows the difference in the eccentricity of any pair of conditions
(ranging from 0.19 deg to 0.77 deg, as in Fig. 1). The graph indicates
that as the eccentricity of the Gabor conditions is increasingly
separated, the correlation across the spatial pattern of activity
decreased (indicated by a positive slope in the data). A linear regression
revealed a significant effect of Gabor separation on the spatial
correlation (f(x) = 2.2x20.08; F(1,8) = 43.6, P,0.001).
doi:10.1371/journal.pone.0000410.g006

Figure 7. Position discrimination in V1. A. Position discrimination in
the negative BOLD ROI across all seven subjects. A linear regression
revealed a significantly positive position discrimination slope (slope of
1.34; F(1,26) = 52.9, p,0.01). B. Within each subject’s V1, the same
analysis was applied to the positive BOLD ROIs (open circles). The slope
of the position discrimination function in the positive BOLD ROI in V1
was 2.15 (F(1,26) = 202.1, P,0.001). Although the regions that display
a positive BOLD response are better able to discriminate object position
(F(1,6) = 49.3, P,0.01), the regions that display a negative BOLD
response are still able to discriminate object position with remarkable
precision.
doi:10.1371/journal.pone.0000410.g007
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The pattern of activity in each ROI we tested above displayed

extremely precise selectivity for object position. However, if the

activity in V1 produced by an object is retinotopically localized,

then we would only expect precise discrimination of that object’s

position to be possible in regions near the retinotopic represen-

tation of that object. Therefore, we should only find our steep

position discrimination functions (like Figs. 7 and 8) in select

locations, not everywhere in the visual cortex. Moreover, if the

negative BOLD response to an object is capable of coding that

object’s position, it should be directly related to the retinotopically

precise positive BOLD response to the object [7]. To address this,

we separately defined every possible 56565 cube of voxels in the

entire occipital lobe (creating thousands of ROIs), performed the

analysis above to obtain a position discrimination slope value for

each ROI, and then created a new surface map that shows clusters

of voxels that are best able to discriminate object position (see

Materials and Methods). Figure 9A shows this map of peak

position discriminability for a representative subject. Figure 9B

shows this region of peak discriminability superimposed on the

map of the subject’s positive and negative BOLD. Notice that the

regions of peak discriminability (the clusters of voxels, circled with

a white dashed line, that display the steepest position discrimina-

tion slope, as in Fig. 7) always occur near the subject’s peak

positive and negative BOLD responses. More importantly, there is

little or no discriminability of object position in the anterior

regions of the visual cortex. Therefore, the regions of the visual

Figure 8. Position discrimination across visual areas V1, V2, V3, V3A, VP, and V4. A. Representative cortical surface map for one subject. B. The
position discrimination slope for the negative (blue) and positive (red) BOLD ROIs within each visual area for the representative subject shown in (A).
The position discrimination slope for each ROI was calculated as in Fig. 6. C. The position discrimination slope averaged across all seven subjects. For
the positive BOLD ROIs (red bars), there was a significantly positive position discrimination slope across visual areas V1 through V4, indicating that all
of these visual areas are topographically precise (i.e., they can detect 0.19 deg shifts in the position of an object at 9 deg eccentricity). The same was
true for the negative BOLD ROIs as well. Of all the areas tested here, the least significant position discrimination was in the negative BOLD ROI in V3A
(t(5) = 3.2, P,0.05). Error bars, 61 s.e.m.
doi:10.1371/journal.pone.0000410.g008
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cortex that are far from the representations of the stimuli do not

carry precise information about the positions of the stimuli, just as

we would expect.

DISCUSSION
The results of the experiment here demonstrate that the negative

BOLD response in visual areas V1 through V4 carries surprisingly

precise information about object position. We found that as the

positions of flickering Gabor stimuli were incrementally shifted,

the spatial correlation in the pattern of activity decreased. The

slope of this decrease was an indicator of the selectivity for object

position. Surprisingly, this position selectivity was nearly as precise

in the regions that displayed a negative BOLD response as in those

that displayed a positive BOLD response; regions that display

either a positive or a negative BOLD response discriminated

objects separated by 0.19 deg. Stimulus-specific processing

therefore occurs in areas that display a strong negative BOLD

response, indicating that the negative BOLD response may be very

important for understanding the mechanism of visual localization.

