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Abstract

The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland
and nervous system development. Mutations in the genes encoding these regulatory proteins are
associated with combined hormone deficiency diseases in humans and animal models. Patients with
these diseases have complex syndromes involving short stature, and reproductive and metabolic
disorders. Analyses of the features of these diseases and the biochemical properties of the LHX3 and
LHX4 proteins will facilitate a better understanding of the molecular pathways that regulate the
development of the specialized hormone-secreting cells of the mammalian anterior pituitary gland.

Keywords
transcription; growth; hormone; anterior pituitary

1. Introduction

Five differentiated cell types in the mammalian anterior pituitary gland secrete polypeptide
hormones that regulate an array of developmental and physiological functions (Fig. 1). The
cell types (and hormones) are corticotropes (producing adrenocorticotrophic hormone [ACTH]
from the proopiomelanocortin gene); gonadotropes (follicle-stimulating hormone [FSH] and
luteinizing hormone [LH]); thyrotropes (thyroid-stimulating hormone [TSH]); somatotropes
(growth hormone [GH]); and lactotropes (prolactin [PRL]). Hormones produced by the anterior
pituitary regulate growth and metabolism (GH and TSH), reproductive development and
function (FSH, LH, PRL), thyroid physiology (TSH), lactation (PRL), and the stress response
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(ACTH). FSH, LH, and TSH are heterodimers of the alpha glycoprotein subunit (¢GSU), and
a distinct beta subunit (FSHp, LHB, TSHp).

During development, inductive events between Rathke’s pouch (the primordium of the anterior
pituitary lobe) and the diencephalon prime the expression of transcription factors that
orchestrate the establishment of the hormone-secreting cells of the anterior pituitary (Fig. 1)
(Zhu et al., 2005). Analyses of rodent models with spontaneous and engineered mutations in
pituitary transcription factor genes have delineated the roles of many of these genes in
development of the gland. In addition, mutations in several of the transcription factor genes
have been associated with pediatric hormone deficiency diseases (Dattani, 2005).

LHX3 and LHX4 are LIM-homeodomain (LIM-HD) transcription factors. The LIM domain,
a multifunctional protein/protein interaction domain, was first recognized in several other
members of this class of transcription factors: LIN11, 1ISL1, and MEC3 (Hunter and Rhodes,
2005). The large LIM protein superfamily also includes cytoskeletal proteins, signaling cascade
transducers, and transcriptional coactivators. In mammals there are at least twelve LIM-HD
genes encoding developmental regulatory proteins featuring two LIM domains and a DNA-
binding HD (Fig. 2). The functions of LIM-HD proteins are impacted by interacting proteins,
such as the NLI/LDB/CLIM, MRG1, SLB, and RLIM proteins (Bach, 2000). Of the
mammalian LIM-HD proteins, ISL1, ISL2, LHX2, LHX3, and LHX4 have been implicated in
pituitary development.

The human LHX3 gene maps to chromosome 9 and is composed of seven coding exons and
six introns that span ~8.5 kilobases (Netchine et al., 2000; Sloop et al., 2000a; Sloop et al.,
2000b). Mammalian LHX3 genes produce two major mRNAs known as LHX3a and LHX3b
(Zhadanov et al., 1995b; Sloop et al., 1999; Sloop et al., 2000a). Mouse Lhx3a and Lhx3b
mRNAs have distinct temporal expression profiles during development and are differentially
expressed in cell lines that model the specialized pituitary cell types (Zhadanov et al., 1995a;
Sloop et al., 1999; Sloop et al., 2001a; West et al., 2004). During rodent embryogenesis,
Lhx3 mRNAs can be detected in the ventral spinal cord, the pons, the medulla oblongata, the
pineal gland, the lungs, and in the developing and established anterior/intermediate pituitary
gland (Seidah et al., 1994; Bach et al., 1995; Zhadanov et al., 1995a; Meier et al., 1999; Weng
et al., 2006). Similar expression patterns are seen during human development (Sloop et al.,
1999; Schmitt et al., 2000; Sobrier et al., 2004).

