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Abstract
We investigated the genetic diversity of the 42 kDa fragment of the merozoite surface protein 1
(MSP-1) antigen in Plasmodium falciparum and P. vivax, as well as in non-human primate malarial
parasites. This fragment undergoes a proteolytic cleavage generating two fragments of 19 kDa
(MSP-119) and 33 kDa (MSP-133) that are critical in erythrocyte invasion. We found that overall the
MSP-133 fragment exhibits greater genetic diversity than the MSP-119 regardless of the species. We
have found evidence for positive natural selection only in the human malaria parasites by comparing
the rate of non-synonymous versus synonymous substitutions. In addition, we found clear differences
between the two major human malaria parasites. In the case of P. falciparum, positive natural
selection is acting on the MSP-119 region while the MSP-133 is neutral or under purifying selection.
The opposite pattern was observed in P. vivax. Our results suggest different roles of this antigen in
the host-parasite immune interaction in each of the major human malarial parasites.
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Introduction
The malaria burden is particularly high in sub-Saharan Africa where Plasmodium
falciparum is predominant. However, malaria “out of Africa” is characterized by the presence
of P. vivax, the second most important malaria parasite in terms of its morbidity. Although
there are clear biological and genetic differences between these two parasites (Coatney et al.,
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1971), they overlap in their geographic distribution and there is increasing evidence for their
interaction (Snounou and White, 2004).

Among the antigens currently under consideration in malaria vaccine formulations, one of the
most promising candidates is the major merozoite surface protein 1 (MSP-1) (Good et al.,
2004). The MSP-1 antigen is expressed as a large protein of 190–200 kDa on the parasite
surface (Holder et al., 1982). This precursor undergoes two steps of proteolytic cleavage during
the merozoite maturation. First, it is cleaved into four major fragments of 83, 30, 38 and 42
kDa (further referred to as MSP-183, MSP-130, MSP-138, and MSP-142 ) then, before
erythrocyte invasion the MSP-142 fragment undergoes a second cleavage resulting in the
generation of 33 and 19 kDa (MSP-133 and MSP-119) fragments where the latter remain on
the merozoite surface during invasion.

Plasmodium spp
MSP-1 exhibits extensive genetic polymorphism (Tanabe et al., 1987, Putaporntip et al.,
2002) that appears to be maintained by positive natural selection in P. falciparum (Hughes,
1991; Escalante et al., 1998; Conway et al., 2000) and P. vivax (Putaporntip et al., 2006).
Similar observations have been made about other malarial vaccine antigens (see Escalante et
al. 2004) on which the host immune system is considered the driving selective force that allows
for the accumulation and frequent switch of suitable mutations in the parasite population. Under
this scenario, mutations are maintained longer in the parasite population than expected if
genetic drift were the sole process acting on the genetic polymorphism.

The conclusion that positive selection maintains the genetic diversity of genes encoding
malarial antigens is supported, among others lines of evidence, by the observation in P.
falciparum that non-synonymous nucleotide substitutions (those that change the amino acid)
are more common than synonymous substitutions (mutations that do not change the amino
acid) (Hughes and Hughes 1995, Escalante et al. 1998, Escalante et al. 2004). Since natural
selection acts on phenotypic differences, an excess of non-synonymous substitutions over
synonymous is considered evidence that natural selection is favoring the maintenance of
genetic polymorphism.

In the case of Plasmodium spp. MSP-1, most of the genetic diversity analyses have subdivided
the gene into blocks (segments) based on their level of genetic diversity but not using any other
biological criteria (Tanabe et al., 1987; Putaporntip et al., 2002; Putaporntip et al., 2006);
however, few studies have been done considering the proteolytic fragments as functional units
(Escalante et al., 1998).

The MSP-142 and MSP-119 fragments have received special attention in P. falciparum as part
of vaccine formulations given that they are relatively conserved and antibodies against these
fragments inhibit the parasite invasion into the red blood cells (Yang et al., 1999; Stanisic et
al., 2004). In addition, the critical role of the MSP-119 fragment in the erythrocyte invasion is
conserved even among distantly related species (O’ Donnell et al., 2001).

An important characteristic of P. vivax is that it invades reticulocytes, a process that is mediated
by specific proteins such as the reticulocyte binding proteins and Duffy receptor (Gallinski et
al., 1992; Chitnis and Miller, 1994). However, MSP-1 in P. vivax also appears to play an
important role in this process (Rodriguez et al. 2002; Espinosa et al., 2003; Han et al., 2004;
Sachdeva et al., 2004). Indeed, peptides with high specific binding activity (HSBA) to
reticulocytes have been found in the MSP133 (Espinosa et al., 2003; Rodriguez et al., 2002).