Although our results indicate that patterns of negative BOLD

responses can be highly stimulus-selective, the physiological origin

of the negative BOLD signal remains unclear. Hemodynamic

explanations (‘‘blood stealing’’ or ‘‘blood sharing’’) posit that

decreases in blood flow result from changes in the need for

vascular resources elsewhere in the brain, without a necessary

decrease in neuronal activity in the negative regions. In ‘‘blood

stealing,’’ negative BOLD results from reduced local blood

pressure arising from nearby capillary dilation caused by a positive

BOLD response; the active regions automatically steal vascular

resources from nearby inactive regions [18,20]. In the ‘‘blood

sharing’’ explanation, a neural system for controlling blood flow

actively directs vascular resources to nearby or remote regions [6].

The results of Shmuel, et al., (2002) reveal a strong correlation in

the amplitude and time course of BOLD activity between a positive

stimulus-related region and surrounding negative regions. Al-

though these authors reject ‘‘blood stealing’’ as the main

explanation for negative BOLD, their results suggest that there

is a link and perhaps a spatial dependency between the negative

and positive BOLD responses in adjacent regions of the cortex.

Other support for a hemodynamic origin of negative BOLD

activity comes from two studies that demonstrate that negative

BOLD can occur without a concomitant decrease in neuronal

activity [21,22].

None of these vascular explanations of the negative BOLD

signal predict our results. It is conceivable that different patterns of

positive BOLD activity could uniquely steal blood from the

surrounding regions, creating patterns of negative BOLD similar

to ours. However, we reject this hypothesis because of the

precision of our results. All of our flickering Gabor stimuli were

nearly superimposed. Further, because the patterns of positive

BOLD share the same surrounding vasculature, vascular demands

are spread diffusely in the surrounding regions and should not

produce the very specific changes in negative BOLD activity we

found. Likewise, it is difficult to see why a long-range ‘‘blood

sharing’’ mechanism would need such specific spatial selectivity in

its diversions of vascular resources. Furthermore, recent findings

that vascular explanations play a limited role in negative BOLD

activity in visual cortex [6,18,23] required us to search elsewhere

for an explanation of our results.

Recent research has suggested that hemodynamic explanations

are incomplete, and that the negative BOLD signal depends

primarily on a decrease in neuronal activity (much as positive

BOLD reflects an increase in neuronal activity). Smith and

colleagues [6] presented visual stimuli to one hemisphere of the

visual cortex and found sustained negative BOLD in the opposite

hemisphere; since the two hemispheres have largely independent

blood supplies, local blood stealing cannot explain the negative

BOLD. Shmuel and colleagues [23] demonstrated that negative

BOLD is correlated with decreased neuronal activity by simulta-

neously measuring electrical recordings and fMRI activity of visual

cortex. They also show that the local decrease in neuronal activity

is better than adjacent positive BOLD activity at predicting the

spatial and temporal pattern of negative BOLD. Nevertheless,

most research that primarily supports a neuronal explanation still

allows for a hemodynamic contribution to negative BOLD

[6,18,23].

If neuronal suppression primarily underlies the negative BOLD

response, what is the purpose of this suppression? The most

common explanation for this activity is based on attentional

processes. It is well known that when attention is directed to

a location, information processing is facilitated at that location and

suppressed at nonattended locations [24,25,26,27,28]. In terms of

neuronal activity, many studies have demonstrated an increase in

neuronal activity at the attended region, even in the absence of

visual stimulation, and a reduction in neuronal and BOLD activity

at unattended regions [7,9,25,29,30,31,32,33,34,35]. Although

there are many variations on attentional explanations with respect

to the BOLD response [5], in general it is thought that attention

improves accuracy by increasing the neuronal activity at the

attended site and decreasing activity in unattended regions,

thereby boosting the relevant signals and mitigating contributions

of noise. It is worth noting that this explanation incorporates the

negative BOLD signal as an active contributor to the attentional

process; accuracy is increased by the inhibition of noise signals.

Attentional explanations of the negative BOLD signal provide

a better account of our results than the hemodynamic explanations

Figure 9. Regions of the visual cortex that were most sensitive to
stimulus position. A. The positive (red-orange) and negative (green-
blue) BOLD response to the flickering Gabors for a representative
subject. B. Position discrimination slopes (as in Fig. 7) were measured
for every possible 5 mm3 ROI in the occipital lobe (see Materials and
methods). Those overlapping ROIs that showed the steepest position
discrimination slopes are shown in dark blue and outlined with a dashed
white line. Notice that the region of the visual cortex that is most
sensitive to stimulus position (within the white dashed line) falls
between the positive and negative BOLD regions in (A). This supports
the idea that the edges of the object representation, where the BOLD
response changes from positive to negative, are especially important
for object localization [37,48].
doi:10.1371/journal.pone.0000410.g009
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above because they propose a meaningful role for neuronal