Transcription of mammalian LHX3 genes is mediated by two TATA-less, GC-rich promoters
upstream of exons la and Ib, and involves specificity protein-1 (Sp1) and nuclear factor I (NFI)
actions (Yaden et al., 2006). Fibroblast growth factors, such as FGF8, in the diencephalon and
Rathke’s pouch are involved in activation of Lhx3 (Fig. 1), and mice that fail to express FGF8
display a phenotype similar to Lhx3/Lhx4 double knockout mice (Takuma et al., 1998). Studies
using cultured pituitary cells and analyses of mice with targeted gene mutations show that the
Lhx4, Pitx1, and Pitx2 genes are also involved in activation of Lhx3 (Tremblay et al., 1998;
Raetzman et al., 2002; Charles et al., 2005).

LHX3/LIM3/P-Lim proteins are well conserved in evolution and homologs can be found in
many species, including birds, fish, amphibians, and insects (Fig. 2B). At least three distinct
proteins are produced from mammalian LHX3 mRNAs. The LHX3a and LHX3b isoforms, are
identical for most of their sequences (LIMs, HD, and carboxyl) but differ in their distinct amino
termini (Fig. 2A) (Zhadanov etal., 1995a;Sloop et al., 1999;Sloop et al., 2001a). A third protein
isoform, M2-LHX3, is generated by translation of the second in-frame methionine codon of
the LHX3a mRNA (Sloop et al., 2001a). M2-LHX3 lacks the amino terminus and LIM domains
found in LHX3a and LHX3b. The three LHX3 isoforms display different biochemical and
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functional properties (Sloop et al., 1999;Parker et al., 2000;Bridwell et al., 2001;Sloop et al.,
2001a;Parker et al., 2005;Yaden et al., 2005).

Molecular studies have demonstrated that LHX3 proteins can bind to regulatory elements in
the promoters/enhancers of pituitary genes and cause increased transcription of the FSHp,
aGSU, PRL, TSHp, gonadotropin releasing hormone receptor, and Pitl promoters (e.g. Bach
et al., 1995; Sloop et al., 1999; West et al., 2004; McGillivray et al., 2005; Granger et al.,
2006). Recently, LHX3 has been found to be an upstream activator of FOXL2, a transcription
factor with predicted roles in the differentiation of cells expressing aGSU (Ellsworth et al.,
2006). For activation of some promoters in the pituitary and nervous system, LHX3 can
participate in complex transcriptional interactions with other factors such as PIT1 and ISL1
(Bach et al., 1995; Thaler et al., 2002; Granger et al., 2006).

The phenotype of mice with a homozygous deletion of Lhx3 reflects the importance of the gene
in pituitary and nervous system development (Sheng et al., 1996; Sheng et al., 1997; Sharma
etal., 1998). In Lhx3 null mice, which die shortly after birth, a definitive Rathke’s pouch forms
but fails to develop further and lacks four of the five hormone-secreting cell types, containing
only a small population of corticotropes. LHX3, therefore, is critical for both early structural
events and for the specification of the lactotrope, somatotrope, gonadotrope, and thyrotrope
cell lineages. Rathke’s pouch appears normal in the Lhx3~ mouse at embryonic day 11.5
(e11.5), but by e12.5, expansion of the pouch is arrested. The posterior lobe is present, however
the anterior lobe is missing and the intermediate lobe shows a reduction in size. Lhx3*/~
heterozygous mice have sufficient LHX3 for normal specification of the pituitary cell lineages
and development. Lhx3€"¢/Cre mice have reduced expression of LHX3 in the pituitary, but near
normal expression in the developing nervous system (Zhao et al., 2006). In contrast to
Lhx3*/~ mice, Lhx3CTe/Cre mice display a pituitary phenotype similar to the null mouse. In
these mice with reduced LHX3 action there is increased cell apoptosis in the ventral portion
of Rathke’s pouch, but similar levels of cell proliferation to wild type animals. Increased
apoptosis also is noted in Pitx1/Pitx2 null mice which lack detectable LHX3 expression
(Charles et al., 2005).