This investigation aims to compare the genetic diversity of the MSP-142 in Plasmodium spp.
focusing on P. falciparum and P. vivax. We have analyzed 120 sequences of the MSP-142 of
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P. falciparum and 75 sequences of the homologous region in P. vivax, and we have explored
the genetic diversity of the MSP-133 and MSP-119 fragments. In the case of P. vivax we further
explored its genetic diversity by comparing it with the homologous regions in primate malarial
parasites that are closely related to P. vivax (Escalante et al., 2005). Although we find evidence
that positive natural selection is acting on the observed polymorphism in MSP-142, it operates
differently in each of the two major human malarial parasites. We conclude that inferences
made about P. falciparum MSP-1 cannot simply be “translated” into P. vivax.

Materials and Methods
The gene encoding the 42kDa fragment of MSP-1 or MSP-142 was amplified by polymerase
chain reaction (PCR). The primers forward- GAA TGA TAT TCC TAA GAA GTT AGA GG
and reverse- GAT AGA TTA TTT AAT AAG AAA AAA GAA CTT GGC CAA GAC AAA
ATG C were used to amplify the partial P. falciparum 3’ sequences. The PCR conditions for
P. falciparum were: a partial denaturation at 94 °C for 1 minute and 30 cycles with 1 minute
at 94 °C, 1 minute at °50 and 3 minutes extension at °72. A final extension of 3 minutes was
added in the last cycle. The primers forward-GAC CAA GTA ACA ACG GGA G and reverse-
CAA AGA GTG GCT CAG AAC C were used for P. vivax, P. cynomolgi, P. inui, and P.
knowlesi. In the case of P. fragile we used the forward primer GAC CAA GTA ACA ACG
GG. The PCR conditions for P. vivax and non human primate malarias were: a partial
denaturation at 94 °C for 3 minute and 35 cycles with 1 minute at 94 °C, 45’ at 50-58 °C and
2 minutes extension at 72 °C, a final extension of 10 minutes was added in the last cycle.

The amplified product was purified, cloned using the pGEM-TEasy Vector System I from
Promega (USA), and sequenced. Both strands were sequenced from at least two clones. The
alignment was performed using ClustalW version 1.7 with manual editing using the alignment
reported by Miller et al. (1993) in the case of P. falciparum and those reported by Putaporntip
et al. (2002 (2006) in the case of P. vivax and related species.

In the case of P. falciparum, we sequenced the MSP-1 42 kDa in 34 isolates from Asembo
Bay, western Kenya in this investigation. In addition, a total of 20 isolates (5 from India, 9
from Venezuela, and 6 from Thailand) were sequenced for the 3’ end. We used in our
investigation prior published sequences (Chang et al., 1988; Qari et al., 1998; Jangwutiwes et
al., 1992; Jangwutiwes et al., 1993; Tanabe et al., 2004) and unpublished sequences under the
accession numbers U20726-U20733 and U20653-U20656. A total of 120 MSP-142 sequences
were considered in our analyses. In addition, we included 55 sequences of the MSP-119 reported
in the literature (Kaneko et al., 1997; Kumar et al., 2005) and unpublished sequences under
the accession numbers AF29507 to AF29537 in order to obtain a complete picture of the
MSP-119 alleles that have been reported.