suppression (and the resulting negative BOLD). However, these

explanations do not entirely predict our results because they

maintain that attentional suppression occurs broadly, over a wide

region of visual space [5,7,9,34,35]. The corresponding negative

BOLD activity either occurs at all other retinotopic locations [5]

or demonstrates relatively weak spatial specificity [7,9,34,35]. No

studies have reported the extremely high spatial selectivity of

negative BOLD, nor have they theorized a need for such

specificity. Our results, however, showed that the negative BOLD

response surrounded the positive BOLD response to the target

object in a systematic and precise manner. This sort of center-

surround response [7,36] could serve to improve the resolution of

position coding [37].

One of the strengths of the attentional mechanism above is that

it also explains why we found such precise discrimination in later

visual areas (e.g., V4). Previous research has established that

retinotopic organization is most precise in V1 and less so in later

visual areas such as V3 and V4 [38,39,40,41,42,43]. It is therefore

surprising that in our study the position discrimination slopes for

positive BOLD activity in later visual areas are almost as high as

the slope for V1 (Fig. 7C). However, several studies have found that

attention has greater modulatory effects in visual areas beyond V1

and V2 (such as V4, [31,44]), so it is possible that the sustained

attention inherent in our task increased the discriminability in these

regions. That attention improved the sensitivity of these regions,

nearly equaling the ability of V1, is evidence of the potential

importance of attentional mechanisms in object localization.

The implication of our study for fMRI research on attention

and perception is that what is suppressed may be as important as

what is activated. Other studies [45,46] have demonstrated that

neuronal suppression (and the concomitant negative BOLD) may

be a main component of a top-down attentional system, and that

the failure to suppress information may be central to selective

performance deficits. Although these studies do not involve spatial

attention, they emphasize the potential importance of neuronal

suppression for cognitive functions. Given the precision of the

negative BOLD responses we found, our study raises the possibility

that the suppressive annulus surrounding an attended area may

contribute substantially to the resulting percept. Consistent with

this suggestion, Figure 9 demonstrated that the peak discrimina-

tion of object position occurred near or between the regions of

peak positive and negative BOLD response—near the edges of the

object. This makes sense, as the mechanism responsible for

perceptual localization may depend on the precision with which

the edges of the object are coded [37,47,48]. Our study indicates

that the negative BOLD signal, far from being an unrelated

artifact of perceptual processing, is highly informative of the spatial

characteristics of visual stimuli.

MATERIALS AND METHODS

Stimuli
Stimuli in the main experiment consisted of four Gabor patterns

(sine wave luminance modulations with a Gaussian contrast

envelope, Fig. 1). The peak contrast of each Gabor (87%

Michelson) was always centered at 9.05 deg eccentricity. The

spatial frequency of the luminance sine wave was 0.38 cyc/deg.

The Gaussian contrast envelope of each Gabor was defined as

L x,yð Þ~A exp {r2
.

sMÞ2
�h in o

, where A is the peak contrast

amplitude, r is the distance of (x,y) from the center of the Gaussian,

s is standard deviation, and M is the maximum radius. Each

Gabor was flickered in counterphase at 7.5 Hz. The phase of each

Gabor was randomized on each trial.

There were six conditions in the experiment. One of these

conditions was a fixation baseline (nothing was visible but the

fixation point). In the other five conditions, the Gabor stimuli were

skewed either toward or away from the fixation point by varying

amounts. In one of these conditions, the Gabors had a symmetrical

Gaussian contrast envelope (Fig. 1C) with a standard deviation of

1.66 degrees. In the other four conditions (Fig. 1A, B, D, E), the

contrast envelope was skewed toward or away from fixation by an

additional 0.19 or 0.38 degrees, for a total of 5 test conditions

(0.38, 0.19, 0, 20.19, and 20.38 deg skew in the standard devia-

tion of the contrast envelope; negative values indicate a skew

toward the fovea). To achieve an asymmetrical skew in each

Gabor, the Gabor was divided in half (one half closer to fixation

and one half more eccentric), and the standard deviation of the

Gaussian envelope was independently determined for the two

halves of the Gabor (similar to the method of Whitaker and

colleagues [49,50]). That is, the half of the Gaussian envelope

closer to fixation had a different standard deviation than the half

further away from fixation. We have chosen to express the Gabor

positions in terms of the standard deviation of their contrast

envelopes, but one could express Gabor location in terms of

stimulus centroid [51], in which case the five Gabor centroids in

Fig. 1 were 8.5, 8.75, 9.04, 9.32, and 9.6 deg. Using either

standard deviation of contrast envelope or stimulus centroid to

express the Gabor positions does not change the pattern of our

results, or the significance tests. The peak contrast in the position

of the Gabors remained fixed in all conditions at 9.05 deg.