To date, three types of autosomal recessive mutations of LHX3 have been documented in
humans. All characterized patients have combined pituitary hormone deficiency (CPHD)
lacking GH, PRL, FSH, LH, and TSH, with normal ACTH levels (Netchine et al., 2000;
Bhangoo et al., 2006). This is a similar phenotype to the Lhx3 null mice that lack most hormone-
secreting cell types but retain some ACTH-secreting corticotropes. In addition, LHX3 mutation
patients have a rigid cervical spine and limited neck rotation presumably related to the role of
LHX3 in motoneuron development. Further, as observed for the Lhx3*/~ mouse, heterozygous
family members are unaffected. The first classes of LHX3 mutations were described in two
unrelated consanguineous families (Netchine et al., 2000). One mutation causes a substitution
of a tyrosine residue in the highly conserved LIM2 domain with a cysteine; the other mutation
involves a homozygous deletion that results in the loss of the HD. Pituitary morphology in
these patients was variable with patients displaying hypoplastic or enlarged pituitaries.
Molecular analyses of these mutations revealed that the LHX3 proteins encoded by these
mutant genes have compromised abilities to trans-activate pituitary hormone gene promoters
(Howard and Maurer, 2001; Sloop et al., 2001b). A third human LHX3 mutation involves a
single-base pair deletion in exon Il producing a truncated protein lacking all functional domains
and having no predicted function (Bhangoo et al., 2006). This mutant protein likely is not
produced because of nonsense mediated decay of the LHX3 message. In addition to the
previously described phenotypes of LHX3 patients, this patient also shows a hypointense
pituitary lesion consistent with a microadenoma, and neurological features of mental
retardation, speech difficulties, and possible focal amyotrophy. These symptoms widen the
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phenotype of patients with LHX3 mutation and thus warrant further investigation of the
mechanisms of these neurological findings.

The human LHX4 gene on chromosome 1 has a similar exon/intron organization to LHX3 but
longer introns result in a gene length of >45 kilobases (Machinis et al., 2001; Sloop et al.,
2001c). In mice, the Lhx4 (or Gsh4) gene is expressed in the developing hindbrain, cerebral
cortex, pituitary gland, and spinal cord (Li et al., 1994; Liu et al., 2002). The human LHX4
protein shares >95% identity with orthologs in other mammals demonstrating sequence
conservation throughout the protein (Fig. 2C). LHX4 also shows significant similarity to LHX3
(Fig. 2A), consistent with this pair of LIM-HD genes having diverged relatively recently during
the evolution of this subclass of HD transcription factors (Hunter and Rhodes, 2005). Like
LHX3a, the LHX4 mRNA has an internal methionine codon located at an equivalent position
in the LIM2-coding region and has the capacity to produce a short (M2-LHX4) isoform lacking
the LIM domains (Sloop et al., 2001a). In gene regulation experiments, the LHX4 protein
exhibits similar activities to LHX3a in assays using pituitary hormone promoter reporter genes,
consistent with the similar biochemical properties of the proteins (e.g. Sloop et al., 2001a;
Kawamata et al., 2002; West et al., 2004).

Although LHX3 and LHX4 share marked similarities in protein structure, the genes have
different expression patterns, and their overlapping but distinct roles in development have been
revealed by single and combined gene targeting in mice. Mice with a homozygous Lhx4 gene
disruption die shortly after birth from lung defects; heterozygous animals are apparently
unaffected (Li et al., 1994). In both Lhx3 and Lhx4 single gene knockout animals, a definitive
Rathke’s pouch develops, but development of the pituitary arrests in this pouch stage (Sheng
etal., 1996; Sheng et al., 1997). Proliferation appears to be impaired and the anterior pituitary
is severely hypoplastic (Sheng et al., 1997). However, unlike the Lhx3~/~ mice, Rathke’s pouch
of Lhx4~~ mice contains all of the differentiated cell types. Further analyses revealed that the
hypocellularity of the anterior pituitary in Lhx4 mutants is primarily due to apoptosis of
pituitary precursor cells (Raetzman et al., 2002). Further, LHX3 expression is impaired in the
Lhx4 mutants and absent in Lhx4/Prop1 double knockouts, indicating that Lhx4 is required for
proper expression of LHX3 which is aided by Propl (Raetzman et al., 2002). The observation
that Lhx4 is required for cell survival and LHX3 expression in Rathke’s pouch indicates that
Lhx4 is required for proper expansion of the pouch during development. The Lhx3 and Lhx4
genes have some overlapping roles. For example, Lhx3 and Lhx4 are both required during early
stages of pituitary development: in mice lacking both genes Rathke’s pouch does not progress
beyond an early rudimentary stage. However, in mice lacking either Lhx3 or Lhx4, Rathke’s
pouch is able to progress from its early rudimentary structure to the more definitive pouch,
indicating expression of either Lhx3 or Lhx4 is required for the development of a definitive
pouch (Fig. 1) (Sheng et al., 1997). Like Lhx3, the Lhx4 gene also is important in ventral motor
neuron differentiation (Sharma et al., 1998).