In the case of P. vivax, we report 5 sequences from laboratory isolates (Rio Meta, Sumatra I,
Indonesia I, Mauritania I, and Vietnam II) and used the sequences reported in the literature
(Putaporntip et al., 2000; Putaporntip et al., 2002) for a total of 75 sequences. In addition, we
included 10 sequences from different isolates of P. cynomolgi (the sequence AY869723 from
the GenBank together with new sequences from the strains B strain, Berok, Cambodian,
Ceylonensis, Gombok, Mulligan, PT1, PT2, and RO), 15 sequences from isolates of P. inui
(Celebes I and II, Hackeri, Hawking, Leaf Monkey I and II, Leucosphyrus, Mulligan, N-34,
OS, Perak, Perlis, Philippine, Taiwan I and II), a sequence of P. knowlesi (Hackery strain), P.
hylobati (parasite from gibbons), and P. fragile (Nilgiri strain). Information about the biology
of these species and the origin of the isolates can be found elsewhere (Coatney et al. 1971).
All the primate malaria strains were provided by the Centers for Disease Control and
Prevention. The sequences reported in this study are deposited in the GenBank with the
accession numbers DQ907617-DQ907702.
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Statistical analysis
We estimate genetic polymorphism by using the parameter π, which estimates the average
number of substitutions between any two sequences. The average number of synonymous (Ds)
and nonsynonymous substitutions (Dn) between a pair of sequences was investigated to explore
the effect of natural selection. The average numbers of synonymous and nonsynonymous
substitutions are estimated using two methods: Nei and Gojobori’s method (1986) with the
Jukes and Cantor correction, and the Li’s method (1993) as implemented in the MEGA program
(Kumar et al., 2001). We estimated the difference between Ds and Dn, its standard deviation
was calculated using bootstrap with 1000 pseudo-replications for Ds and Dn, as well as a two
tail Z test on the difference between Ds and Dn (Nei and Kumar 2000). The null hypothesis is
that Ds = Dn; thus we assumed as null hypothesis that the observed polymorphism was neutral.

The Tajima’s D statistic and F* from Fu and Li were estimated for testing the hypothesis that
the allele frequency spectrum is compatible with the neutral model (Tajima, 1989; Fu and Li,
1993). Under the neutral model, Tajima's D and F* are approximately equal to zero, thus any
deviation from zero would indicate a departure from neutrality in the allele frequency spectrum.

Evidence for recombination was assessed by using the Rm parameter that estimates the
minimum number of recombination events in the history of the sample. Rm is obtained using
the four-gamete test (Hudson and Kaplan 1985) and, as the name of the parameter indicates,
it is a conservative estimate of the number of recombination events.

In the case of P. vivax and related non-human primate malarial parasites, the gene genealogy
of the MSP-142 alleles was determined by using the Neighbor Joining (Saitou and Nei, 1987)
method with the Tamura-Nei model. The reliability of the nodes in the NJ tree was assessed
by the bootstrap method with 1,000 pseudo-replications. The genealogy was estimated using
the MEGA program (Kumar et al., 2001). The assumption of neutrality was also tested in P.
vivax MSP-1 by using the McDonald and Kreitman test (McDonald and Kreitman 1991), which
compares the intra-and interspecific number of synonymous and nonsynonymous sites;
significance was assessed by using a Fisher’s exact test for the 2x2 contingency table as
implemented in the programs DNAsp version 4.0 (Rosas et al. 2003 ). In this analysis we
compare P. vivax with P. cynomolgi and P. inui (see below).

Results
Table 1 shows the genetic diversity found in the MSP-142 fragments in P. falciparum and P.
vivax. Overall, the genetic diversity of P. falciparum is twice that observed in P. vivax (π of
0.05042 vs. 0.02184). Analysis of the genetic diversity of the MSP-133 and MSP-119 fragments
confirmed previous observations that the MSP-119 fragment is more conserved than the
MSP-133 fragment (Table 1) in both human malarial parasites. P. vivax MSP-119 has only one
polymorphic site while in P. falciparum the substitutions are concentrated in five residues
within the epidermal growth factor like domains (EGF). In an extended alignment that included
all the MSP-119 sequences reported in the literature at the time of this study (n=175); we found
11 alleles reported based in these five residues, among them, there are four common alleles
that have a worldwide distribution: E-KNG-L (n=54), E-TSR-L (n=41), Q-KNG-F (n=20), Q-
KNG-L (n=33). It is worth noting that some alleles, although reported in low frequency, have
been found in two continents; such are the cases of E-KNG-F (n=8 reported in India and
Kenya), E-KSR-L (n=4 reported in Kenya, South Africa, and Vanuatu), and Q-TSR-L (n=3
reported in India and Papua New Guinea). The allele E-TSG-L (n=9) has been reported three
times in India (including this study) and is the one observed in P. reichenowi, the most closely
related species to P. falciparum found in chimpanzees (Coatney et al. 1971).
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We found two recombination-convergent events using the Rm method (Hudson and Kaplan,
1985); these events are illustrated using the relative positions of the residues in the allele E-
KNG-L, specifically between the position held by the amino acids E and K (separated by 138
bp) and between the positions filled by amino acids K and G (separated by 30 bp).
Recombination events have been previously reported in MSP-119 (Qari et al., 1998).