Skewing the contrast envelope rather than shifting the overall

position of the Gabors is a better method of isolating visual

mechanisms that code object positions [49,50,51,52].

In each functional imaging run, the six conditions were

randomly interleaved in 36 ten-second blocks (360 sec runs). Each

subject participated in a minimum of five functional runs (except

for subject DB, who participated in four runs). Subjects

maintained fixation at a central point (0.39 deg diameter)

throughout the entire experiment.

In separate localizer runs, we presented flickering bowtie stimuli

to identify the borders of visual areas V1 through V4. The bowties

consisted of radial sine wave patterns that were 11.79 deg radius

and subtended an arc of 8.16 deg. The bowties flickered in

counterphase at 7.5 Hz. There were three conditions in these

retinotopy runs; in two conditions the bowties were centered on

the vertical or horizontal meridians, and the third condition was

a fixation baseline. Conditions were randomized in 36 ten-second

blocks.

Task and attention control in the main experiment
At a randomly chosen time during the first 8 seconds of each

10 second block, a small texture pattern (either circular or radial

grating, chosen randomly; 1.09 degrees diameter) was flashed for

500 ms superimposed on one of the 4 Gabors (chosen randomly)

at an eccentricity of 9.05 deg (center to center) from fixation. The

flashed texture was presented during every condition, including

the fixation baseline. During the last 2 seconds of each 10 second

block, a second flashed texture was presented superimposed on the

Gabors for 500 ms and a white annulus (0.98 deg diameter) was

presented continuously around the fixation point, indicating that

subjects should make a response. The second textured flash

matched the first one with a probability of 50%.

Subjects were instructed to maintain fixation at all times and

make two judgments. First, subjects discriminated the eccentricity

of the Gabors (the degree of skew in their envelopes) in a 5

alternative-forced-choice task (by pressing one of five keys on

a button box). Subjects also needed to continuously monitor the 4
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Gabors for the texture flashes. If the two textures matched,

subjects pressed the position selection button once; if the two

flashes did not match in texture, subjects pressed the position

selection button twice. For example, if the Gabors appeared to be

skewed to the most eccentric position and the two textured flashes

did not match, the subject would press the appropriate key twice.

This task was designed to focus subjects’ attention on the

surrounding Gabors. Notice that to successfully complete the task,

subjects needed to maintain their attention on the cued locations

throughout the length of each block.

A small textured annulus (either circular or radial grating,

chosen randomly; 0.98 deg diameter) was flashed (500 ms)

surrounding the fixation point at least 7 times but no more than

11 times, and one texture was always presented once more than

the other. These flashes were uncorrelated with the textured flash

superimposed on the Gabors and were therefore uninformative.

Subjects were instructed to ignore the flashes at the fixation point

and to attend entirely at the position of the Gabors.

fMRI data collection and analysis
Seven subjects participated in the experiment. Scanning protocols

were approved by the University of California, Davis, Human

Subject Review Board. Imaging was conducted on a 3-Tesla

Siemens TRIO scanner located at the UC Davis Imaging

Research Center. Each participant’s head was rested in a Siemens

eight-channel phased-array head coil. Braces and padding on the

side and forehead of the participant restricted head motion and

provided feedback to the subject about any potential body

movements. Stimuli were back-projected with a Digital Projection

Mercury 5000HD projector (75 Hz) onto a semi-transparent

screen from outside the bore. A mirror angled at 45 deg, located

9.5 cm directly above the subject, provided a reflected view of the

stimuli. Functional images were acquired with a gradient-recalled

echo EPI sequence. Whole-brain structural images were collected

with a high resolution (1 mm3) Turbo Spin Echo scan that was

used to align functional images. The acquisition parameters were:

TR = 2000 ms, TE = 26 ms, FA = 90 deg, FOV = 22622 cm2,

voxel size = 1.52861.52862.5 mm3, 20 slices per volume. The

imaging volume was parallel to and centered on the calcarine

sulcus, covering the occipital lobe (Fig. 3).