Recent studies of a mouse pituitary cell side population containing pituitary stem/progenitor
cells have revealed that these cells express Lhx4. By contrast, Lhx3, which unlike Lhx4 is not
down-regulated after anterior pituitary development, is restricted to the main population of
pituitary cells, suggesting that the two genes play discrete roles in pituitary stem cell function
and gland maintenance (Chen et al., 2005).

Consistent with the importance of Lhx4 for pituitary development in the mouse, a heterozygous
mutation in LHX4 has been identified in a family in which affected members presented with
CPHD, including deficiencies of GH, TSH, and ACTH (LH and FSH not tested). Magnetic
resonance imaging analyses of affected family members revealed a hypoplastic pituitary, small
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sella turcica, chiari malformation, and an ectopic posterior pituitary (Machinis et al., 2001).
The observed LHX4 mutation is a G to C transversion at a splice acceptor site predicted to
result in the production of either a protein with deletion of four conserved amino acids within
the HD or a truncated protein. The aberrant proteins produced from this mutation in LHX4 are
unable to bind to a putative binding site within the PIT1 promoter due to a decrease in DNA
binding ability (Machinis and Amselem, 2005). The heterozygous nature of this mutation
suggested a possible dominant negative action of the mutant allele, although haploinsufficiency
or other mechanisms may be more likely alternate explanations. The deregulation of LHX4 has
also been associated with chromosomal translocations involving several types of leukemia
(Kawamata et al., 2002; Yamaguchi et al., 2003).

4. Conclusions

Analyses of LHX3 and LHX4 gene mutations in animal models and patients with hormone
deficiency diseases have revealed that the genes play critical roles in pituitary development.
These investigations have allowed the molecular diagnosis of new forms of pituitary hormone
deficiency diseases and will facilitate more accurate diagnoses and treatment of patients with
similar diseases and the genetic counseling of affected families. The early detection of
mutations will lead to improvement in the developmental outcome of these children and
prevention of complications. As the direct target genes of LHX3 and LHX4 during each stage
of pituitary development are identified, and the mechanism of gene activation by these proteins
is better characterized, novel targets for investigation will be revealed and a better
comprehension of the functional genetics of complex human mutations (such as those found
in the heterozygous state) involving these genes will be achieved.
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Figure 1.

Regulation of anterior pituitary gland development by signaling proteins and transcription
factors. Inductive signals between the ventral diencephalon (DIEN) and the oral ectoderm/
anterior neural ridge (OE) precede formation of a rudimentary Rathke’s pouch (rRP, the
precursor of the adenohypophysis from which the anterior pituitary develops). Subsequently,
a definitive, closed Rathke’s pouch (dcRP) forms. The mature pituitary gland has three main
components: the anterior pituitary lobe (AP), the intermediate pituitary (IP), and the posterior
pituitary (PP).
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Figure 2.

The LHX3/LHX4 LIM-homeodomain protein family. A. The domain structure of human (Hs)
LHX3a/b proteins and comparison to human LHX4. Percent identity between key domains is
shown and the overall identity is in parentheses. LSD = LIM3/4-specific domain. B.
Conservation of LHX3/LIM3-class proteins. The overall structure and percent identity of key
domains is shown for human, rhesus macaque (Ma), chimp (Pt), cow (Bt), pig (Ss), mouse
(Mm), opossum (Md), zebrafish (Dr), chicken (Gg), African clawed frog (XI), and fruit fly
(Dm). L1, L2 = LIM domains; HD = homeodomain. Protein sequences were retrieved from
the GenBank, Swiss-Prot, and TIGR databases. C. Conservation of LHX4 proteins. The overall
structure and percent identity of key domains is shown for human, chimp, cow, dog (Cf),
mouse, opossum, and zebrafish.
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