In order to explore the role of natural selection we further analyzed the genetic polymorphism
in the MSP-142 as a unit by estimating the number of synonymous (Ds) and non-synonymous
(Dn) substitutions per site estimated by the Nei and Gojobori method with the Jukes and Cantor
correction. When this comparison is made, both parasites exhibit opposite patterns: MSP-142
in P. falciparum shows more synonymous than non-synonymous substitutions while the
homologous region in P. vivax shows more non-synonymous than synonymous substitutions.
In both cases the differences are significant with a Z test (Kumar and Nei, 2000) (Table 1).
The Li’s method gives identical results. We explore departure from neutrality by using the
Tajima’s D test (Tajima, 1989) and F* test (Fu and Li, 1993). These tests should to be used
with caution since they aim to detect departures from a neutral panmictic population, an
assumption that is violated by these geographically and temporally spaced samples.
Nevertheless, we used them to explore the distribution of haplotypes in our samples as was
used previously to compare P. vivax and P. knowlesi (Putaporntip et al., 2006). These tests
could not detect departure from neutrality in P. falciparum, although they did so in P. vivax
when the complete MSP-142 was considered as a unit.

We explored the diversity in the MSP-133 and MSP-119 fragments separately by comparing
the number of synonymous and non-synonymous substitutions in each species. In the case of
the MSP-133 of P. falciparum there are more synonymous than non-synonymous substitutions
(P<0.05) (Table 1), while the contrary was observed in the MSP-119 where there are more non-
synonymous than synonymous substitutions (P<0.05). These results suggest that while the
MSP-119 is under positive selection in P. falciparum, the MSP-133 is under purifying selection;
that is, natural selection favors the maintenance of amino acid polymorphism in the
MSP-119 while it holds back the rate of amino-acid polymorphism in the MSP-133. Differences
between the MSP-133 and MSP-119 were also observed by using the Tajima’s D and F* tests
(Table 1): there is not a departure from neutrality in the MSP-133 while the MSP-119
polymorphism rejects the expectation under the neutral model. Although the significance level
by the Tajima’s D test is weak for MSP-119 (0.05<P<0.1), there is almost no synonymous
variation, substantiating a departure from the neutrality in this region. It is important to notice
that the Tajima’s D and F* tests have a negative value indicating that there is an excess of low
frequency variants in the sample (Table 1).

In the case of P. vivax the pattern is the opposite. There are more non-synonymous than
synonymous substitutions in the MSP-133 while there is almost no variation in the MSP-119
(Table 1). The polymorphism in the P. vivax MSP-133 is not evenly distributed. Indeed, there
is a region of 105 bp out of 848 bp in MSP-133 (35 amino acids) where a clear excess of
nonsynonymous versus synonymous substitution is observed driving the overall MSP-133
results. In addition, there is a departure from neutrality in the MSP-133 when the Tajima’s D
and F* tests are applied. However, contrasting with P. falciparum, the value of the test is
positive as the result of an excess of variants in intermediate frequencies.

We further explore the hypothesis that positive selection is acting on the P. vivax MSP-133
fragment by comparing it with its closely related non-human primate malarial parasites
(Escalante et al., 2005). The genealogy of the MSP-142 fragments from the species reported
in this study is depicted in figure 1. P. cynomolgi appears as sister taxa of P. vivax; however,
this clade does not have strong support. P. cynomolgi strains are subdivided into two clear
clades; no evidence for allele families could be observed with this fragment. P. inui and P.
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hylobati are closely related as previously reported (Escalante et al., 2005b). The close
relationship of these two species was further supported by the presence of a repetitive sequence
in the MSP-133 fragment. Specifically, a motif with the residues NEQEEI is inserted in some
of the P. inui isolates while P. hylobati has the residues NEQEEIKIRQEEI. We also found an
insertion in P. knowlesi that emerged as a duplication of the motif INNCQIEK conserved in
P. inui and P. vivax (figure 2). Given the lack of resolution of the phylogeny using this region,
we used both P. cynomolgi and P. inui for comparison with P. vivax.