All preprocessing, including linear trend removal and 3D

motion correction, as well as GLM analyses, were conducted with

Brain Voyager QX (Brain Innovation B.V., Maastricht, The

Netherlands). The images were not spatially smoothed and no

mean image normalization was applied. A correction for serial

correlations (removal of first-order autocorrelation) was used prior

to all GLM analyses. Each subject’s high resolution anatomical

image was transformed to Talaraich coordinates, and the data for

each functional run was individually aligned to the subject’s

Talairach-transformed anatomical image. Performing individual

alignments for each functional run, within each subject, mitigated

any effect of subject movement between functional runs.

We performed general linear model (GLM) analyses on the data

in the retinotopy runs to define visual areas V1 through V4.

Bowties along the vertical meridians were contrasted with those on

the horizontal meridians, which yielded a striated map of activity

across early visual areas; the boundaries of each visual area V1

through V4 were defined by the mirror reversals in the

representations of the horizontal and vertical meridians.

In the main experiment, for each functional run, a GLM was fit

to the data with five predictors (corresponding to the five Gabor

positions). These five Gabors were separately contrasted against

a sixth predictor (the fixation baseline) to discover areas of peak

activity for each Gabor position. Separate activation maps based

on the GLM were created for each of the five Gabor positions. In

these three-dimensional maps, every voxel had a statistical value

associated with it (there was no threshold—each voxel had a t

value, though many were very close to zero).

In separate GLM analyses, we contrasted all five Gabor

conditions to the fixation baseline. In addition to the substantial

positive BOLD response throughout the visual cortex, this GLM

also revealed large regions of negative BOLD activity. Within each

visual area (V1 through V4), we defined separate regions-of-

interest (ROIs) for the negative and positive BOLD response for

each subject. The threshold for inclusion in the ROI was t.65.6,

P,0.05, Bonferroni corrected. However, three subjects had a weak

negative BOLD response, and therefore did not display negative

BOLD in every visual region at this threshold. For these subjects

we dropped the threshold for inclusion in each ROI to t.62.9,

P,0.05. In a separate analysis, we constructed a single ROI of the

negative BOLD activity in all visual regions. For the subjects with

the lower threshold, there was no difference in the position

discrimination slope between the overall ROI at the higher

threshold and the overall ROI at the lower threshold.

Our goal was to correlate the spatial pattern of activity produced

by each of the Gabor stimulus conditions with the others, within

each ROI. All correlational analyses (c.f., [53]) were conducted with

Matlab 7.1 (The Mathworks, Natick, Massachusetts). Within each

ROI, we cross-correlated the volumetric statistical maps (statistical t

values) produced by each of the five Gabor positions (for a total of ten

correlations). We converted these r values to Fisher z scores because

equal distances between these scores are equally probable [19], and

Fisher z scores can be directly compared, unlike r values. The highest

z-score was identified within each ROI, and the differences between

the highest z-score and all 10 z-scores was computed, for a total of 10

normalized Fisher z-score differences. Larger Fisher z score

differences indicate a lower spatial correlation between the two

stimulus conditions being compared.

The 5 positions of the Gabor stimuli (i.e., the five degrees of skew

in the standard deviation of the Gabors’ contrast envelopes) were

0.38, 0.19, 0, 20.19, and 20.38 deg. Thus, the greatest distance

between any two positions was 0.77 (between a skew of 0.38 deg

outward and a skew of 0.38 deg inward), and the slightest difference

in the position of any two conditions was 0.19 deg. The differences in

each pair of Fisher z scores (above) were plotted as a function of the

difference in the skew between each pair of conditions, and the slope

of a linear regression fit to the data was computed.

The slope of the linear regression is a measure of the selected

ROI’s ability to discriminate position shifts (i.e., Gabor skew). Note

that if the pattern of activity in the ROI showed no selectivity for

object position, the slope of the linear regression should be zero.

However, if the ROI can discriminate object position, then the

spatial correlation of activity produced by two Gabor stimuli

should be higher when the two Gabors are nearer to each other.

Therefore, the linear regression slope within a given ROI is an

indicator of that region’s ability to discriminate changes in position.

In a separate analysis, we defined every possible 56565 cube of

voxels in the entire brain, creating thousands of ROIs. Because

many of these ROIs overlapped, each voxel in the brain was

covered by 125 ROIs. We performed the above analysis to obtain

a position discrimination slope value for each ROI. Because any

particular voxel was covered by 125 ROIs, we assigned the

average slope of those 125 ROIs to that particular voxel. Each

voxel therefore represents the average position discrimination

ability of the overlapping ROIs that surround it. With these

average position discrimination values, we created a new map

revealing clusters of voxels that are best able to discriminate the

Gabor positions.
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