Table 2 shows the basic statistics for the MSP-142 in these two non-human primate malarial
parasites. As in the cases of the human parasites, the MSP-133 fragment is more diverse than
the MSP-119. However, in the case of the non human primate malarias, there is no excess of
non-synonymous substitutions over synonymous substitutions in the MSP-142 as a unit or
considering the MSP-133 and MSP-119 fragments separated. Thus, by comparing the rate of
non-synonymous versus synonymous substitutions we could not detect evidence for positive
selection acting on P. cynomolgi or P. inui MSP-142. An identical pattern can be observed in
P. knowlesi when the two complete MSP-142, the one reported in this investigation and the one
available in the literature (Putaporntip et al., 2006) are compared, specifically Ds = 0.04275
and Dn = 0.00240 for MSP-142.

We then analyzed the genetic diversity of P. vivax MSP-142 by using the McDonald and
Kreitman test (McDonald and Kreitman, 1991) and compared it with both P. cynomolgi and
P. inui samples. In the case of the complete 42Kda, there was an overall excess of non-
synonymous over synonymous in the P. vivax polymorphism when compared with P.
cynomolgi (p < 0.05 using a Fisher’s exact test). Similar results were found with P. vivax and
P. inui (p < 0.001 using a Fisher’s exact test). In both cases, the significance of the MK test
was explained by an excess of amino acid replacements in the polymorphism of the P. vivax
MSP-133. It is worth noting that no departure from neutrality was found when only MSP119
was considered. It is also important to emphasize that no departure from neutrality was
observed when P. cynomolgi and P. inui were compared considering the MSP-142 as a unit, or
separating it into the MSP-133 and MSP-119 fragments.

Discussion
The available data, mostly derived from P. falciparum, indicate the importance of the antibody
response against block 2 (located in the 83 kDa or MSP-183) and the MSP-142 fragments in
developing protective immunity. In this study, we have described the selective forces operating
on the polymorphism observed in the MSP-142 fragment in the two major human malaria
parasites. We have shown how the MSP-133 and MSP-119 fragments are under different
selective pressures in each of the major human malarial parasites by using the rate of non-
synonymous versus synonymous substitutions.

In the case of P. falciparum, the polymorphism in MSP-133 appears to be neutral or under
purifying selection while the polymorphism in MSP-119 is under positive selection. In this
case, our results are consistent with immunologic evidence suggesting that the MSP-119 but
not MSP-133 elicits a protective immune response, though the latter being highly immunogenic
(Ahlborg et al., 2002). Positive selection has been previously proposed as an important
mechanism in maintaining the P. falciparum MSP-1 polymorphism in the form of balancing
selection (Hughes, 1991; Conway et al., 2000); that is, natural selection maintains genetic
polymorphism for a longer time than expected under a scenario where only genetic drift is
acting. A polymorphism under balancing selection is expected to have an excess of alleles in
intermediate frequencies, a pattern that translates into positives Tajima’s D and F* tests. In the
case of MSP-119, however, there is an excess of alleles in low frequency as evidenced by
significant and negative values of the Tajima’s D and F* tests, not consistent with balancing
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selection. This could be the result of several factors. First, we found four alleles that are
particularly common while several others are found in low frequency in our sample; low
frequency alleles that are found even in different continents suggest an artifact due to a poor
sampling effort. Indeed, lack of appropriate sampling could generate negative Tajima’s D tests
as a result of several sub-populations being analyzed together (Hammers et al., 2003). A second
alternative is that a limited number of alleles are increasing in frequency, a scenario expected
under a population expansion which coincides with the results reported for mitochondrial data
(Joy et al., 2003).

Nevertheless, if the population demographic history and inappropriate sampling were the only
factors leading to this result (significant and negative Tajimas’s D and F* tests), then the
MSP-133 should have shown a similar trend. The Tajimas’s D and F* tests for MSP-133 are
not only non significant but also have an opposite sign. Interestingly, the MSP-133 also shows
more synonymous than non-synonymous substitutions. Therefore, we propose that the negative
Tajimas’s D and F* tests, together with the excess of non-synonymous over synonymous
substitutions in MSP-119, are the result of directional selection, that is, there are few
MSP-119 alleles increasing in frequency because they are positively selected.

Although the immune response against P. falciparum MSP-119 is still under intense
investigation, there is evidence suggesting that fine specificity rather than prevalence could be
an important factor in the observed immune reactivity (Okech et al., 2004). Indeed, only partial
cross-reactivity has been found in holoendemic areas among the most common MSP-119 alleles
(Udhayakumar et al., 1995; Shi et al., 1996; John et al., 2004). It has been also shown that
immunity against MSP-119 in P. falciparum has a short lifespan to the extent that its elicited
antibody responses allow detecting differences in local transmission (Drakeley et al., 2005).
Therefore, the pattern in the genetic polymorphism of MSP-119 could be the result of
differences of the most common alleles in their specificity and/or life spans of their elicited
immune responses when compared with the less frequent MSP-119 alleles, differences that
give them a selective advantage favoring their transmission.

Our hypothesis that directional selection is operating on MSP-119 does not contradict previous
claims for balancing selection since they are well supported by the extensive divergence
observed in MSP-183, MSP-130, and MSP-138 fragments allowing the identification of two
very distinctive allele families (Tanabe et al., 1987) that have been found to be an ancient
polymorphism (Hughes, 1991; Polley et al., 2005) as well as evidence derived from population
base studies of the MSP-183 (Conway et al., 2000; Takala et al., 2006). Indeed such divergent
allele families are not observed when only the MSP-119 is considered.

In the case of P. vivax, however, the MSP-133 and MSP-119 fragments appear to be under
different selective pressures than the ones just described in the homologous region in P.
falciparum. We observed an excess of non-synonymous over synonymous substitutions in the
MSP-133 and not in the MSP-119 ; in addition, we found that the Tajimas’s D and F* tests are
significant and positive for MSP-133, which is expected under the scenario of balancing
selection although it could be the result of population structure, a clear possibility given the
origin of the sample analyzed. Nevertheless, when we studied the genetic variation in the
MSP-133 and MSP-119 by using the McDonald and Kreitmant test against P. cynomolgi and
P. inui we found an excess of non-synonymous substitutions in the P. vivax MSP-133 no matter
which species we used to compare it with, suggesting that positive natural selection is operating
in this fragment.

Our results support previous observations that P. vivax MSP-133 could play an important role
in reticulocyte invasion (Espinosa et al., 2003; Rodriguez et al., 2002). However, the
polymorphism in the P. vivax MSP-133 appears more complicated; indeed, there is a 105 bp
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fragment with high polymorphism located between regions where peptides with high specific
binding activity (HSBA) to reticulocytes have been found (Espinosa et al., 2003; Rodriguez
et al., 2002). These regions with HSBA are not only highly conserved among P. vivax isolates
(n= 75) but also show more synonymous than non-synonymous substitutions when compared
with P. cynomolgi (peptides 1735, 1738 and 1747 sensu Rodriguez et al 2002 have Ks of 0.30,
0.31 and 0.22 versus Kn of 0.16, 0.025, and 0.11 respectively) and a similar pattern is observed
when compared with P. inui (peptides 1735, 1738 and 1747 sensu Rodriguez et al. 2002 have
Ks of 0.29, 0.37, and 0.041 versus Kn of 0.17, 0.10, and 0.16 respectively) . This overall pattern
indicates that these HSBA regions are under selective constraints to accumulate amino acid
replacements; as a result, they could be a valuable target for a vaccine against P. vivax as has
been suggested previously (Espinosa et al. 2003).

There is no information regarding the immunologic role played by the variation observed in
P. vivax MSP-133. Elucidating whether it hampers effective natural immune responses against
these conserved regions with HSBA to reticulocytes or whether it plays any other role requires
further investigation. Nevertheless, it seems clear from this comparative analyses that we
cannot simply extrapolate information derived from P. falciparum into P. vivax in the case of
MSP-142.

In summary, we have investigated the genetic diversity of the sequence encoding the
MSP-142 in the two major human malarial parasites. We found evidence supporting positive
natural selection as an important factor in the maintenance and generation of the observed
polymorphism. However, we describe how natural selection is acting differently in the
MSP-133 and MSP-119 fragments of the MSP-142 in each of the two human malarial parasites.
That is, our results suggest that these fragments, MSP-133 and MSP-119, could play different
roles in each of the two human malarial parasites.
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Figure 1.
Neighbor-Joining tree of the MSP-142 alleles using Tamura-Neís distance. The numbers on
the nodes of the tree are percent of bootstrap values based on 1,000 pseudo-replications. The
sequences reported in this study are identified with their species and strain names.
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Figure 2.
Repetitive sequences observed in the MSP-142. The observed motifs are in italics. The dots
(>…<) are indicating a non-repetitive portion of the protein that is not shown. The first three
letters in the sequence codes indicate the species: Pvi is P. vivax, Pcy is P. cynomolgi, Pin is
P. inui, Phy is P. hylobati, Pkn is P. knowlesi, and Pfr is P. fragile.
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